Herald of Advanced Information Technology 2021; Vol.4 No.3: 211-224

DOI: https://doi.org/10.15276/hait.03.2021.1
UDC 004.65:519.172

Model and method for representing complex dynamic information
objects based on LMS-trees in NoSQL databases

Oleksandr S. Maksymov?®

ORCID: https://orcid.org/0000-0001-8951-5251; oleksandr.s.maksymov@onu.edu.ua

Eugene V. Malakhov?

ORCID: https://orcid.org/ 0000-0002-9314-6062; eugene.malakhov@onu.edu.ua. Scopus: ID: 56905389000
Vitaliy I. Mezhuyev?

ORCID: https://orcid.org/0000-0002-9335-6131; vitaliy.mezhuyev@fh-joanneum.at. Scopus: 1D: 24468383200
D Odessa National University named after 1. I. Mechnikova, 2, Dvoryanska. Odessa, 65082, Ukraine

2 FH Joanneum: Kapfenberg, Werk-VI-Strale 46, 8605, Austria

ABSTRACT

The article analyzes the existing approaches to the description of large dynamic information objects in the construction of
Automated control systems. Introduced and defined the concept of a Complex Dynamical Information Object. A comparative
analysis of the temporal complexities of tree-like structures is carried out and the optimal one for working with Complex Dynamical
Information Object is selected. Most modern automated control systems use various approaches to describe automation objects for
their operation. Under the automation object, we mean functional objects that are described in the form of structural models that
reflect the properties of physical objects. Thus, for optimal work with complex dynamic information objects, we have developed our
own model and method for describing the LMS-tree (Log-structured merge-tree), with the ability to split and store down to
elementary levels. One of the features of our approach to describing objects is the presence of tree-like levels - the so-called “leaves”,
by which we mean special tree elements that expand the description of the tree structure of a particular tree level. The minimal
elements of the leaves of the tree — “veins” - are details, that is, elementary information elements. A leaf is a combination of “veins”
(details) according to certain characteristics, which provide extended information about the level of the tree object. An atomic-level
descriptor is a multiple NoSQL database field (array) where the tree level number is the index of the database array. This approach

allows you to retrieve and group objects according to the element level of the tree definition.
Keywords: Complex; dynamic; information objects; LMS-trees; NoSQL; models

For citation: Maksymov O. S., Malakhov E. V., Mizhuev V. I. Model and method for representing complex dynamic information objects

based on LMS-trees in NoSQL databases.
DOI: https://doi.org/10.15276/hait.03.2021.1

INTRODUCTION

Most modern automated control systems (ACS)
for their functioning use a variety of approaches to
describing automation objects. We understand the
automation object as functional objects, which are
described in the form of structural models that
reflect the properties of physical objects.

Information about the actual values of a number
of parameters of a physical control object is very
inaccurate, and the laws of their possible changes are
often known only qualitatively.

In this situation, in the process of automating
the control of physical objects, we operate with a
certain set of properties and characteristics known at
the time of designing the automation system. At the
same time, the known characteristics do not fully
reflect the automation object.

Thus, the concept of Information object
appears, which is a view of a physical object from a
certain (narrow) position of the control process, i.e.

Herald of Advanced

© Maksymov O., Malakhov E., Mezhuyev V., 2021

Information Technology. 2021; Vol. 4 No. 3: 211-224.

Information object is a model of some entity of
the physical, intellectual or virtual world, which
reflects its structure, properties and behavior
in the form of information necessary for use in
the information system during its functioning.

During the operation of the ACS, changes occur
in obtaining more complete information about the
object (a set of characteristics is expanded,
connections between objects are changed, etc.),
while the Information object is complicated. Thus,
we can say that the information objects used in the
ACS are Complex Dynamical Information Object
(CDIO).

For storing CDIO, databases built on the basis
of various data models can be used. Despite all the
attractiveness, tradition of use and prevalence of
classical relational database management systems,
they are very limited. This is primarily due to the
primitiveness of the data structures underlying the
relational data model. Flat normalized relationships
are universal and theoretically sufficient to represent

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

211

https://doi.org/
https://orcid.org/0000-0001-8951-5251?lang=ru
mailto:oleksandr.s.maksymov@onu.edu.ua
http://www.scopus.com/inward/authorDetails.url?authorID=56905389000&partnerID=MN8TOARS
https://orcid.org/0000-0002-9335-6131;%20vitaliy.mezhuyev@fh-joanneum.at

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

data in any domain. However, in unconventional
applications, hundreds, if not thousands of tables
appear in the database, and expensive join
operations are constantly performed on them to
recreate the complex data structures inherent in the
domain.

Another major limitation of relational systems
is their relatively weak ability to represent
application semantics. The most that relational
DBMSs provide is the ability to formulate and
maintain data integrity constraints. Recognizing
these limitations and shortcomings of relational
systems, database researchers are undertaking
numerous projects based on ideas that go beyond the
relational data model.

