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ABSTRACT

This paper focuses on the development of a methodology to compress neural networks that is based on the mechanism of prun-
ing the hidden layer neurons. The aforementioned neural networks are created in order to process the data generated by numerous
sensors present in a transducer network that would be employed in a smart building. The proposed methodology implements a single
approach for the compression of both Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) that are used
for the tasks of classification and regression. The main principle behind this method is based on the dropout mechanism, which is
employed as a regulation mechanism for the neural networks. The idea behind the method proposed consists of selecting optimal
exclusion probability of a hidden layer neuron, based on the redundancy of the said neuron. The novelty of this method is the usage
of a custom compression network that is based on an RNN, which allows us to determine the redundancy parameter not just in a sin-
gle hidden layer, but across several layers. The additional novelty aspect consists of an iterative optimization of the network-
optimizer, to have continuous improvement of the redundancy parameter calculator of the input network. For the experimental evalu-
ation of the proposed methodology, the task of image recognition with a low-resolution camera was chosen, the CIFAR10 dataset
was used to emulate the scenario. The VGGNet Convolutional Neural Network, that contains convolutional and fully connected lay-
ers, was used as the network under test for the purposes of this experiment. The following two methods were taken as the analogous
state of the art, the MagBase method, which is based on the sparcification principle as well as the method which is based on rarefied
representation by employing the approach of rarefied encoding SFAC. The results of the experiment demonstrated that the amount of
parameters in the compressed model is only 2.56 % of the original input model. This has allowed us to reduce the logical output time
by 93.7 % and energy consumption by 94.8 %. The proposed method allows to effectively using deep neural networks in transducer
networks that utilize the architecture of edge computing. This in turn allows the system to process the data in real time, reduce the
energy consumption and logical output time as well as lower the memory and storage requirements of real-world applications.

Keywords: Smart Building; Internet of Things; Neural Network Compression; Network pruning; Sparse Representation; Re-
current Neural Network; Long Short-Term Memory

For citation: Lobachev I. M., Antoshchuk S. G., Hodovychenko M. A. Methodology of neural network compression for multi-sensor trans-
ducer network models based on edge computing principles. Herald of Advanced Information Technology. 2021; Vol. 4 No. 3: 232-243.
DOI: https://doi.org/10.15276/hait.03.2021.3

INTRODUCTION, FORMULATION OF THE  smart buildings, agriculture, motion and gesture

PROBLEM recognition etc. [3, 4]. The main reason behind this
is that neural networks allow to automatically select
attributes from a large volume or raw data.

This allows the system to exclude the human
factor and obtain a high degree of solution efficiency
in the neural network.

Among the most popular types of neural net-
works, one could highlight Convolutional Neural
Networks (CNN), Fully Connected Neural Networks
(FC), and Recurrent Neural Networks (RNN). Mod-
els based on neural networks can include one or
more types of neural networks in varying combina-
tions. Convolutional neural networks extract spatial
attributes, while recurrent neural networks are

In recent years we have seen a wide application
of machine learning principles, especially in Internet
of Things (1oT) systems, this is explained in part by
the availability of small, inexpensive computational
devices [1].

Approaches that are based on traditional meth-
ods of machine learning, require manual attribute
selection, this lowers their ability to generalize on
new data sets that do not contain information about
the distribution of the data [2]. As a result, the im-
plementations based on deep neural networks be-
came the dominating type in many areas, including

© Lobachev 1. Antoshchuk. S geared more towards time attribute extraction from
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to the high efficiency of neural networks when
dealing with tasks such as classification, regression
and forecasting [5, 6].

Despite these advantages, the usage of models
based on machine learning requires a large pool of
resources, including energy, processing capability
and data storage.

These requirements lower the feasibility of em-
ployment of neural networks in devices with limited
resources [7].

Usually, extensive resource requirements be-
come the bottleneck when developing 10T solutions,
where the output of the neural network is needed in
real-time.

One of the methodologies to decrease resource
demand of neural networks is the compression of
neural networks.

Compressed neural networks possess several
advantages when compared to traditional neural
networks:

— computational power demand: a vast number
of floating-point operations (FLOPs) involved in the
operation of DNN (Deep Neural Network) can ex-
ceed the limited processing capacity of the loT
nodes [11, 12], [13, 14].

