Використання глибоких нейронних мереж для видалення шуму із зображень в умовах обмежених апаратних ресурсів
DOI:
https://doi.org/10.15276/hait.08.2025.3Ключові слова:
усунення шумів із зображення, глибокі нейронні мережі, залишкове навчання, моделі на основі трансформерів, якість шумозаглушення, час висновкуАнотація
Усунення шуму на зображеннях залишається важливою темою в цифровій обробці зображень, адже має на меті відновлення чіткого візуального вмісту з даних, пошкоджених випадковими коливаннями. У цій статті представлено огляд сучасних методів усунення шуму на основі глибоких нейронних мереж та порівняння їх ефективності з класичними техніками. Особливий акцент зроблено на здатності сучасних глибоких архітектур вивчати залежності в даних, що дозволяє більш ефективно зберігати структурні деталі, ніж традиційні методи. Реалізацію проведено в програмному середовищі з використанням бібліотек відкритого коду, а дослідження виконано на платформі Google Colab, що забезпечує відтворюваність і масштабованість експериментів. Класичні та нейромережеві методи оцінюються кількісно та візуально за допомогою стандартизованих показників якості, таких як співвідношення сигнал/шум і показник структурної подібності, а також аналізу швидкості обробки. Результати демонструють, що нейромережеві підходи забезпечують вищу точність відновлення і краще зберігають деталі, хоча зазвичай потребують більших обчислювальних ресурсів. Класичні методи, хоч і простіші в реалізації та доступні для обладнання з мінімальними можливостями, часто не справляються за високого рівня шуму або його складного характеру. Методи на основі зіставлення блоків та тривимірної фільтрації демонструють конкурентні результати, проте вимагають значних обчислювальних витрат, що обмежує їх застосування для завдань, чутливих до часу. Перспективні напрямки розвитку включають гібридні підходи, що поєднують переваги згорткових і трансформерних архітектур, а також удосконалення стратегій навчання, які дозволять використовувати методи за відсутності великих обсягів чистих еталонних даних. Вирішення цих викликів забезпечить розвиток методів усунення шуму на зображеннях, що дозволить отримати більш ефективні та надійні рішення для широкого спектру практичних задач.