The key factor that made the global IT
community think about new strategies for storing
and accessing information was the systematic
growth of data volumes on the Internet. In this
regard, the concept appeared Big Data, which
includes some kind of strategy that allows you to
efficiently work with huge, constantly growing data
sets. And against the backdrop of this concept, the
need for a database model that would be more
focused on access speed and scalability was clearly
looming. Something simpler was needed than the
existing relational databases, while not inferior to
them in a number of specific tasks. First of all, these
are the tasks of building cloud storages, where the
end user is primarily concerned with the speed of
access and the possible amount of stored
information.

NoSQL databases have evolved as the
evolution of the relational model, due to the
emergence of new requirements for storing and
accessing information. NoSQL solutions cannot
boast of fundamentally new approaches either — for
example, the concept of MongoDB launched in 2008
is a more efficient implementation of the Pick
database operation model from 1965. One of the
most interesting approaches, in our opinion, is the
adaptive database approach, i.e. it is the ability to
work with relational and NoSQL database models. A
striking representative of this direction is the
ADABAS DBMS from Software AG [10].

LITERATURE REVIEW

There are different ways of presenting data to
describe information objects when creating an ACS.
An incredible number of primary sources are
devoted to the discussion of this problem, in which
this problem is solved by describing an object in the
form of a container. In a sorted associative
container, all keys are sorted in a specific order. The
simplest example of such a container is a sorted

string table (SSTable) [4]. This container is one of
the most popular for storing, processing and sharing
large datasets. It is used in well-known NoSQL
databases such as Cassandra [5], HBase and
LevelDB.

A tree-like data structure [9] is a dynamically
linked structure in which the relationships between
elements are not linear, as in a list, but are like
branches of a tree. The simplest tree for describing
objects is a binary tree [11]. There are several B-tree
implementations [14]. An LSM tree (Log-structured
merge-tree) [26] is a data structure that provides a
high insertion speed with an acceptable search
speed. Another tree-like data structure is the
heap [11].

Among the many tree structures used in self-
adapting associative containers, you can find the
optimal structure for almost any case. When
choosing, we were guided by the conditions of the
problem (a detailed analysis is presented in [36]).
The main condition for choosing a structure is the
amount of data that characterizes a particular object.

In our research, we consider the construction of
associative data containers to describe complex
objects, since they are the most popular and used in
NoSQL databases [4]. The methods for constructing
key-value data containers can be divided into two
categories. One group of methods involves the use
of some kind of global ordering (numeric or
lexicographic). Keys are stored in a sorted state and
a binary algorithm is used for searching. The
containers obtained in this way have been called
“mixed associative containers”. Examples of such
containers are different trees. The second group of
methods is hashing, and the containers obtained by
this method are called “Hexified Associative
Containers”. Examples of such containers are
different variants of hash tables.

1. Tree structures

The data of the tree structure [11] is a
dynamically linked structure in which the links
between the elements are not linear, as in a list, but
are similar to the branches of a tree. There are two
categories of these structures, which differ in the
methods of construction and processing.

The first is “trees” the second is “heaps”. In
addition, trees are distinguished by the following
characteristics:

Balance. The tree can be:
e degenerative;
o perfectly balanced,;
e hbalanced,;
e unbalanced and unexpired.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 212

https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B8%D0%B5_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

The number tree of branches. The tree can be:
e binary;
e multipath, when the number tree of
branches is more than two.

1.1. Binary trees. The simplest search tree is
the binary tree [11]. These trees are among the most
popular due to their ease of implementation and very
high performance. The main advantage of a binary
tree is the ability to implement high-performance
sorting and search algorithms built on its basis. In
addition, this tree is used in the implementation of
the SET and MAP containers in C ++, Treeset and
Treemap in Java [12]. Binary trees can be
degenerate, balanced, perfectly balanced, or none of
these categories. In practice, balanced trees are
usually used, since degenerate trees are converted to
a list, but often a perfectly balanced laborious
construction and balancing in them is sufficient.

There are several B-tree implementations [14].

1.2. AVL tree [15]. In this tree, an additional 2
bits are required for each node of the tree. In
addition, when changing a tree, balancing operations
are required (when inserting up to two turns, when
removing the height of the tree), which also requires
additional costs.

1.3. Red-black tree [16]. When implementing
this tree, it is necessary that each vertex preserves
color (1 bit). Sometimes, due to the need to align
memory, this condition leads to large memory
consumption. In addition, when changing a tree,
balancing operations are required (when inserting up
to two turns, when deleting up to three), which also
requires additional costs. Red-black trees are used in
various fields: in the Linux kernel for queuing, in the
ext3 filesystem, and in various libraries for
implementing SET and MAP.