Therefore, it would be useful to use DNN com-
pression to reduce processing power requirements
[15]:

— time consumption: the training and working
time of a DNN model is significantly long, which
makes it difficult to perform model inference in real
time [16, 17]. DNN compression techniques thus
provide a higher degree of quickness in both training
and inference tasks;

— memory capacity: neural networks achieve a
high performance when using large number of neu-
rons, which in turn requires large memory consump-
tion to hold and process the model [8, 9], [10]. As a
result, compression could lower the memory re-
quirements. This simplifies and makes it more eco-
nomical to deploy compressed neural networks on
devices with limited memory resources;

— power consumption: compression of neural
network also lowers the energy consumption for data
processing [19, 20], [21]. This improves the ease of
deploying the compressed neural network models on
battery-power 0T devices;

— privacy: the transfer of data from an edge
node to the cloud leads to high probability of securi-
ty breaches and confidentiality compromises [18].
Therefore, it would be beneficial to process data
with neural networks in-place, which helps maintain
confidentiality and ensures data security.

A feature of IoT systems that are used in the
field of creating smart buildings is the use of a varie-

ty of sensors of various types, with different dimen-
sions of data as well as update frequency for new
data, which consider the spatial and temporal char-
acteristics of their environment.

Thus, the purpose of this study is to develop a
compression method that would provide a unified
approach to the compression of various types of neu-
ral networks to process multisensory data in the de-
velopment of smart buildings.

1. LITERATURE REVIEW

Compression techniques of deep neural net-
works can be broken down into five types, depend-
ing on the approach to the compression process
used: network pruning, sparse representation, data
precision, knowledge distillation, and other ap-
proaches. Table 1 lists the main categories and sub-
categories of compression techniques.

Network pruning. This compression approach
is implemented by removing individual components
of neural network: filters, channels, layers of indi-
vidual neurons in order to get compressed model.

Compressed model uses less memory, con-
sumes less energy and allows to get inference faster
than uncompressed model with the same accuracy or
with acceptable loss of accuracy.

To measure the importance and contribution of
neural network component to the final network per-
formance, we could compare network accuracy
when component is removed from the model [17].
Pruning is applied step by step to the neural network
to exclude only components that will not or mini-
mally decrease network performance.

Pruning techniques can be further divided into
four subcategories, based on components to be
pruned: channel pruning, filter pruning, layer prun-
ing and connection pruning.

Pruning methods could minimize the amount of
used storage and requirements for the computing
power of the node on which the compressed neural
network is deployed.

Sparse representation. Sparse representation
uses the sparsity which is present in the weight ma-
trices of the neural network model. In sparse repre-
sentation techniques, the weights there are zero or
close to zero are excluded from the matrix, which
lowers the power and computational power require-
ments of the compressed model. Connections in the
network with similar weights are multiplexed, where
in-place of multiple weights with a single connection
is replaced with a single weight with the multiplex
connection.

Sparse representation techniques could be di-
vided into quantization, multiplexing, and weight
sharing. The main idea behind the sparse representa-
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tion methods is to reduce the weight matrix without
losing the performance of the DNN model.

Data precision. Data precision techniques re-
duces the number of bits required for storing the
weights in the weight matrices W. For example, the
FLOPs in the default DNN model requires 32 bits,
which can be replaced with integer datatype, that
requires only 8 bits. Similarly, we can use binary, 6
bits, 16 bits for replacing 32 bits FLOPs in the DNN
model. We categorized the existing literature on
DNN compression using bits precision into three
sub-categories, namely, estimation using integer,
low bits representation, and binarization.

Table 1. Overview of compression techniques
categories

Compression
techniques
Network
pruning

Subcategories

Layer pruning [24,25]

Sparse repre-

sentation

Weight sharing [29]
Data  preci-
sion

Low bit representation [32]
Knowledge
distillation

Domain adaptation [35]
Other methods [36,37], [38]

Source: compiled by the authors

Knowledge distillation. In a DNN model, the
term knowledge distillation is defined as the process
of transferring the generalization ability of the com-
plex model (teacher) to the compact model (student)
to improve its performance. Knowledge distillation
provides a mechanism to overcome the accuracy
tradeoff due to the DNN compression. The training
of the student model using knowledge distillation
improves its generalizability so that it can mimic
teacher-like behavior to predict the probabilities of a
class label.

