
Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 211

DOI: https://doi.org/10.15276/hait.03.2021.1

UDC 004.65:519.172

Model and method for representing complex dynamic information

objects based on LMS-trees in NoSQL databases

Oleksandr S. Maksymov1)
ORCID: https://orcid.org/0000-0001-8951-5251; oleksandr.s.maksymov@onu.edu.ua

Eugene V. Malakhov1)

ORCID: https://orcid.org/ 0000-0002-9314-6062; eugene.malakhov@onu.edu.ua. Scopus: ID: 56905389000

Vitaliy I. Mezhuyev2)
ORCID: https://orcid.org/0000-0002-9335-6131; vitaliy.mezhuyev@fh-joanneum.at. Scopus: ID: 24468383200

1) Odessa National University named after I. I. Mechnikova, 2, Dvoryanska. Odessa, 65082, Ukraine
2) FH Joanneum: Kapfenberg, Werk-VI-Straße 46, 8605, Austria

ABSTRACT

The article analyzes the existing approaches to the description of large dynamic information objects in the construction of

Automated control systems. Introduced and defined the concept of a Complex Dynamical Information Object. A comparative

analysis of the temporal complexities of tree-like structures is carried out and the optimal one for working with Complex Dynamical

Information Object is selected. Most modern automated control systems use various approaches to describe automation objects for

their operation. Under the automation object, we mean functional objects that are described in the form of structural models that

reflect the properties of physical objects. Thus, for optimal work with complex dynamic information objects, we have developed our

own model and method for describing the LMS-tree (Log-structured merge-tree), with the ability to split and store down to

elementary levels. One of the features of our approach to describing objects is the presence of tree-like levels - the so-called “leaves”,

by which we mean special tree elements that expand the description of the tree structure of a particular tree level. The minimal

elements of the leaves of the tree – “veins” - are details, that is, elementary information elements. A leaf is a combination of “veins”

(details) according to certain characteristics, which provide extended information about the level of the tree object. An atomic-level

descriptor is a multiple NoSQL database field (array) where the tree level number is the index of the database array. This approach

allows you to retrieve and group objects according to the element level of the tree definition.

Keywords: Complex; dynamic; information objects; LMS-trees; NoSQL; models

For citation: Maksymov O. S., Malakhov E. V., Mizhuev V. I. Model and method for representing complex dynamic information objects

based on LMS-trees in NoSQL databases. Herald of Advanced Information Technology. 2021; Vol. 4 No. 3: 211–224.

DOI: https://doi.org/10.15276/hait.03.2021.1

INTRODUCTION

Most modern automated control systems (ACS)
for their functioning use a variety of approaches to
describing automation objects. We understand the
automation object as functional objects, which are
described in the form of structural models that
reflect the properties of physical objects.

Information about the actual values of a number
of parameters of a physical control object is very
inaccurate, and the laws of their possible changes are
often known only qualitatively.

In this situation, in the process of automating
the control of physical objects, we operate with a
certain set of properties and characteristics known at
the time of designing the automation system. At the
same time, the known characteristics do not fully
reflect the automation object.

Thus, the concept of Information object
appears, which is a view of a physical object from a
certain (narrow) position of the control process, i.e.

© Maksymov O., Malakhov E., Mezhuyev V., 2021

Information object is a model of some entity of

the physical, intellectual or virtual world, which

reflects its structure, properties and behavior

in the form of information necessary for use in

the information system during its functioning.
During the operation of the ACS, changes occur

in obtaining more complete information about the

object (a set of characteristics is expanded,

connections between objects are changed, etc.),

while the Information object is complicated. Thus,

we can say that the information objects used in the

ACS are Complex Dynamical Information Object

(СDIO).

For storing CDIO, databases built on the basis

of various data models can be used. Despite all the

attractiveness, tradition of use and prevalence of

classical relational database management systems,

they are very limited. This is primarily due to the

primitiveness of the data structures underlying the

relational data model. Flat normalized relationships

are universal and theoretically sufficient to represent

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

https://doi.org/
https://orcid.org/0000-0001-8951-5251?lang=ru
mailto:oleksandr.s.maksymov@onu.edu.ua
http://www.scopus.com/inward/authorDetails.url?authorID=56905389000&partnerID=MN8TOARS
https://orcid.org/0000-0002-9335-6131;%20vitaliy.mezhuyev@fh-joanneum.at

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 212

data in any domain. However, in unconventional

applications, hundreds, if not thousands of tables

appear in the database, and expensive join

operations are constantly performed on them to

recreate the complex data structures inherent in the

domain.

Another major limitation of relational systems

is their relatively weak ability to represent

application semantics. The most that relational

DBMSs provide is the ability to formulate and

maintain data integrity constraints. Recognizing

these limitations and shortcomings of relational

systems, database researchers are undertaking

numerous projects based on ideas that go beyond the

relational data model.

The key factor that made the global IT

community think about new strategies for storing

and accessing information was the systematic

growth of data volumes on the Internet. In this

regard, the concept appeared Big Data, which

includes some kind of strategy that allows you to

efficiently work with huge, constantly growing data

sets. And against the backdrop of this concept, the

need for a database model that would be more

focused on access speed and scalability was clearly

looming. Something simpler was needed than the

existing relational databases, while not inferior to

them in a number of specific tasks. First of all, these

are the tasks of building cloud storages, where the

end user is primarily concerned with the speed of

access and the possible amount of stored

information.

NoSQL databases have evolved as the

evolution of the relational model, due to the

emergence of new requirements for storing and

accessing information. NoSQL solutions cannot

boast of fundamentally new approaches either – for

example, the concept of MongoDB launched in 2008

is a more efficient implementation of the Pick

database operation model from 1965. One of the

most interesting approaches, in our opinion, is the

adaptive database approach, i.e. it is the ability to

work with relational and NоSQL database models. A

striking representative of this direction is the

ADABAS DBMS from Software AG [10].