In addition, there is a modification of the AA
tree, in which there is one more condition: the red
node can only be the right child. This condition
makes it possible to simplify the execution of all
operations, since there are fewer possible cases for
parsing. The speed of this tree can be compared to a
red-black tree, but the AA-tree for each node also
preserves a “level”, which leads to additional
memory costs.

Red-black trees can be 1,388 times the height of
AB for the same number of nodes. This leads to the
fact that the insertion and search times can be longer
in the red-black tree, but removing from the AVL
tree may require a number of iterations equal to the
tree depth, making it more advantageous to remove
it in red-ebony.

1.4. Cartesian tree [17]. This structure also has
other names such as Deramida ((Structure Treap),)
as this data structure is a binary tree and pyramid

association. Pyramid — a data structure similar to a
tree, but with one condition: the value at any node is
not less than the value of its children. Each node of
the access tree contains a pair of values (X, y), where
Xis called a key, y is a priority. Thus, on this tree, a
heap is obtained, and on x — a binary tree.

Priorities are usually chosen randomly to avoid
excessive tree heights. Two operations are used to
perform basic tree transactions: merge and split.

It should be noted that the worst-case average
of some operations on one tree may take longer, but
then other operations will be completed in less time.
It should also be noted that it is difficult to create
such a tree.

Another peculiarity of the tree is a rather large
excess of memory (2 to 4 bytes per node for storing
height). Thus, this tree cannot be used where
performance is guaranteed, such as in real-time
systems and OS kernels.

These trees are well suited for collecting
statistics on a large number of parameters, since
these trees allow us to count the number / difference,
minimum / maximum, and other operations in a
reasonable amount of time.

In addition, there is a modification - a Cartesian
tree by an implicit key. This structure provides a
dynamic array interface, but it is implemented using
a Cartesian tree. The Cartesian tree for the implicit
key allows you to implement a large number of
operations with an array and a subarray in
logarithmic time.

1.5. Splay tree [18] — a binary tree that has no
additional requirements for the tree structure and is
balanced in the process. Some points in the Splay
tree can be completely unbalanced. The Splay tree
maintains balance with a dedicated Splay feature.
This function searches for the required node and
makes it root using simple rotations that change the
structure of the tree, while maintaining the order in
the tree. Splay is activated after every operation,
including search.

In this tree, the complexity of operations can be
guaranteed, since the tree may be unbalanced when
requested, therefore, the height of the tree is greater
than log (n). This score is achieved in that finding
items that have been used recently will be faster and
will compensate for the earlier case.

The main advantage of this tree is productivity.
Testing in real conditions and the expanded tree
turned out to be one and a half to two times more
efficient than other balanced binary trees. However,
it is theoretically proven that if the probabilities of
using the elements are the same in time, then the tree
will work in the same way as other implementations.
At the same time, for arbitrary probabilities, access

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

213

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

to tree elements works one and a half times slower.
Thus, the extensible tree can be used in real-time
systems and in most general-purpose libraries.

In addition to performance, the advantages of
this tree include the absence of additional memory
costs, and the disadvantages are a strong limitation
when used in a multimedia environment and
limitations in purely functional languages.

1.6. Scapegoat tree [19]. This tree is an alpha
parameter that is in the range (0.5, 1). This
parameter is specified when creating a tree and
determines the height of the tree.

Therefore, Alpha affects the speed of
modification and search, for example, with Alpha =
0.5 we get a balanced tree (maximum search speed,
but minimum modification speed), and with Alpha
— 1 we get a link (maximum modification speed,
but minimum search speed). In this case, the search
is similar to a regular search tree, but insertion and
deletion are different.

To implement these operations, an element that
unbalances is searched for, and then the base slows
down, where the root is the element that unbalanced.
In the worst case, the modification operations can
take N times (depending on the node), but this
operation is distributed over the tree, so the average
time for the worst case (Log N).

2. Multipath trees

In addition to binary trees, there are trees with
more than two branches. Such trees are called
multipath or highly branching trees. The most
widespread is the B-tree and its various
modifications [18]. The B-tree is used in database
systems (indexes in many modern database
management systems) and file systems. There are
many variations in this tree. The most famous of
them are presented below.

2.1. B + -Tree also known as the Bayer-Baum
tree [19]. This tree is used in file systems for storing
directories and indexing metadata (NTFS, BEFS,
etc.). In relational DBMS — as an index (Oracle,
SQLite, etc.), NoSQL databases — for data access
(CouchDB).).

2.2. B * -tree [22]. This data structure is similar
to a b-tree, but has a different minimum vertex fill

factor — %3 (in a b-tree). This modification allows
for more efficient use of memory and provides a
small performance gain. The disadvantages of B * —
trees include a more complex function of separating
crowded nodes. The uses of this tree are similar to
those of the b-tree.