We could further divide knowledge distillation
techniques into logit transfer techniques, teacher-
assistant techniques, and domain adaptation meth-
ods.

Other methods. DNN compression methods
that do not fit into any of the above four categories
are classified as other. These include DNN compres-
sion techniques that perform DNN modeling in such
a way that they can be easily deployed on mobile
devices. Typically, these methods consist of allocat-

ing tasks to reduce memory usage or leverage paral-
lel processing mechanisms.

Analysis of neural network compression meth-
ods has shown the relevance of developing a method
that provides a unified approach to the compression
of machine learning models that use a combination
of different types of neural networks to process mul-
tisensory data in the field of smart building systems.

2. COMPRESSION METHOD DESIGN

The proposed method is based on the use of the
well-known deep neural network regularization
method known as "dropout™ or exclusion. The drop-
out operation assigns to each neuron of the network
of hidden layers the probability of its exclusion.
During the screening process, elements of hidden
layers can be excluded based on a probability pa-
rameter, resulting in a network structure with fewer
elements. The main parameter of this operation is
the probability of exclusion, which must be selected
in such a way as to form an optimal network struc-
ture that preserves the accuracy of work and mini-
mizes resource consumption. The proposed method
is aimed at finding the optimal exclusion probability
for each element of the hidden layer.

To obtain the parameter of the optimal proba-
bility of exclusion in the proposed method, the net-
work parameters themselves are used. For this, the
parameter of redundancy of the node of the hidden
layer of the neural network is introduced. From the
point of view of the compression process of the
model, the element with higher redundancy has a
higher probability of being excluded.

A new idea within this method is the usage of a
special neural network, which plays the role of an
optimizer (network-optimizer), which takes as input
the weights of each layer of the original network,
finds the redundancy value, and estimates the proba-
bility of dropout for each neuron of the hidden layer.

Within the compression process, the original
neural network and network-optimizer are enhanced
iteratively to reduce the value of loss function.

The proposed technique could be described as a
sequence of steps:

1) dropout operations are added to the hidden
layers of the source neural network, which randomly
eliminate nodes with probability p. The input and
output layers of the neural network has a fixed size
and do not affect by compression method;

2) initialization of network-optimizer. Each
layer intended for compression represented as the
weight matrix W®, from which the network-
optimizer receives the values of the redundancy pa-
rameter, after which the optimal probabilities of
dropout each element of the hidden layer p®®, which
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are then used in the dropout operation in the original
neural network;

3) an iterative process of enhancing of the net-
work-optimizer and the source network conducted.
The network-optimizer is enhanced to get more ac-
curate dropout probabilities, which will produce a
more accurate compressed structure of the original
neural network. The original neural network is en-
hanced to achieve a more efficient structure.

2.1. Dropout routine

The basic idea is that we regard neural networks
with dropout operations as Bayesian neural networks
with Bernoulli variational distributions.

For the full connected layers, the dropout opera-
tion can be described as

l .
z[(j]) ~Bernoulli (p[(]l]) ),

W(D =w® diag (z(l)), )

y® = xOFO 4 pO
XD = f(y®),

where: [ =1, ..., L — is the layer number in the net-
work; WO g RA“IxdY _ \yeight matrix for each
layer I; b® € R4V _ bias vector; X e prxa®™ _
the input; f(+) — activation function.

As shown in (1), each hidden unit is controlled
by a Bernoulli variable. In the default dropout meth-
od, the success probabilities of p[(]l]) usually is as-

signed to the same constant p for all neurons of hid-
den layers. Proposed method estimated individual
probabilities for each neuron to compress the neural
network structure.

In convolutional neural networks, default opera-
tion is convolution. Convolution can be represented
as a linear operation as shown in (1).

For some layer I, we define K(® = {K,El)} for
k=1,..,¢U as the convolutional neural network
kernels, where K,El) e Rhx0Wxc™D o the kernel

of network with height (¥, width w® and channel

¢ The input matrix of layer I defines as ¥ e

RET 0D i peight 297V width @D
and channel ¢,

From the input X® we get dimensional section
h®O x w® x ¢(=1) with stride s, and turn these sec-
tions into vectors. These vectors are the rows of in-
put representation X® € Rrx(RP0Pe™D) \yhere
— number of vectors. The vectorized kernels form

the columns of the weight matrix W® €
R(ROOED) D

With this transformation, dropout operations
can be applied to convolutional neural networks ac-
cording to (1). The composition of pooling and acti-
vation functions can be regarded as the nonlinear
function f(+) in (1).