LITERATURE REVIEW

There are different ways of presenting data to

describe information objects when creating an ACS.

An incredible number of primary sources are

devoted to the discussion of this problem, in which

this problem is solved by describing an object in the

form of a container. In a sorted associative

container, all keys are sorted in a specific order. The

simplest example of such a container is a sorted

string table (SSTable) [4]. This container is one of

the most popular for storing, processing and sharing

large datasets. It is used in well-known NoSQL

databases such as Cassandra [5], HBase and

LevelDB.

A tree-like data structure [9] is a dynamically

linked structure in which the relationships between

elements are not linear, as in a list, but are like

branches of a tree. The simplest tree for describing

objects is a binary tree [11]. There are several B-tree

implementations [14]. An LSM tree (Log-structured

merge-tree) [26] is a data structure that provides a

high insertion speed with an acceptable search

speed. Another tree-like data structure is the

heap [11].

Among the many tree structures used in self-

adapting associative containers, you can find the

optimal structure for almost any case. When

choosing, we were guided by the conditions of the

problem (a detailed analysis is presented in [36]).

The main condition for choosing a structure is the

amount of data that characterizes a particular object.

In our research, we consider the construction of

associative data containers to describe complex

objects, since they are the most popular and used in

NoSQL databases [4]. The methods for constructing

key-value data containers can be divided into two

categories. One group of methods involves the use

of some kind of global ordering (numeric or

lexicographic). Keys are stored in a sorted state and

a binary algorithm is used for searching. The

containers obtained in this way have been called

“mixed associative containers”. Examples of such

containers are different trees. The second group of

methods is hashing, and the containers obtained by

this method are called “Hexified Associative

Containers”. Examples of such containers are

different variants of hash tables.

1. Tree structures

The data of the tree structure [11] is a

dynamically linked structure in which the links

between the elements are not linear, as in a list, but

are similar to the branches of a tree. There are two

categories of these structures, which differ in the

methods of construction and processing.

The first is “trees” the second is “heaps”. In

addition, trees are distinguished by the following

characteristics:

Balance. The tree can be:

 degenerative;

 perfectly balanced;

 balanced;

 unbalanced and unexpired.

https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B8%D0%B5_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 213

The number tree of branches. The tree can be:

 binary;

 multipath, when the number tree of

branches is more than two.

1.1. Binary trees. The simplest search tree is

the binary tree [11]. These trees are among the most

popular due to their ease of implementation and very

high performance. The main advantage of a binary

tree is the ability to implement high-performance

sorting and search algorithms built on its basis. In

addition, this tree is used in the implementation of

the SET and MAP containers in C ++, Treeset and

Treemap in Java [12]. Binary trees can be

degenerate, balanced, perfectly balanced, or none of

these categories. In practice, balanced trees are

usually used, since degenerate trees are converted to

a list, but often a perfectly balanced laborious

construction and balancing in them is sufficient.

There are several B-tree implementations [14].

1.2. AVL tree [15]. In this tree, an additional 2

bits are required for each node of the tree. In

addition, when changing a tree, balancing operations

are required (when inserting up to two turns, when

removing the height of the tree), which also requires

additional costs.

1.3. Red-black tree [16]. When implementing

this tree, it is necessary that each vertex preserves

color (1 bit). Sometimes, due to the need to align

memory, this condition leads to large memory

consumption. In addition, when changing a tree,

balancing operations are required (when inserting up

to two turns, when deleting up to three), which also

requires additional costs. Red-black trees are used in

various fields: in the Linux kernel for queuing, in the

ext3 filesystem, and in various libraries for

implementing SET and MAP.

In addition, there is a modification of the AA

tree, in which there is one more condition: the red

node can only be the right child. This condition

makes it possible to simplify the execution of all

operations, since there are fewer possible cases for

parsing. The speed of this tree can be compared to a

red-black tree, but the AA-tree for each node also

preserves a “level”, which leads to additional

memory costs.

Red-black trees can be 1,388 times the height of

AB for the same number of nodes. This leads to the

fact that the insertion and search times can be longer

in the red-black tree, but removing from the AVL

tree may require a number of iterations equal to the

tree depth, making it more advantageous to remove

it in red-ebony.

1.4. Cartesian tree [17]. This structure also has

other names such as Deramida ((Structure Treap),)

as this data structure is a binary tree and pyramid

association. Pyramid – a data structure similar to a

tree, but with one condition: the value at any node is

not less than the value of its children. Each node of

the access tree contains a pair of values (x, y), where

X is called a key, y is a priority. Thus, on this tree, a

heap is obtained, and on x – a binary tree.

Priorities are usually chosen randomly to avoid

excessive tree heights. Two operations are used to

perform basic tree transactions: merge and split.

It should be noted that the worst-case average

of some operations on one tree may take longer, but

then other operations will be completed in less time.

It should also be noted that it is difficult to create

such a tree.

Another peculiarity of the tree is a rather large

excess of memory (2 to 4 bytes per node for storing

height). Thus, this tree cannot be used where

performance is guaranteed, such as in real-time

systems and OS kernels.

These trees are well suited for collecting

statistics on a large number of parameters, since

these trees allow us to count the number / difference,

minimum / maximum, and other operations in a

reasonable amount of time.

In addition, there is a modification - a Cartesian

tree by an implicit key. This structure provides a

dynamic array interface, but it is implemented using

a Cartesian tree. The Cartesian tree for the implicit

key allows you to implement a large number of

operations with an array and a subarray in

logarithmic time.

1.5. Splay tree [18] – a binary tree that has no

additional requirements for the tree structure and is

balanced in the process. Some points in the Splay

tree can be completely unbalanced. The Splay tree

maintains balance with a dedicated Splay feature.