2.3. 2-3- Wood [11]. This tree is a separate case
of a B + tree, which can have nodes with only one
key (contains the maximum left subtree) and two

descendants and nodes with two keys (containing the
maximum left and middle subtrees) and 3 children.
Terminal nodes have no children. In addition, there
are 2-3-4-trees (B-Trees of degree 4), built
according to similar rules. It can be used to store
dictionaries in internal memory to avoid cache
penalties.

3. Multipath distribution trees are optimized
for write

For a long time, the B-tree has no alternatives
among data structures for storage in external
memory. But recently, the situation has begun to
change due to the need to process the ever-growing
volumes of data. To achieve this, data structures are
optimized specifically for write operations. Some of
these structures are partially inferior to the tree in
terms of search speed, but allow more efficient
production and deletion.

There are several types of data structures:

» trees using a buffer;
* LSM and fractal trees

Buffer Trees

Buffer trees can also be divided into several
types:

3.1. Buffered tree [23] — (a, b) - tree with
coefficients a = m / 4, b = m, built over a set of N
leaves, each of which contains b elements. In this
case, each internal node contains a buffer of m
elements. The data is stored only in the letter, only
individual keys are located in other nodes. The data
is first added to the buffer of the root node and only
after the overflow of this node is allocated to buffers
of subsequent levels, etc. This happens until the data
reaches the lowest level, at which it already remains.
In this case, a reduction similar to a tree is used if
necessary. Using a buffer allows you to reduce the
insertion time due to batch processing of requests,
but the use of autonomous models (the answer to
any request does not come immediately, but after a
while) makes it unavailable to use the buffered tree
for tasks, where the answer is required immediately
and further depends on it logics.

Based on this tree, a priority queue has been
implemented: Range Tree and Segment Tree, which
successfully solve some geometric problems and
problems on graphs. In addition, this tree allows for
high-performance memory sorting. It is not
necessary to have all the elements before sorting.

3.2. Be-trees [24] are a class of trees that differ
from buffered trees by finding the data and the
presence of the & parameter. The search operation in
a Be-tree is also similar to a search in a buffered
tree, but requires an immediate response, which, in
turn, requires additional operations to search for data
in the buffers.

214

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

The parameter ¢ determines the size of the
buffer (= b - Be) and the size of the keys in the node
(= be) during tree initialization and varies from
Oto1l.

For ¢ = 1, the usual B-tree (buffer size 0), and
for ¢ = 0, a modification of the buffered tree —
Buffered Repository Tree [25]. It is also an (a, b) —
tree, but with coefficients a = 2, b = 4 and buffer size
B instead of m. This tree is widely used for width
and depth traversal of a graph.

4. Heap

Another tree-like data structure is the heap [9].
This container is widely used for various tasks.
Based on the purchase of a queue with priority and
heapsort, various search algorithms and graph
algorithms are used [31].

There are several purchased heaps. The main
ones are listed below.

4.1. Binary heap [32], also known as a
pyramid. It is a binary tree for which the main heap
property is met. All levels in this heap must be
filled, except, perhaps, the last level, which must be
filled from left to right.

4.2. Binomial heap [32].This data structure is a
sorted set of binomial trees, each of which is a
property of the heap. In addition, all trees are
different in size. A binomial tree is defined
inductively. Bo contains only one node, Bk contains
two binomial trees Bk-1. In this case, the root of the
first tree is a descendant of the root of the second
tree.

4.3. Fibonacci heap [33]. This structure
consists of many Fibonacci trees (these are n-trees
for which the main property of the heap and the top
of one layer are associated with a doubly linked list).
The call to buy is a link to the minimum element
contained in the root of one of the trees.

This heap has good performance for all
operations except delete.

4.4. Thin pile [34] presents a set of thin trees
that satisfy the properties of the heap (while the
ranks of the trees can be repeated). A thin tree TK of
rank K is called a binomial tree Bk in which the
remaining descendants at several vertices are
removed. Moreover, it is impossible to delete at the
end nodes (since they have no descendants) and near
the root (otherwise, a binomial tree with a lower
rank). In practice, a thin beam is used to implement
the priority queue, but it is more efficient than
Fibonacci, since it has smaller constants in the
operating time.

4.5. Thick pile [34] is a set of thick trees in
which the ranks can be repeated, and there can be no
more than two nodes per rank containing a value less
than the value of the ancestor.

Thick wood is determined inductively.

F , contains one vertex, = contains three ranks k-

1, and near the root of one of them, the leftmost sons
are the roots of the other two.

A thick heap, like a thin heap, is a Fibonacci
modification, but in practice requires less space and
is more efficient.

4.6. Left heap [35] — A data structure based on
a binary left tree for which the main heap property is
satisfied. In this case, the tree can be unbalanced. In
addition, for this purchase, the condition must be
met: the closest place to insert the vertex must be the
rightmost position in the tree. If we denote D (v) as
the distance from vertex v to the nearest place for
insertion, then for all vertices it is necessary to
execute D (v.left)> = D (v.right). Since there is no
task in this pile, it is persistent and can be
implemented in a functional language.