In convolution neural network we exclude ker-
nels instead of distinct neurons. Therefore, proposed
technique manages to prune kernels from the convo-
lutional network.

For the recurrent neural network, we take a
multi-layer LSTM network as an example. The
LSTM dropout operation can be described as

® (D
71 ~Bernoulli (p[j] ),

sigm Do 0-1)

Slgm W(l) ( t (O] 10) ’ (2)
sigm h;Z,0z

tanh

' =foc+i0y,
h® = 0 Otanh tanh ("),

where: [ =1,...,L — is the layer number and t =
1, ...; T —is the step in the recurrent neural network;
Element-wise multiplication is denoted by ©; oper-
ators sigm u tanh defines sigmoid function and
hyperbolic tangent respectively; the vector hgl) €
R™ s the output of step t at layer [; the vector
hgo) = x; is the input for the whole network at step
t: the matrix W® e p4nx(n"Y+10) s the weight
matrix at layer (.

As shown in (2), proposed method uses vector
of Bernoulli random variables z(" to estimate drop-
out among distinct time steps in each network layer,
while individual Bernoulli variables are used for dif-
ferent steps in the LSTM dropout. Proposed method
tries to reduce the number of hidden dimensions in
the blocks of LSTM. In case of using GRUSs, dropout
routine can be carried out similarly.

2.2. Design of network-optimizer

A neuron in the hidden layer, which is connect-
ed to model parameter with high redundancy value,
would have a higher chance to be excluded.

Network-optimizer is designed in such way,
that it takes the weights of neural network {W®} as
inputs, estimates redundancy value in these weights
and generates dropout probabilities {p®} for neu-
rons of hidden elements that can be used to com-
press network structure.
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A default approach is to train a distinct neural
network for each layer of original neural network.
Though, redundancy value is shared between differ-
ent layers, the proposed technique obtains LSTM as
the architecture for network-optimizer to learn re-
dundancy value among multiple layers.

According to the (2), the weight in layer [ of the

neural network can be represented as a single matrix

O, O
w® e RY *arop where d¥.  — defines the di-

drop
mension that dropout operation is applied and d](f)
defines the dimension of features within each ex-

cluded element.
The weight matrix of LSTM at layer [ can be repre-

sented as W® g R+ V+n)xn® "\ hare d((ilr)op =

n® and dY =4-(n¢V +n®). Since we take
weights from the original network layer by layer
w = {w®}, with I =1,...,L as the input of the
network-optimizer. Instead of using a default LSTM
as the architecture of optimizer, we apply a modified
[-step model described as

T
Vi Uu;

U; — M/C(I)W(I)M/l(l)’ uf

\UOT/ ZO
T g
Vg

sigm i
= | sigm v+ W) | )
sigm
tanh

Qo
I

¢=fOa1+ti0g,
h; = o Otanh tanh(c;),
. l
p©® = p, = sigm (W "h;),

O} (D
2] ~Bernoulli (p[j] )

We define d, as the dimension of the LSTM
O]

l
hidden state. Then W® e R% *daror, WV e
® ()
R¥, w® g R%rop*% 1, € R¥exde  and

®
w, D e R%rop™% The set of parameters of network-
optimizer is defined as ¢, where ¢ =

{wﬁ”, w® w, Wf,l)}. The matrix W® is the input
matrix for step [ in the network-optimizer, which is

also the parameters of layer of the original network
in (1) or (2).

In comparison with the default LSTM version
that requires vectors as inputs, the modified LSTM
model keeps the structure of the original matrix and
uses less parameters to obtain the redundancy among
the dropout elements.

Further, W " and W, transform original
weight matrix W® with different sizes into fixed
size matrix. The vector z() serves as template and
probability p® is the exclude probabilities for the
layer in the network used in (1) and (2), which is

also the dropout learnt through observing the redun-
dancy of the source network.

2.3. Network compressing routine

In formulas (1) and (2) custom dropout routines
were described, which are used on the source net-
work that should be compressed and network-
optimizer used to get dropout probabilities.