This function searches for the required node and

makes it root using simple rotations that change the

structure of the tree, while maintaining the order in

the tree. Splay is activated after every operation,

including search.

In this tree, the complexity of operations can be

guaranteed, since the tree may be unbalanced when

requested, therefore, the height of the tree is greater

than log (n). This score is achieved in that finding

items that have been used recently will be faster and

will compensate for the earlier case.

The main advantage of this tree is productivity.

Testing in real conditions and the expanded tree

turned out to be one and a half to two times more

efficient than other balanced binary trees. However,

it is theoretically proven that if the probabilities of

using the elements are the same in time, then the tree

will work in the same way as other implementations.

At the same time, for arbitrary probabilities, access

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

214 Information technologies and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

to tree elements works one and a half times slower.

Thus, the extensible tree can be used in real-time

systems and in most general-purpose libraries.

In addition to performance, the advantages of

this tree include the absence of additional memory

costs, and the disadvantages are a strong limitation

when used in a multimedia environment and

limitations in purely functional languages.

1.6. Scapegoat tree [19]. This tree is an alpha

parameter that is in the range (0.5, 1). This

parameter is specified when creating a tree and

determines the height of the tree.

Therefore, Alpha affects the speed of

modification and search, for example, with Alpha =

0.5 we get a balanced tree (maximum search speed,

but minimum modification speed), and with Alpha

→ 1 we get a link (maximum modification speed,

but minimum search speed). In this case, the search

is similar to a regular search tree, but insertion and

deletion are different.

To implement these operations, an element that

unbalances is searched for, and then the base slows

down, where the root is the element that unbalanced.

In the worst case, the modification operations can

take N times (depending on the node), but this

operation is distributed over the tree, so the average

time for the worst case (Log N).

2. Multipath trees

In addition to binary trees, there are trees with

more than two branches. Such trees are called

multipath or highly branching trees. The most

widespread is the B-tree and its various

modifications [18]. The B-tree is used in database

systems (indexes in many modern database

management systems) and file systems. There are

many variations in this tree. The most famous of

them are presented below.

2.1. B + -Tree also known as the Bayer-Baum

tree [19]. This tree is used in file systems for storing

directories and indexing metadata (NTFS, BEFS,

etc.). In relational DBMS – as an index (Oracle,

SQLite, etc.), NoSQL databases – for data access

(CouchDB).).

2.2. B * -tree [22]. This data structure is similar

to a b-tree, but has a different minimum vertex fill

factor – ⅔ (in a b-tree). This modification allows

for more efficient use of memory and provides a

small performance gain. The disadvantages of B * –

trees include a more complex function of separating

crowded nodes. The uses of this tree are similar to

those of the b-tree.

2.3. 2-3- Wood [11]. This tree is a separate case

of a B + tree, which can have nodes with only one

key (contains the maximum left subtree) and two

descendants and nodes with two keys (containing the

maximum left and middle subtrees) and 3 children.

Terminal nodes have no children. In addition, there

are 2-3-4-trees (B-Trees of degree 4), built

according to similar rules. It can be used to store

dictionaries in internal memory to avoid cache

penalties.

3. Multipath distribution trees are optimized

for write

For a long time, the B-tree has no alternatives

among data structures for storage in external

memory. But recently, the situation has begun to

change due to the need to process the ever-growing

volumes of data. To achieve this, data structures are

optimized specifically for write operations. Some of

these structures are partially inferior to the tree in

terms of search speed, but allow more efficient

production and deletion.

There are several types of data structures:

• trees using a buffer;

• LSM and fractal trees

Buffer Trees

Buffer trees can also be divided into several

types:

3.1. Buffered tree [23] – (a, b) - tree with

coefficients a = m / 4, b = m, built over a set of N

leaves, each of which contains b elements. In this

case, each internal node contains a buffer of m

elements. The data is stored only in the letter, only

individual keys are located in other nodes. The data

is first added to the buffer of the root node and only

after the overflow of this node is allocated to buffers

of subsequent levels, etc. This happens until the data

reaches the lowest level, at which it already remains.

In this case, a reduction similar to a tree is used if

necessary. Using a buffer allows you to reduce the

insertion time due to batch processing of requests,

but the use of autonomous models (the answer to

any request does not come immediately, but after a

while) makes it unavailable to use the buffered tree

for tasks, where the answer is required immediately

and further depends on it logics.

Based on this tree, a priority queue has been

implemented: Range Tree and Segment Tree, which

successfully solve some geometric problems and

problems on graphs. In addition, this tree allows for

high-performance memory sorting. It is not

necessary to have all the elements before sorting.

3.2. Bε-trees [24] are a class of trees that differ

from buffered trees by finding the data and the

presence of the ε parameter. The search operation in

a Bε-tree is also similar to a search in a buffered

tree, but requires an immediate response, which, in

turn, requires additional operations to search for data

in the buffers.

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 215

The parameter ε determines the size of the

buffer (≈ b - Bε) and the size of the keys in the node

(≈ bε) during tree initialization and varies from

0 to 1.

For ε = 1, the usual B-tree (buffer size 0), and

for ε = 0, a modification of the buffered tree –

Buffered Repository Tree [25]. It is also an (a, b) –

tree, but with coefficients a = 2, b = 4 and buffer size

B instead of m. This tree is widely used for width

and depth traversal of a graph.

4. Heap

Another tree-like data structure is the heap [9].

This container is widely used for various tasks.

Based on the purchase of a queue with priority and

heapsort, various search algorithms and graph

algorithms are used [31].

There are several purchased heaps. The main

ones are listed below.

4.1. Binary heap [32], also known as a

pyramid. It is a binary tree for which the main heap

property is met. All levels in this heap must be

filled, except, perhaps, the last level, which must be

filled from left to right.