4.7. 2-3 Heap [36] are a set of trees h(i), where
i =0, .., n, for which the main heap condition is met.
h(i) is a tree from zero to two 2-3-trees of degrees I,
which are combined into the following rule: the root
of the skin becomes the rightmost son in the
previous one. The 2-3 tree is marked as induced.

T ,-tree from one vertex, T -two or three

T trees, which are combined according to the

same rule as h(i), The specified device of 2-3 heaps

allows balancing both with the selection of elements,

and with the addition, which makes it possible to
increase the efficiency of extracting the minimum in
comparison with Fibonacci.

4.8. Priority queue for Brodal and Okasaki
[35].

This data structure is built on several principles:
« Application of a special asymmetric

embankment. This allows you to insert an

element in a short time.

» Storage is minimal, which allows you to quickly
retrieve it.

» Data-Structural self-tuning idea that allows you
to keep the queue in the queue and reduce the
number of merges.

Thus, the Brodal and Okasaki priority queue
consists of a minimum and special priority queue,
which stores the Brodal and Okasaki priority queue,
sorted by T-min. This description can be represented
in the formula BPQ = <Tmin, PQ (BPQ)>, where
BPQ stands for Bootstrapping Priority Queues. As a
priority queue (PQ), a special stack is used -
asymmetric. This idea is based on the use of

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

215

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

asymmetric binary coding of a number using the
digits 2 in the last disarmed bit, which allows you to
have a maximum of one tree of one binomial rank,
with the exception of the minimum rank (2 trees).

This enhancement to the binomial heap avoids
cascading tree merges during insertion and reduces
insertion time.

LSM and fractal TREE

LSM tree (Log-Structured Merge-Tree) [26] —
a data structure that provides fast insertion speed
with acceptable search speed. This tree is also
known as a log-structured merge tree because it is
well suited for storing logs of various operations that
are constantly updated and reviewed frequently.

This tree consists of two or more structures,
each of which is highly efficient on the device on
which it is stored. In the simplest case, an LSM tree
contains two tree structures that differ in size.

The smaller one is in the internal memory, the
larger one is in the external one.

In this case, the insert is only done into the
smaller tree (since it is in RAM and much faster),
and when it reaches a certain size, the tree from
internal memory is sent to external memory and
merged with the larger tree by merging.

In practice, LSM trees are usually used, which
have several levels. In this case, each level is
represented by a tree structure, and in case of
overflow, a combination with the next level.

The LSM tree is widely used in NoSQL
databases such as Apache Cassandra, BigTable,
Leveldb and many others, as well as in the new Disk
Engine tool for Tarantool. These trees are especially
effectively used for data with varying degrees of
relevance (message feed, chats, walls in social
networks, events), storage of timeseries and logs.

The main disadvantage of the LSM tree is the
need to search at each level with high cost. This is
how another tree appeared — a fractal one [30]. It
was originally based on the COLA (Cache-
Oblivious Lookahead Array) architecture, but now it
is a modification of the Be-tree with various
performance improvements and a 4MB tile size,
which is significantly larger than the normal tile size
-wood. It uses a fractal cascade to lower search
costs.

The basic idea is that when looking for Ti, we
know where the key should be at this level, and we
can use this information to improve the search at the
next level Ti + 1. To do this, links to the following
levels are added to the links. LSM trees and an in-
tree analogue is obtained. In addition, each node is
assigned a buffer in which all changes are made.

In a fractal tree; there are tree nodes, node
elements and buffers. When the buffer overflows, it
is sent to the child buffers until it reaches the leaves
where the elements are being filled. In this case, all
non-leaf nodes serve as indexes for the search, and
the leaf already contains information.

In such a scheme, insertion is exactly fast
(since the parent with multiple buffers is always in
RAM) and the lookup takes the same amount of time
as in-tree.

The main disadvantage in comparison with the
LSM tree is the complex sequential reading, as well
as the rather difficult deletion and updating of
information, as it is necessary for data retrieval.

THE PURPOSE OF THE ARTICLE

The purpose of this work is to develop methods
for increasing the flexibility of description and
processing of complex dynamic information objects
in automated management systems by presenting
them on the basis of LMS trees in NoSQL databases.

To achieve this goal, the following tasks were
solved in the work:

Possibilities of increasing the speed of
processing the CDIO by means of their
representation using dynamic structures in NoSQL
are analyzed.

A model and a method for representing LMS
using LMS trees using dynamic structures in NoSQL
have been developed.

The increase in the processing speed of CDIO
is shown on the example of representation in the
NoSQL ADABAS DBMS.