Here we will discuss the details of the com-
pressing routine. It enhances the source neural net-
work and the network-optimizer in a step-by-step
manner and enables the network-optimizer to step-
wise compress the original neural network with soft
deletion.

We define the source neural network as
Fy(x]|z) and we call it opponent. It gets x as net-
work input and produces predictions based on drop-
out z and parameters W, that refer to a weight W =
{(w®}. We assume that Fy, (x|z) was trained be-
forehand. We define the network-optimizer by
z~ugy(W). It takes the weights of the opponent as
inputs and generates the probability distribution of
the mask vector z based on its own parameters ¢. In
order to enhance the optimizer to exclude hidden
elements in the opponent, proposed technique fol-
lows the function

L= EZ~H¢ [L(yl FW(Z))]

= > mw)
z~{0,1}/2!
- L(y, Fy (x]2)),

(4)

where L(,) is the function of the opponent. This
function can be described as the expected loss of the
network over the dropout generated by the optimizer.
Proposed technique enhances the optimizer and
opponent in a stepwise way. It reduces loss function
value as described in (4) by using the gradient de-
scent on optimizer and opponent step by step. Since
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dropout operations could be described as discrete
sampling routines, we could not use backpropaga-
tion algorithm directly.

As a result, we apply likelihood estimator to get
the gradient value over ¢

Vol = Z Vot (W) - L(y,F,,(x]2))

= Z py(W)Vy log log py (W)

L(y, Fy(x12)) (5)
- Ez~/l¢ [|7¢ log log u¢(W)

. L(y, Fw(x|z))] Z I«lq,(W)

z~{0,1}7l
. L(y, FW(x|z)).
An estimator for (5) can be
Vol = Vg logus (W) - L(y, Fy (x12)),
Z~‘Ll¢.
The gradient over W® € W is

VyolL = Z u¢(W)
z

-7, 0L(y,F,(x2)) 7)
= Eyy, [V L(x12)].

(6)

In similar way, an estimator for (7) can be
Vwol = VW(z)L(y, Fw(x|z)),z~y¢. 8)

Although the estimator (6) is an unbiased esti-
mator, it will produce higher variance. A higher var-
iance of the estimator can make the convergence
slower. This means that variance reduction tech-
niques are typically required to make the optimiza-
tion feasible in practical tasks.

First variance lowering approach is to subtract a
c from signal L(y, F, (x|2)) in (5) which keeps the
gradient. We are tracking the average of the signal
L(y, F, (x|z)) defined by c, and subtract ¢ from the
gradient (6).

Second variance lowering approach is to keep
track of the average of the signal variance v, and
divides the learning signal by (1,vv) .

Combing the aforementioned two variance low-
ering approaches, the final estimator (6) for gradient
becomes

Vsl
= Vg log log pue (W)
L(y,Fy(x12) — ¢ (©)

(Vo) THe

where c and v are the moving average of mean and
the moving average of variance of signal
L(y, E, (x|2)) respectively.

In comparison with other compressing tech-
niques that deleted weights without recovery capa-
bility, the proposed method used so-called “soft”
deletion by iteratively lowering exclusion probabili-
ties of neurons with a factor y € (0,1). During the
experiments, the factor y was 0.5.

Proposed method could not make optimal drop-
out decision at the beginning, soft deletion technique
provides possibility to recover excluded element.
This approach reduces the risk network degradation.

Within the compression routine, threshold of
dropout, defined as 7 increases from 0 with the step
of V. The neurons of hidden layers with dropout, that

is less than the threshold, will be given decay on

probability, i.e., p[(]l]) “y- p[(;])

In conclusion, the operation in optimizer (3) can
be described as

) ao

z[(;])~Bernoulli (p[j] y U
where: [ — is the function; y € (0,1) is the factor
and T € [0,1) — is the threshold. Since the operation
of lowering dropout probability with the predefined
factor y is differentiable, we can still optimize the
opponent and the network-optimizer through (8) and

9).

The compression process will stop when the
percentage of left number of parameters in Fy, (x|z)
is smaller than a user-defined value « € (0,1).

Final step of compression is fine-tuning the re-
sulting network with a mask Z, which is decided by
the value t. Mask generation (10) will be described as

NOBEM )
Z5 = lp[j] > T. (12)

3. EXPERIMENTAL RESULTS

For an experimental evaluation of the devel-
oped technique, we will test its work in relation to
the compression of the convolutional neural network
VGGNet in the problem of image recognition on the
CIFAR10 dataset.