4.2. Binomial heap [32].This data structure is a

sorted set of binomial trees, each of which is a

property of the heap. In addition, all trees are

different in size. A binomial tree is defined

inductively. B0 contains only one node, Bk contains

two binomial trees Bk-1. In this case, the root of the

first tree is a descendant of the root of the second

tree.

4.3. Fibonacci heap [33]. This structure

consists of many Fibonacci trees (these are n-trees

for which the main property of the heap and the top

of one layer are associated with a doubly linked list).

The call to buy is a link to the minimum element

contained in the root of one of the trees.

This heap has good performance for all

operations except delete.

4.4. Thin pile [34] presents a set of thin trees

that satisfy the properties of the heap (while the

ranks of the trees can be repeated). A thin tree TK of

rank K is called a binomial tree Bk in which the

remaining descendants at several vertices are

removed. Moreover, it is impossible to delete at the

end nodes (since they have no descendants) and near

the root (otherwise, a binomial tree with a lower

rank). In practice, a thin beam is used to implement

the priority queue, but it is more efficient than

Fibonacci, since it has smaller constants in the

operating time.

4.5. Thick pile [34] is a set of thick trees in

which the ranks can be repeated, and there can be no

more than two nodes per rank containing a value less

than the value of the ancestor.

Thick wood is determined inductively.

0F contains one vertex,
kF contains three ranks k-

1, and near the root of one of them, the leftmost sons

are the roots of the other two.

A thick heap, like a thin heap, is a Fibonacci

modification, but in practice requires less space and

is more efficient.

4.6. Left heap [35] – A data structure based on

a binary left tree for which the main heap property is

satisfied. In this case, the tree can be unbalanced. In

addition, for this purchase, the condition must be

met: the closest place to insert the vertex must be the

rightmost position in the tree. If we denote D (v) as

the distance from vertex v to the nearest place for

insertion, then for all vertices it is necessary to

execute D (v.left)> = D (v.right). Since there is no

task in this pile, it is persistent and can be

implemented in a functional language.

4.7. 2-3 Heap [36] are a set of trees h(i), where

i = 0, .. , n, for which the main heap condition is met.

h(i) is a tree from zero to two 2-3-trees of degrees I,

which are combined into the following rule: the root

of the skin becomes the rightmost son in the

previous one. The 2-3 tree is marked as induced.

0T -tree from one vertex,
jT -two or three

1jT 

trees, which are combined according to the

same rule as h(i), The specified device of 2-3 heaps

allows balancing both with the selection of elements,

and with the addition, which makes it possible to

increase the efficiency of extracting the minimum in

comparison with Fibonacci.

4.8. Priority queue for Brodal and Okasaki

[35].

This data structure is built on several principles:

• Application of a special asymmetric

embankment. This allows you to insert an

element in a short time.

• Storage is minimal, which allows you to quickly

retrieve it.

• Data-Structural self-tuning idea that allows you

to keep the queue in the queue and reduce the

number of merges.

Thus, the Brodal and Okasaki priority queue

consists of a minimum and special priority queue,

which stores the Brodal and Okasaki priority queue,

sorted by T-min. This description can be represented

in the formula BPQ = <Tmin, PQ (BPQ)>, where

BPQ stands for Bootstrapping Priority Queues. As a

priority queue (PQ), a special stack is used -

asymmetric. This idea is based on the use of

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

216 Information technologies and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

asymmetric binary coding of a number using the

digits 2 in the last disarmed bit, which allows you to

have a maximum of one tree of one binomial rank,

with the exception of the minimum rank (2 trees).

This enhancement to the binomial heap avoids

cascading tree merges during insertion and reduces

insertion time.

 LSM and fractal TREE

LSM tree (Log-Structured Merge-Tree) [26] –

a data structure that provides fast insertion speed

with acceptable search speed. This tree is also

known as a log-structured merge tree because it is

well suited for storing logs of various operations that

are constantly updated and reviewed frequently.

This tree consists of two or more structures,

each of which is highly efficient on the device on

which it is stored. In the simplest case, an LSM tree

contains two tree structures that differ in size.

The smaller one is in the internal memory, the

larger one is in the external one.

In this case, the insert is only done into the

smaller tree (since it is in RAM and much faster),

and when it reaches a certain size, the tree from

internal memory is sent to external memory and

merged with the larger tree by merging.

In practice, LSM trees are usually used, which

have several levels. In this case, each level is

represented by a tree structure, and in case of

overflow, a combination with the next level.

The LSM tree is widely used in NoSQL

databases such as Apache Cassandra, BigTable,

Leveldb and many others, as well as in the new Disk

Engine tool for Tarantool. These trees are especially

effectively used for data with varying degrees of

relevance (message feed, chats, walls in social

networks, events), storage of timeseries and logs.

The main disadvantage of the LSM tree is the

need to search at each level with high cost. This is

how another tree appeared – a fractal one [30]. It

was originally based on the COLA (Cache-

Oblivious Lookahead Array) architecture, but now it

is a modification of the Bε-tree with various

performance improvements and a 4MB tile size,

which is significantly larger than the normal tile size

-wood. It uses a fractal cascade to lower search

costs.

The basic idea is that when looking for Ti, we

know where the key should be at this level, and we

can use this information to improve the search at the

next level Ti + 1. To do this, links to the following

levels are added to the links. LSM trees and an in-

tree analogue is obtained. In addition, each node is

assigned a buffer in which all changes are made.

In a fractal tree; there are tree nodes, node

elements and buffers. When the buffer overflows, it

is sent to the child buffers until it reaches the leaves

where the elements are being filled. In this case, all

non-leaf nodes serve as indexes for the search, and

the leaf already contains information.

