Models and methods for processing and analyzing data of different physical properties
Models and methods for processing and analyzing data of different physical properties
Issue number: |
View the article: |
Authors: |
Vol. 8 № 2 2025 151-163 |
|
|
Vol. 8 № 1 2025 13–27 |
Methods of filtering and regression for forecasting noisy timeseries based on machine learning |
|
Vol. 7 № 4 2024 361–370 |
|
|
Vol. 7 № 3 2024 243–252 |
|
|
Vol. 7 № 3 2024 231–242 |
Optimizing hierarchical classifiers with parameter tuning and confidence scoring |
|
Vol. 6 № 2 2023 115–127 |
|
|
Vol. 5 № 4 2022 263–274 |
|
|
Vol. 5 № 3 2022 198–209 |
|
|
Vol. 5 № 2 2022 91–101 |
|
|
Vol. 5 № 1 2022 11-18 |
Depth map generation for mobile navigation systems based on objects localization in images |
|
Vol. 4 № 3 2021 225-231 |
|
|
Vol. 4 № 2 2021 185–194 |
Deep learning technology for videoframe processing in face segmentation on mobile devices |
|
Vol. 4 № 1 2021 35-46 |
Analysis of gamma-ray spectrum obtained with CdZnTe-Detectors using the ROOT CERN software framework |
|
Vol. 3 № 4 2020 240–251 |
Forming the stack of texture features for liver ultrasound images classification |
|
Vol. 3 № 4 2020 226–239 |
Vector-difference texture segmentation method in technical and medical express diagnostic systems |
|
Vol. 3 № 2 2020 42-51 |
|
|
Vol. 2 № 4 2019 259-267 |
Detector quasi-periodic texture segmentation method for dermatological images processing |
|
Vol. 1 № 1 2018 11-20 |
|