The experiment was conducted on Intel Edison
as a hardware platform. Intel Edison uses a Intel At-
om SoC with a 500 MHz frequency and has a 1GB of
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RAM and a 32Gb flash card. All experiments were
carried out using only the power of the CPU. The
training of neural networks took place on a desktop
using a GeForce RTX 3060 video card. The compres-
sion process of the trained networks also took place
on a desktop. All compressed neural networks worked
using the Theano framework using only the proces-
sor's power. Matrix multiplication operations were
optimized with BLAS and Sparse BLAS algorithms.
No additional optimization was conducted.

For comparison with the proposed neural net-
work compression method, MagBase [39] and SFAC
[40] algorithms were taken.

MagBase is a magnitude-based network prun-
ing algorithm. The algorithm prunes weights in con-
volutional kernels and fully connected layer based
on the magnitude. It retrains the network connec-
tions after each pruning step and can recover the
pruned weights. For convolutional and fully con-
nected layers, MagBase searches the optimal thresh-
olds separately.

SFAC is a sparse-coding and factorization-based
algorithm. The algorithm simplifies the fully connect-
ed layer by finding the optimal code-book and code
based on a sparse coding technique. For the convolu-
tional layer, the algorithm compresses the model with
matrix factorization methods. We greedily search for
the optimal code-book and factorization number
from the bottom to the top layer.

The task is image recognition through a low-
resolution camera. During this experiment, we use
CIFAR102 as our training and testing dataset. The
CIFAR-10 dataset consists of 60000 32x32 color
images in 10 classes, with 6000 images per class.
There are 50000 training images and 10000 test im-
ages. It is a standard testing benchmark dataset for
the image recognition tasks. While not necessarily
representative of seeing objects in the wild, it offers
a more controlled environment for a comparison.

VGGNet was used as network-opponent. This
architecture was chosen to illustrate that proposed
approach could compress deep and large network
structures. Network structure is shown in Table 2.

Final compression structure for proposed meth-
od and analogues is also described in Table 2. Pro-
posed method carried out more efficient compres-
sion. Network-optimizer uses enhanced LSTM net-
work to learn redundancy values across network-
opponent layers.

Alternative methods used redundancy infor-
mation only within distinct network layer. Proposed
method uses global redundancy values among hid-
den layers to compress network in a more efficient
manner. Also, there is a performance loss by net-
work, compressed by SFAC method. It’s safe to as-
sume that performance degradation is a result of ab-
sence of fine-tuning routine.

The compromise between network accuracy
and memory consumption is shown in Fig 1. We
could see that proposed technique reaches a better
performance with the usage of standard weight ma-
trix representation, while alternative methods use
sparse representation.

100

= 901 -
S~ k]
< —
> i
o 80
©
—_
o 70
o
©
© 604
o
o Method
= 504 - MagBase
- SFAC
40 : ; : ; r
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Proportion of memory consumption

Fig. 1. Compromise between accuracy and

memory consumption
Source: compiled by the authors

The compromise between accuracy and
execution time is show in Fig. 2. Proposed approach
achieves better performance in comparison with
alternative methods. Compressed network takes
83,4ms for inference with the same accuracy, which
is 93,7 % quicker than original network.

MagBase algorithm uses less execution time
compared with SFAC in this experiment. Therefore,
factorizing 2d kernel into two 1d kernels helps less
in reducing computation time. SFAC fails to
compress the original network into a small size
while keeping the original performance, because
SFAC avoids the fine-tuning.

100

90 F— :
—_ e —
o E -

S 801 R4

o

B 701

.

O 601

o

B 50

[ . -

o

O 401 1 ! —e— Method

= 104 ’ " —¥- MagBase
! 1 —* - SFAC

20 : L —L : ; . .