In such a scheme, insertion is exactly fast

(since the parent with multiple buffers is always in

RAM) and the lookup takes the same amount of time

as in-tree.

The main disadvantage in comparison with the

LSM tree is the complex sequential reading, as well

as the rather difficult deletion and updating of

information, as it is necessary for data retrieval.

THE PURPOSE OF THE ARTICLE

The purpose of this work is to develop methods

for increasing the flexibility of description and

processing of complex dynamic information objects

in automated management systems by presenting

them on the basis of LMS trees in NoSQL databases.

To achieve this goal, the following tasks were

solved in the work:

Possibilities of increasing the speed of

processing the CDIO by means of their

representation using dynamic structures in NoSQL

are analyzed.

A model and a method for representing LMS

using LMS trees using dynamic structures in NoSQL

have been developed.

The increase in the processing speed of CDIO

is shown on the example of representation in the

NoSQL ADABAS DBMS.

MAIN PART. ANALYSIS OF APPROACHES

TO THE DESCRIPTION OF CDIO

If we consider CDIO as an object for its basic

processing (storage, updating, deletion), as well as

the use of distributed processing, then we need to

compare the time spent on these actions when using

tree structures.

Comparative characteristics of the time spent

are shown in the summary table (Table 1) of the

time complexity of tree structures.

Among the many tree structures used to

describe complex dynamic objects of information

systems, the optimal structure can be found for

almost any case. If you choose a problem condition

(see [38] for a detailed analysis). The main condition

for choosing a design is its clarity and ease of

interpretation.

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 217

Table 1. Summary table of time complexities of tree structures

Submitted Quality /

Operator

Positioning Search Insert Deleting

B-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) O (n) O (n) O (n)
AVL-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) O (log n) O (log n) O (log n)

RB-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) O (log n) O (log n) O (log n)

D-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) amortized O (log n) amortized O (log n) amortized O (log n)

Splay-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) amortized O (log n) amortized O (log n) amortized O (log n)

Scapegoat-

tree

The average O (n) O (log n) O (log n) O (log n)

Worst O (n) O (n) amortized O (log n) amortized O (log n)

MP-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) O (log n) O (log n) O (log n)

AVL-tree The average O (n) O (log n) O (log n) O (log n)

Worst O (n) O (log n) O (log n) O (log n)

Buff-tree The average O (n) O ((log m n) / B) O ((log m n) / B) O ((log m n) / B)

Worst O (n) O ((log m n) / B) O ((log m n) / B) O ((log m n) / B)

Bε – tree The average O (N / B) O (log b N)

Worst O (N / B) O ((log b N))

Source: compiled by the authors

In case the interpretation continues in memory,

you can use balanced binary trees, the choice of

which should be based on many factors: complexity

of construction, additional memory, product

performance factor, and deletion. If the problem uses

multidimensional descriptions, it is possible to use

special trees to provide multidimensional

information [39]. If there is a need to use a container

as a priority queue or to solve a minimum /

maximum search task, it is possible to use a bundle

(any option depending on the needs of efficiency

and consistency).

In case the data does not fit in RAM and you

need to use external memory, you must use other

trees. If you are using multidimensional data, you

need to use special trees to provide multidimensional

information using external memory [39].

In other cases, the underlying data structure is a

B-tree (or a variation of it, depending on the need for

sequential key access, additional memory, and

implementation complexity). If necessary, the best

choice would be a large number of records – using

record-optimized trees (LSM trees, fractal and

buffered).

Thus, after performing the analysis, we see that

the LSM tree provides a sufficient insertion speed

with an acceptable search speed.

DEVELOPMENT OF A MODEL AND

METHOD REPRESENTING

CDIO USING LMS-TREES

Thin complex dynamical systems, considered

as control objects, have the following basic

properties (system factors) [3]:

• integrity and the possibility of decomposition

into elements A (objects, subsystems);

• the presence of stable links (relations) R

between the elements of A;

• arrangement of elements in a certain tree

structure (Str);

• providing elements with parameters (P);

• the presence of synergistic (integrative)

properties Q, which no one possesses in the

elements of the system;

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

218 Information technologies and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

• multiple laws, rules and operations Z with the

above attribute systems;

• having a goal of functioning and development

(G).

Thus, the system is a set (1)

 Syst = {A, Str, Q, R, Z, G}. (1)

In this work, we consider one of the

components of complex systems – this is element A

(objects and subsystems), which must be described,

technologies and tools for their creation, storage and

use, and also show their interconnections and

interactions.

To describe the object, we will use the LSM-

tree (Log-structured merge-tree),

One of the features of our approach to

describing objects is the presence of tree-like levels -

the so-called “leaves”, by which we mean special

tree elements that expand the description of the tree

structure of a particular tree level. The minimal

elements of the leaves of the tree – “veins” - are

details, that is, elementary information elements. A

leaf is a combination of “veins” (details) according

to certain characteristics, which provide extended

information about the level of the tree object.

Thus, in order to build a model of CDIO, we

can apply the statements of the Algebra of Sets –

since our object is described by a certain set of

properties or a set of properties, these properties

characterize each level uniquely, and are

supplemented by the properties of subordinate

levels, i.e. we have the intersection (product) of sets

of properties.

In this case, the intersection is obtained from

the top-level properties. When it comes to filling

levels, the intersection is inherited from the top

level, and the symmetric difference is filled at this

level.

The CDIO model can be represented as follows

(2):

 A=

1

n

i

i

x


, (2)

where xi={S1S2...Sn};

xi – this is a set of levels of CDIO; Si -is a lot.

1

m

ji
j

ps


 , (3)

where pj properties of CDIO levels.
These statements make it possible to determine

the method of forming the LSM-tree of the

description of the CDIO.

An important issue after the description of the

object is the storage technology and, accordingly,

access (add, delete, update). To the stored data for

the effective operation of the information system

based on the tree-like description of the object.