MAIN PART. ANALYSIS OF APPROACHES
TO THE DESCRIPTION OF CDIO

If we consider CDIO as an object for its basic
processing (storage, updating, deletion), as well as
the use of distributed processing, then we need to
compare the time spent on these actions when using
tree structures.

Comparative characteristics of the time spent
are shown in the summary table (Table 1) of the
time complexity of tree structures.

Among the many tree structures used to
describe complex dynamic objects of information
systems, the optimal structure can be found for
almost any case. If you choose a problem condition
(see [38] for a detailed analysis). The main condition
for choosing a design is its clarity and ease of
interpretation.

216

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

Table 1. Summary table of time complexities of tree structures

Submitted | Quality / Positioning Search Insert Deleting
Operator
B-tree The average 0 (n) O (log n) O (log n) O (log n)
Worst O (n) O (n) O (n) O (n)
AVL-tree The average O (n) O (log n) O (log n) O (log n)
Worst O (n) O (log n) O (log n) O (log n)
RB-tree The average O (n) O (log n) O (log n) O (log n)
Worst O (n) O (log n) O (log n) O (log n)
D-tree The average O (n) O (log n) O (log n) O (log n)
Worst O (n) amortized O (log n) amortized O (log n) amortized O (log n)
Splay-tree The average O (n) O (log n) O (log n) O (log n)
Worst O (n) amortized O (log n) amortized O (log n) amortized O (log n)
Scapegoat- | The average O (n) O (log n) O (log n) O (log n)
tree
Worst O (n) O (n) amortized O (log n) amortized O (log n)
MP-tree The average O (n) O (log n) O (log n) O (log n)
Worst O (n) O (log n) O (log n) O (log n)
AVL-tree The average O (n) O (log n) O (log n) O (log n)
Worst O (n) O (log n) O (log n) O (log n)
Buff-tree The average O (n) O ((logmn) / B) O ((logmn) /B) O ((logmn) / B)
Worst O (n) O ((logmn) / B) O ((logmn) / B) O ((logmn) / B)
Be — tree The average O(N/B) O (log v N) 0 (log, N f‘,’g_) 0 (log, N /,/B)
Worst O (N/B) O ((log b N)) 0 (log,N/\/B) 0 (log,N/\/B)

Source: compiled by the authors

In case the interpretation continues in memory,
you can use balanced binary trees, the choice of
which should be based on many factors: complexity
of construction, additional memory, product
performance factor, and deletion. If the problem uses
multidimensional descriptions, it is possible to use
special trees to provide multidimensional
information [39]. If there is a need to use a container
as a priority queue or to solve a minimum /
maximum search task, it is possible to use a bundle
(any option depending on the needs of efficiency
and consistency).

In case the data does not fit in RAM and you
need to use external memory, you must use other
trees. If you are using multidimensional data, you
need to use special trees to provide multidimensional
information using external memory [39].

In other cases, the underlying data structure is a
B-tree (or a variation of it, depending on the need for
sequential key access, additional memory, and
implementation complexity). If necessary, the best
choice would be a large number of records — using

record-optimized trees (LSM trees, fractal and
buffered).

Thus, after performing the analysis, we see that
the LSM tree provides a sufficient insertion speed
with an acceptable search speed.

DEVELOPMENT OF A MODEL AND
METHOD REPRESENTING
CDIO USING LMS-TREES

Thin complex dynamical systems, considered
as control objects, have the following basic
properties (system factors) [3]:

» integrity and the possibility of decomposition
into elements A (objects, subsystems);
+ the presence of stable links (relations) R

between the elements of A;

» arrangement of elements in a certain tree
structure (Str);

» providing elements with parameters (P);

» the presence of synergistic (integrative)
properties Q, which no one possesses in the
elements of the system;

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 217

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

« multiple laws, rules and operations Z with the
above attribute systems;

» having a goal of functioning and development
(G).
Thus, the system is a set (1)

Syst = {A, Str, Q, R, Z, G}. (1)

In this work, we consider one of the
components of complex systems — this is element A
(objects and subsystems), which must be described,
technologies and tools for their creation, storage and
use, and also show their interconnections and
interactions.

To describe the object, we will use the LSM-
tree (Log-structured merge-tree),

One of the features of our approach to
describing objects is the presence of tree-like levels -
the so-called “leaves”, by which we mean special
tree elements that expand the description of the tree
structure of a particular tree level. The minimal
elements of the leaves of the tree — “veins” - are
details, that is, elementary information elements. A
leaf is a combination of “veins” (details) according
to certain characteristics, which provide extended
information about the level of the tree object.

Thus, in order to build a model of CDIO, we
can apply the statements of the Algebra of Sets —
since our object is described by a certain set of
properties or a set of properties, these properties
characterize each level uniquely, and are
supplemented by the properties of subordinate
levels, i.e. we have the intersection (product) of sets
of properties.