0 200 400 600 800 1000 1200 1400  160C

Execution time (ms)

Fig. 2. Compromise between accuracy and

execution time
Source: compiled by the authors

The compromise between accuracy and power
consumption is shown in Fig. 3. Proposed technique
lowers power consumption by 94,8 % in comparison
with the original network. It facilitates development
of a long-lasting deep neural network models in
nodes with energy deficit.
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Table 2. Experimental results over VGGNet

VGGNet Proposed method MagBase SFAC
Neurons | Parameters | Neurons Percent of Percent of | Percent of
Layers of hidden of hidden | parameters | parameters | parame-
layers layers left left ters left
Convolutional 1(3x3) 64 1600 26 42.5 % 53.5% 93.6 %
Convolutional 2(3x3) 64 35600 41 31.8% 40.3 % 57.7 %
Convolutional 3(3x3) 128 72700 55 30.7 % 52.7 % 85.7 %
Convolutional 4(3x3) 128 145 600 64 22.4 % 67.2 % 56.2 %
Convolutional 5(3x3) 256 292 700 101 21.2% 71.7% 85.5 %
Convolutional 6(3x3) 256 584 300 94 15.3% 65.1 % 56.2 %
Convolutional 7(3x3) 256 584 300 85 13.1% 61.8 % 56.3 %
Convolutional 8(3x3) 512 1173500 118 8.2% 36.8 % 85.7 %
Convolutional 9(3x3) 512 2 356 200 92 4.2 % 10.3% 56.2 %
Convolutional 10(3x3) 512 2 353700 61 2.1% 3.7% 56.8 %
Convolutional 11(2x2) 512 1045 100 125 32% 3.2% 84.7 %
Convolutional 12(2x2) 512 1045 100 117 5.4% 1.6 % 84.5 %
Convolutional 13(2x2) 512 1045 100 142 6.3 % 2.2% 84.1%
Fully connected 1 4096 2094 700 23 0.18 % 2.3% 95.3 %
Fully connected 2 4096 16 776 700 364 0.05 % 0.34 % 127 %
Fully connected 3 10 40 500 10 9.2% 18.2 % 90.6 %
Total 29 647 400 2.56 % 7.07 % 108 %
Accuracy 90.2 % 90.2 % 90.2 % 86.7 %
Source: compiled by the authors
100 ron, the redundancy parameter of the hidden layer
90 >—v - neuron is used, which is estimated using a special
£ w0 . f*-‘*‘*"* recurrent neural network, which makes it possible to
> . I! P cc_)n5|der the spatial connectlons_ between neurons on
o ; / different layers of the compressible network.
g o0 i’ f For experimental verification of the developed
g 50 j i method, th(_a problem of image recognition using a
S 0. / i —e— Method low-resolution camera on the CIFAR10 dataset was
= / i —%- MagBase taken; the convolutional neural network VGGNet,
. | ;’ i —k- SFAC which contains convolutional and fully connected

0 200 460 660 860 IOIOO 12|00 14IOO 1600 180C
Inference energy (m]))

Fig. 3. Compromise between accuracy and

power consumption
Source: compiled by the authors

CONCLUSIONS

In this paper, a method for the compression of
neural networks is proposed, which is based on the
mechanism of pruning neurons of the hidden layers.
Pruning is based on a modified dropout mechanism,
in which, instead of selecting a single probability of
excluding neurons, the optimal parameter of the ex-
clusion probability is selected for each neuron. To
find the optimal probability of excluding each neu-

layers, was used as a test network. As analogous
methods, we took a method based on the principle of
network pruning (MagBase), as well as a method
based on sparse representation using the sparse cod-
ing method (SFAC).

Experiments showed that proposed method
manages to obtain compressed structure with 2,56 %
of original network parameters number. This com-
pression results in lowering the network inference
time (by 93,7 %) and power consumption by 94,8 %.

Possible directions for the continuation of the
work are the further study of dependencies between
the structure of the neural network and the efficiency
of its operation, which will further reduce the infer-
ence time and energy consumption.
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AHOTAIIA