Having overlapping sets of level properties,

based on multiple data description elements in the

NoSQL DBMS, we get a tool for storing, accessing

and updating CDIO descriptors. At the same time,

we have the ability to accelerate access to the

elements of the LSM-tree, due to the use of

associative search methods in multiple data

structures using NoSQL of the ADABAS DBMS.

REPRESENTATION TO CDIO WITH

NoSQL ADABAS

To present the description of the LED, we will
use a specific Automated System “DivMiks”, which
functions to automate the work of company selling
furniture. An example of a CDIO will be the
document “Receipt invoice” for performing the
operation “Posting to the furniture warehouse”.

The initial description is a three-level tree, on
the first level there is the “Company Supplier of the
Goods”, on the second level there is the “Invoice
Header” (this is the part of the document that
describes its main details) and the third level is the
“Item Nomenclature Table”. Thus, we need to
complete the description of all these elements and
store it all in the database.

For this we use the NoSQL ADABAS DBMS.
This DBMS has tools for multidimensional data
representation – these are multiple fields (data
arrays) and periodic groups (arrays of data
structures) (Fig. 1).

The periodic group stores “Leaves”, their
representations in the database allow storing extended
information on the description of the object.

To write program code, we use the Natural
development environment, which is the 4GL Natural
programming language.

To communicate with the database, this
development environment uses a special data
description module (DDM), which for our case
looks like this (Fig. 2).

Fig. 3, using the DivMix information system as
an example, shows the description of the “Shipping
waybills” object in the form of tree and leaf
elements.

Sheet details are dynamically generated based
on the named configuration. The configuration is
stored in the NoSQL database in the form of a
multidimensional table, which has the following
structure (Fig. 4).

A database file is a multidimensional cube into

which an XML file with the specified configuration is

loaded.

An example of a named configuration file is shown

in Fig. 5.

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 219

Fig. 1. Description of the periodic group (C6) and multiple field (CF) in the ADABAS DBMS
Source: compiled by the authors

Fig. 2. Description of Natural data structures
Source: compiled by the authors

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

220 Information technologies and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Fig. 3. An example of the appearance of a tree-like description of an object with leaves
Source: compiled by the authors

Fig 4. The structure of the NоSQL database file for storing the configuration
Source: compiled by the authors

CONCLUSIONS

Thus, for optimal work with complex dynamic

information objects, we have developed our own

method for describing a tree with the ability to split

and store down to elementary levels. An atomic-

level descriptor is a multiple NоSQL database field

(array) where the tree level number is the index of

the database array. This approach allows objects to

be retrieved and grouped according to the element

level of the tree definition, which provides quick

access to data as well as tree-level extensions called

“leaves”.

This approach to the description of objects

allows you to get an effective technology for working

with unstructured data, describe them and provide

the ability to build adaptive information systems.

The flexible and dynamic environment of

modern information systems constantly requires

changes in the description of control objects. There

are restrictions on data descriptions for specific

models. Our approach – a tree-like representation of

data with a flexible technology for the formation and

storage of objects, allows us to form a new platform

for building modern information systems with an

effective tool for accessing large amounts of data.

Our technology solves another problem –

storage redundancy when building information

systems. When changing the structure of information

in the data warehouse, it is necessary to change the

Herald of Advanced Information Technology 2021; Vol.4 No.3: 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 221

Fig 5. An example of a named configurator
Source: compiled by the authors

physical structure, and this is one of the problems of

modern automation systems. To solve this problem

and build a new generation of systems, we use the

NoSQL data model, which is an extended relational

model that removes the restriction on the

indivisibility of data stored in table records. A set of

values for multiple fields is considered an

independent table embedded in the main table. The

main advantage is the ability to represent a

collection of related tables with a single NoSQL

table. This provides high visibility and improved

information processing.

The software platforms developed using this

technology provide minimal costs for the support

and development of such automated systems, as well

as reduce time resources, which allows a minimum

number of employees to support a larger number of

software systems.

REFERENCES

1. Malakhov, E. V. “Selection of the complex-structured subject domains”. Materials of the

International Scientific and Technical Conference “Modern methods, information, software and technic

support of the management systems of organizational and technological complexes”. Publ. NUFT. Kyiv:

Ukraine. 26-27 November, 2009. р. 79–80.

2. Musser, D., Durge, J. & Sainey, A. “C ++ and STL. Reference Guide.” Publ. Williams.

Moscow: Russian Federation. 2010.

3. Sadalj, P. J. & Fowler, M. “NoSQL: A New Methodology for the Development of Non-Relational

Databases”. Publ. Williams. Moscow: Russian Federation. 2013. 172 p.

4. “SSTable & LSM-Tree”. – Available from: http://www.mezhov.com/2013/09/sstable-lsm-tree.html.

– [Accessed 13.09.2020].

http://www.mezhov.com/2013/09/sstable-lsm-tree.html

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

222 Information technologies and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

5. Carpenter, J. & Hewitt, E. “Cassandra: The Complete Guide”. Publ.O'Reilly Media. New York:

USA. 2016. 360 p.

6. “SSTable and log-structured storage: LevelDB”. – Available from:

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb. – [Accessed: 13.09.2020].

7. Aho, A. V. Hopcroft, D. E. & Ullman, D. D. “Data structures and algorithms”. Publ. Williams.

Moscow: Russian Federation. 2003. 382 p.

8. Kormen, T. Kh. [et al.] “Algorithms: construction and analysis”. Publ. Williams Publishing House.

Moscow: Russian Federation. 2005.1296 p.

9. Topp, W. & Ford, W. “Data structures in C ++”. Publ.Binom. Moscow: Russian Federation. 2000.

815 p.