V 1iif cTaTTi OCHOBHA yBara MpUAUIIETHCS pO3poOLi METOAY KOMIpecii HEHPOHHUX MEpex, KU 3aCHOBaHMH Ha MeXaHi3Mi
BUKJIIOYCHHS HEMPOHIB MPUXOBAHUX LIapiB. Buie3asHaueHi HeWPOHHI MEpexki CTBOPIOIOTHCSA ISl OOpPOOKH AaHHX, IO TE€HEPYIOTHCS
YHUCIICHHUMH CEHCOpaMH, IPUCYTHIMH B TPAHCAIOCEPHUX Meperkax, sIKi BAKOPHCTOBYIOTECS B 00JIaCTi CTBOPEHHS PO3YMHHX OyIHH-
KiB. 3aIpONIOHOBaHUI METOJ peaizye €IMHUM MiIXiJ] 10 KOMIIPECil sIK 3rOPTKOBHX HEHPOHHUX MEPEeX, TaK i peKypeHTHUX HEWPOH-
HUX MEpEeXK, IKi BUKOPUCTOBYIOTBCS JUIA 3a1a4 Kiacudikanii i perpecii. OCHOBHUI NPUHITHIT IIHOTO METOY 3aCHOBAaHHI HA MEXaHi3-
Mi BHUKJIFOYCHHS, KU BUKOPHUCTOBYETHCS B SIKOCTI MEXaHI3My peryisipH3alii HeHpOHHUX Mepex. lnest 3arporoHOBaHOTO METOIY
moJisira€ y BUOOpi ONTHMAaNbHOI KMOBIPHOCTI BUKJIFOUCHHSI HEHpPOHA MPUXOBAaHOTO MIapy Ha OCHOBI MapaMeTpa HaaMipHocTi. HoBus-
Ha IIbOTO METOJY MOJISIra€ y BUKOPUCTaHHI CHEUialbHOI MEPEeXKi-ONTUMI3aTopa, sIKa MPeCTaBIsIe CO00I0 PEKYPEHTHY HEUPOHHY Me-
PeKy, IO J03BOJISIE OOYUCTIOBATH ITapaMeTp HaAMIPHOCTI HE TUTBKH Ha OJHOMY NMPUXOBAHOMY IIapi, ajie i Ha KUTbKoX mapax. [Joma-
TKOBHI aCIeKT HOBU3HU IIOJITAE B iTEPaTUBHIM OoNTHMI3alii MepexXi-onTUMi3aTopa I MOCTIHOTO MOJIMIICHHS OOYUCICHHS Iapa-
MEeTpiB HaJMIpPHOCTI BXiTHOI HEeWpOHHOI Mepexi. [y ekcrepuMeHTanbHOI OLIHKY 3alpOIIOHOBAHOTO MeToAy Oyna obOpaHa 3amada
po3Ii3HaBaHHS 300payKeHb KaMEpOI0 HU3BKOTO PO3LIMPEHHS, Ul eMyJIsLii clieHapiro BUKOpHcTOBYBaBcst Habip nanux CIFAR10. B
SIKOCT1 EKCIIePUMEHTAIBHOT HEHPOHHOT Mepexki Oyia oOpaHa 3ropTkoBa HeliporHa Mepexa VGGNet, sika MiCTUTB 3TOPTKOBI 1 TOBHO-
3B's3HI mWapu. B skocti MeToxiB-aHanoriB OyB y3saTHil MeTon MagBase, sikuii 3acHOBaHWI Ha MPUWHIMIN criaprudikarii, a TakoK
METOJ, 3aCHOBaHUH Ha PO3P1IHKEHOMY IMPECTaBICHHI 3 BUKOPUCTAHHIM MiAX0AY po3pimkeHoro kogyBanHs SFAC. PesynbraTi exc-
MEPHMEHTY TTOKa3aly, MO KiTbKICTh IapaMeTpiB B CKOMIPECOBaHii Mozeni ckiagae Bckoro 2,38 % Bix opurinampHOi Mogeni. Lle
JI03BOJIMJIO CKOPOTHTH dac JIOTIYHOTO BHCHOBKY Ha 93,7 % 1 cnoxuBanHsa eHeprii Ha 94,8 %. 3amponoHoBaHHI METOH J03BOJISIE
e(eKTHBHO BUKOPUCTOBYBATH I'TTHOOKI HEHPOHHI MEpeki B TPAHCAIOCEPHUX MeEpeKax, 0 BUKOPHCTOBYIOTH apXiTeKTypy mepude-
piiiHux o6uucneHs. Lle, B CBOIO 4epry, J03BOJISE CHCTEMI OOpPOOIISTH JJaHi B pealbHOMY Yaci, CKOPOTHTH CIOKUBAHHS EHEprii i yac
JIOTIYHOTO BUCHOBKY, a TAKOK 3MEHIIIUTH BUMOTH JI0 IIaM'STi Ta CXOBHUINA JUIsl PEUTLHUX JIOJATKIB.
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