10. “Collaborate with Adabas & Natural community experts”. [Electronic resource]. – Available from:

https://techcommunity.softwareag.com/en_en/adabas-natural.html. – [Accessed: 13.09.2020].

11.Wirth, H. “Algorithms + data structures = programs.” Publ. Mir. Moscow: Russian Federation. 1985.

406 p.

12.“Data structures: binary trees”. Part 2. “An overview of balanced trees”. [Electronic resource]. –

Available from: https://habrahabr.ru/post/66926/. – [Accessed: 13.09.2020].

13. Knut, D. E. “The art of computer programming.” Publ. Mir. Moscow: Russian Federation. 1976.

736 p.

14. Sedgwick, R. “Fundamental algorithms in Java.” Part 1-4. “Analysis. Data structures. Sorting.

Search.” Pabl. DiaSoft. Kyiv: Ukraine. 2002. 688 p.

15. Aragon, C. R. & Seidel, R. “Randomized Search Trees, Proc. 30th Symposium Fundamentals of

Computer Science”. Publ. DC: IEEE Computer Society Press. Washington: USA. 1989. p. 540–545.

16. Sleator, D. D. & Tarjan, R. E. “Self-Tuning Binary Search Trees“. ACM Journal. 1985; No. 32:

652–686.

17. Andersson, A. “Improving Partial Reorganization Using Simple Balance Criteria. Tr. Workshop on

algorithms and data structures”. Publ. Springer-Verlag. Berlin: Germany. 1989. p. 393–402.

18. Levitin, A. V. “Algorithms. Editorial introduction and analysis”. Publ. Williams. Moscow: Russian

Federation. 2006. 576 p.

19. Zubov, V. S. & Shevchenko, I. V. “Structures and methods of data processing. Workshop in Delphi

environment”. Publ. Filin. Moscow: Russian Federation. 2004. 304 p.

20. Berliner, H. “A tree search algorithm B*. Best First Evidence Procedure”. Artificial Intelligence.

1979; No. 12: 23–40.

21. Ardzh, L. “Buffer Tree: A New Method of Optimal I. Algorithms in Sb. Workshop on algorithms

and data structures.” Publ. Springer-Verlag. Berlin: Germany. 1995. p. 334–345.

22. Bender, M., Farach-Colton, M., Jannen, V., Johnson, R., Kushmaul, B. C, Porter, D. E., Yuan, J. &

Zhang, Yu. “Introduction to Bε-trees and record optimization”. In: login; Magazine. 2015; Vol. 40 No. 5:

22–28.

23. Buchsbaum, A. L., Goldwasser,, M., Venkatasubramanian, S. & Westbrook, J. R. ”On external

memory graph traversal” . Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA '00). Society for Industrial and Applied Mathematics. Philadelphia: USA. 2000. p. 859–860.

24. O'Neil PE, Cheng E, Gawlick D & O'Neil EJ. “Log-structured merge tree (LSM-tree)”. Acta

Informatica. 1996; Vol. 33 No. 4: 351–385.

25. Sears, R. & Ramakrishnan R. “bLSM: A fusion tree with a general purpose logical structure”.

Proceedings of the ACM SIGMOD 2012 International Conference on Data Management. NY: ASM. 2012.

p. 217–228.

26.Tan, V., Tata, S., Tan, Y. & Fong, L. “Differential Index: Differential Index in Distributed Storages

of Log-Structured Data”. Proceedings of the 17th International Conference on the Expansion of Database

Technology, EDBT. OpenProceedings.org. Konstanz: Germany. 2014. p. 700–711.

27. Bender, M. A., Farach-Colton, M., Fineman, J., Vogel, J., Kuzmaul, B. & Nelson J. “Streaming B-

trees without caching”. Proceedings of the 19th ACM Annual Symposium on Parallelism in Algorithms and

Architectures. Publ. ACM Press. CA. 2007. p. 81–92.

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb

Herald of Advanced Information Technology 2021; Vol.4 No.3: 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and computer systems 223

28. Alekseev, V. E. & Talanov, V. A. “Graphs and algorithms. Data structures. Computation models”.

Publ. Internet Un-t Inform. Technology BINOM. Moscow: Russian Federation. 2006. 320 p.

29. Cormen, T. H. [et al.]. “Algorithms: Construction and Analysis = Introduction to Algorithms”. Publ.

Williams. Moscow: Russian Federation. 2005. 1296 p.

30. Fredman, M. L. & Tarjan, R. E. “Fibonacci heap and their use in improved network optimization

algorithms”. Journal of the Association for Computational Engineering. 1987; Vol. 34 No. 3: 596–615.

31. Kaplan, H. & Tarjan, R. E. “Thin heaps, thick heaps”. ACM Algorithm Transactions (TALG). 2008;

Vol. 4 Article No. 3: 1–14.

32. Clark, A. “Linelists and Priority Queues as Balanced Binary Trees”. Stanford University. Stanford:

1972.

33.Takaoka, T. “The theory of 2-3 heaps”. Discrete Applied Mathematics. 2003; Vol. 126: 115–128.

34. Brodal, G. S. & Okasaki, S. “Optimal purely functional priority queues”. Journal of functional

programming. 1996; Vol. 6: 839–857.

35. Potapov, D. R., Artemov, M. A. & Baranovsky, E. S. “Review of adaptation conditions for self-

adapting associative data containers”. Bulletin of the Voronezh State University. Series: System Analysis and

Information Technology. 2017; No. 1: 112–119.

36. Gulakov, V. K. & Trubakov, A. O. “Multidimensional data structures”. Publ. BSTU. Bryansk:

Russian Federation. 2010. 387 p.

37. Knut, D. “The art of programming. Vol. 3. Sorting and search “.Publ. Williams. Moscow: Russian

Federation. 2007. 824 p.

38. Pug, R. & Flemming, F. R.”Cuckoo hashing”. Journal of Algorithms. 2004; Vol. 51: 122–144.

39. Fredman, M. L., Komlos, J. & Szemeredi, E. “Saving a Sparse Table with O (1) Worst Access

Time”. ACM Journal. 1984; Vol. 31 No. 3: 538–544.

40. Herlihi, M., Shavit, N. & Tsafrir, M. “Hashing of the classics”. Proceedings of the 22nd

International Symposium on Distributed Computing. Publ. Springer-Verlag. Arcachon: France. 2008.

p. 350–364.

Conflicts of Interest: the authors declare no conflict of interest

Received 08.02.2021

Received after revision 26.08.2021

Accepted 23.09.2021

DOI: https://doi.org/10.15276/hait.03.2021.1

УДК 004.65:519.172

Модель і метод подання складних динамічних інформаційних

об'єктів на основі LMS-дерев у NoSQL базах даних

Олександр Семенович Максимов1)
ORCID: https://orcid.org/0000-0001-8951-5251; oleksandr.s.maksymov@onu.edu.ua

Євгеній Валерійович Малахов1)

ORCID: https://orcid.org/ 0000-0002-9314-6062, eugene.malakhov@onu.edu.ua. Scopus: ID: 56905389000

Виталій Іванович Межуєв2)
 ORCID: https://orcid.org/0000-0002-9335-6131; vitaliy.mezhuyev@fh-joanneum.at. Scopus ID: 24468383200

1) Одеський національний університет ім. І.І. Мечникова, вул. Дворянська, 2. Одеса, 65082, Україна
 2) FH Joanneum: Капфенберг, Werk-VI-Straße 46, 8605, Австрія

АНОТАЦІЯ

У статті виконано аналіз існуючих підходів до опису складних динамічних інформаційних об'єктів при побудові

автоматизованих систем управління. Введено і визначено поняття Складного динамічного інформаційного об'єкта.

Проведено порівняльний аналіз тимчасових складнощів деревовидних структур і вибраний оптимальний для роботи з

https://www.goodreads.com/author/show/2777035.Clark_A_Crane
https://doi.org/
https://orcid.org/0000-0002-9335-6131

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211224

224 Information technologies and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Складним динамічним інформаційним об’ектом. Більшість сучасних автоматизованих систем управління для свого

функціонування використовують різноманітні підходи опису об'єктів автоматизації. Під об'єктом автоматизації ми будемо

розуміти функціональні об'єкти, які описані у вигляді структурних моделей, що відображають властивості фізичних

об'єктів. Таким чином, для оптимальної роботи зі складними динамічними інформаційними об'єктами ми розробили власну

модель і метод опису LMS-дерева (Log-structured merge-tree), з можливістю поділу і зберігання до елементарних рівнів.

Однією з особливостей нашого підходу до опису об'єктів є наявність деревовидних рівнів – так званих «листів», під якими

ми будемо розуміти спеціальні елементи дерева, що розширюють опис деревовидної структури конкретного рівня дерева.

Мінімальні елементи листя дерева - «прожилки» - це деталі, тобто елементарні інформаційні елементи. Лист являє собою

об'єднання за певними характеристиками «жилок» (деталей), що дають розширену інформацію про рівень об'єкта дерева.

Дескриптор елементарного рівня - це множинне поле (масив) NoSQL бази даних, в якому номер рівня дерева є індексом

масиву бази даних. Такий підхід дозволяє витягувати і групувати об'єкти відповідно до рівня елементів визначення дерева,

що забезпечує швидкий доступ до даних, а також до розширень рівня дерева – «листя».

Ключові слова: Складні; динамічні; інформаційні об'єкти; LMS-дерева; NoSQL; моделі; деревовидні структури

ABOUT THE AUTHORS

Oleksandr S. Maksymov, Senior Lecturer, Department of Mathematical Support of Computer Systems, Odessa I. I.
Mechnikov National University, 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0001-8951-5251; oleksandr.s.maksymov@onu.edu.ua

Research field: Information technology; business process automation; NоSQL databases; cross-platform systems;
storage of unstructured baths; integration systems

Олександр Семенович Максимов, старший викладач, кафедра Математичного забезпечення комп’ютерних

систем. Національний університет України «Одеський Національний Університет ім. І. І. Мечнікова», вул.
Дворянська, 2. Одеса, 65082, Україна

Eugene V. Malakhov, Dr. Sci. (Eng), Professor of Mathematical Support of Computer Systems Department. Odessa

I. I. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine.

ORCID: https://orcid.org/0000-0002-9314-6062; eugene.malakhov@onu.edu.ua. Scopus ID: 56905389000
Research field: Information technology; databases theory; expert systems; system modelling; cloud computing;

distributed computing

Євгеній Валерійович Малахов, доктор технічних наук, професор, завідувач кафедри Математичного
забеспечення комп’ютерних систем. Національний університет України «Одеський Національний Університет ім.

І. І. Мечнікова», вул. Дворянська, 2. Одеса, 65082, Україна

Vitaliy I. Mezhuyev Dr. Sci. (Eng.), Prof., FH Joanneum: Kapfenberg, Werk-VI-Straße 46, 8605, Austria

ORCID: https://orcid.org/0000-0002-9335-6131; vitaliy.mezhuyev@fh-joanneum.at. Scopus ID: 24468383200
Research field: Software engendering; information technology; data analysis

Виталій Іванович Межуєв, д-р технич. наук, професор Інституту промишленного менеджменту. Университет

прикладних наук FH JOANNEUM. Капфенберг, Австрія

https://orcid.org/0000-0001-8951-5251?lang=ru
mailto:oleksandr.s.maksymov@onu.edu.ua
mailto:eugene.malakhov@onu.edu.ua
https://orcid.org/0000-0002-9335-6131