In this case, the intersection is obtained from
the top-level properties. When it comes to filling
levels, the intersection is inherited from the top
level, and the symmetric difference is filled at this
level.

The CDIO model can be represented as follows

(2):

A= %,)

where Xi={S1S2...Sn};
xi — this is a set of levels of CDIO; Si -is a lot.

si=Up;. ®3)
j=1

where pj properties of CDIO levels.

These statements make it possible to determine
the method of forming the LSM-tree of the
description of the CDIO.

An important issue after the description of the
object is the storage technology and, accordingly,

access (add, delete, update). To the stored data for
the effective operation of the information system
based on the tree-like description of the object.
Having overlapping sets of level properties,
based on multiple data description elements in the
NoSQL DBMS, we get a tool for storing, accessing
and updating CDIO descriptors. At the same time,
we have the ability to accelerate access to the
elements of the LSM-tree, due to the use of
associative search methods in multiple data
structures using NoSQL of the ADABAS DBMS.

REPRESENTATION TO CDIO WITH
NoSQL ADABAS

To present the description of the LED, we will
use a specific Automated System “DivMiks”, which
functions to automate the work of company selling
furniture. An example of a CDIO will be the
document “Receipt invoice” for performing the
operation “Posting to the furniture warehouse”.

The initial description is a three-level tree, on
the first level there is the “Company Supplier of the
Goods”, on the second level there is the “Invoice
Header” (this is the part of the document that
describes its main details) and the third level is the
“Item Nomenclature Table”. Thus, we need to
complete the description of all these elements and
store it all in the database.

For this we use the NoSQL ADABAS DBMS.
This DBMS has tools for multidimensional data
representation — these are multiple fields (data
arrays) and periodic groups (arrays of data
structures) (Fig. 1).

The periodic group stores ‘“Leaves”, their
representations in the database allow storing extended
information on the description of the object.

To write program code, we use the Natural
development environment, which is the 4GL Natural
programming language.

To communicate with the database, this
development environment uses a special data
description module (DDM), which for our case
looks like this (Fig. 2).

Fig. 3, using the DivMix information system as
an example, shows the description of the “Shipping
waybills” object in the form of tree and leaf
elements.

Sheet details are dynamically generated based
on the named configuration. The configuration is
stored in the NoSQL database in the form of a
multidimensional table, which has the following
structure (Fig. 4).

A database file is a multidimensional cube into
which an XML file with the specified configuration is
loaded.

An example of a named configuration file is shown
in Fig. 5.

218

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2021; Vol.4 No.3: 211-224

h 1 Periodic Group

7 2 32 Alpha Diescriptor, Mull value Suppression

A 2 50 &lpha Descriptor, Mull Yalue Suppression

CE 2 10 &lpha Descripkar, Mull Yalue Suppression

9 2 168 Alpha Diescriptor, Mull Yalue Suppression

CE z 10 Alpha Diescriptor, Mull Yalue Suppression
_F 1 200 &lpha Cescriptor, Mulkiple-value, Mull value Suppression
D& 1 a2 &lpha Descripkar

Fig. 1. Description of the periodic group (C6) and multiple field (CF) in the ADABAS DBMS

Source: compiled by the authors

Type Lewvel Short Mame Mame Format Length Suppression Dezcrptar
N ixle] l:_I::: OIOIIOC TABIIAR.L MWM
1 Az DoC HAMMEHORALHME bl &0 I
e 1 A3 LDoC JEPEEO
Z A4 DoZ POMMTEINR L 32 N D
Z A5 DoC ¥FPOBEHEB v 5.0 N D
Z ki DoC THIIFFOBHA i 2 I D
Z A7 boc MMA¥POBHA L 1z0 W D
2 AZ DoC KONFPOEBEHA i 32 N D
Z A9 DoC IIFTH L 200 N D
1 EE DoC TATA-CTALPT v .0 D
1 EF Doc NATA-KOHED i) 5.0 D
1 <o LDoC THIOOKFMEHTA L 2 D
1 <1 Doc IIFTEOOrOBOP i Z00o
1 D4 DoC TOT'OEOP L &0 D
1 D5 DoZ TEECT L 160
1 <5 Doc_STATUS i) Z.0
1 <5 DoC IBN-RET N g.0 D
P 1 Ce DoC CONTENT
2 C7 DoZ POLE L 32 N D
Z CAh DocC NAME i 50 N D
Z2 CE Dboc ETZ L 10 N D
2 C9 DoC EZNACH i les N D
2 CE DoC ZAPOLNEN L 10 W D
Jul 1 CF DoC PATH L 200 N D
Fig. 2. Description of Natural data structures
Source: compiled by the authors
ISSN 2663-0176 (Print) Information technologies and computer systems 219

ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2021; Vol.4 No.3: 211-224

PaboTa HaKNaAHBINY KOHTPAFEHTOB

- Pexgn3nT Rovcka 3HaveH e PEKBIAIATA RONCKE

@ 21@MpyNNa_aoKyMaHTos HaknaaHee

floaroropReHHbe [Boﬁpaﬁame [BMHOHHEHHNE ‘

MacnopT cyeTa

[~ e Jeavian [3naonne pexomra |
@ 21l@rpynna_nokyMeHTOR HaknagHee
Homep cueTta

@ﬂﬂ@}lam cyeTa

4537023398-021

Haiit
COREPIAMOE HACNAAHOR
Dorminart grupe, UAB
Haunfogap 4837023398-021
a0 CAMPER 34D LIDO NAWY 15

Dorminari grupe, UAS\Haxn Tosap 4837023398-021Y

Brifiepume diedn OnR aaepyanuy Haxnaednod | Ofaop.. | ..

HIMaHOBIHNE! HaknToeap 4837023398-021

[I‘\apecuer DEKEM3MTOB ,u.u»cymema]

o0z MIL&MN 3+D LEFT (CSL+150) ORINOCCO 84 LIGHT GRANIT

@ 22@MOCTABLMK

AAPEC NOCTABLLHKS

Dominari grupe, UAR
Bcero rpH.
BaHk

MO0 BaHka
280.90

0.00

PacdeTHLIR cueT

SWIFT

WAT code

Kog OKNO

TUN MNaTENEWMKa HANora

Cymma Ba3 HAC

Cyrma HOC

Brero
[I] 15@BanwiTa EBpO
@ﬂﬂ@}lma Kypca 28.04.2021

Kypc HEY rpH. 33.5577

JKEMBANEHT CyMMbI mpH.

3anwcate

(

Hazaa]

Fig. 3. An example of the appearance of a tree-like description of an object with leaves
Source: compiled by the authors

Type Level Short Mame I ame Format Length Suppression Dreszcriptar
1 &g ELFILTIAL K 3 I
P 1 A&z ELZPRAV
Z A3 ELFOLE K 32 N D
2 44 ELZWNAC 4 240 W L
1 &5 ELVIBOR K 252 3
1 EO ELVIEORI K 24 3
1 E1l ELFEROM3 L T4 3
1 ES KELDEEET 4 26 3

Fig 4. The structure of the NoSQL database file for storing the configuration

Source: compiled by the authors

CONCLUSIONS

Thus, for optimal work with complex dynamic
information objects, we have developed our own
method for describing a tree with the ability to split
and store down to elementary levels. An atomic-
level descriptor is a multiple NoSQL database field
(array) where the tree level number is the index of
the database array. This approach allows objects to
be retrieved and grouped according to the element
level of the tree definition, which provides quick
access to data as well as tree-level extensions called
“leaves”.

This approach to the description of objects
allows you to get an effective technology for working

with unstructured data, describe them and provide
the ability to build adaptive information systems.
The flexible and dynamic environment of
modern information systems constantly requires
changes in the description of control objects. There
are restrictions on data descriptions for specific
models. Our approach — a tree-like representation of
data with a flexible technology for the formation and
storage of objects, allows us to form a new platform
for building modern information systems with an
effective tool for accessing large amounts of data.
Our technology solves another problem —
storage redundancy when building information
systems. When changing the structure of information
in the data warehouse, it is necessary to change the

220 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2021; Vol.4 No.3: -

—<Package>
—<CONFIG=>
<TYP_SPR=Z0_ZAFIZIEIN</TYP SPR>
—<CFG_SPR=>

WA TETAA 2@ A PERBHIHTA A SO@ERS_PEKEBHIHTA A 10@THII PERKEHIHTA, A 2@3ATIOIHEHE: A, 106

</{CFG_SPR>
</CONFIG=
—<Record ID="1">
<HMHA_T3ITA=Z02001</HMH_T3ITA=

<HMH PEKBIT3HTA>Ipynna goxymentoe</TIMH PEKBIT3IHTA>

<EH3 PEKBH3NTA> </E3 PEKBH3HTA=
<THII_PEKBM3HUTA>21</THII_PEKBH3HTA>
<3ATIOJIHEHHE= </3ATIOJTHEHHE >
</Record>
—<Record ID="2">
<HMH T3TA>Z02002</TMH T3TA=

<MW _PEKBH3HTA=>Homep zaxaza</HMA_PEKBH3HTA>

<EH3_PEKBH3HTA> </EH3_PEKBH3IHTA=>
<THIT PEKBIT3UTA=A</THII PEKBIM3MTA=
<3ATTOJIHEHHE =N =/3AIMMOJIHEHIE =
</Record>
—<Record ID="3">
<HMA T3TA=Z02003<MMA T3TA=

<HMA_PEKBH3HTA= ata saxaza</HNHA_PEKBH3HTA=

<E3 PEKBH3NTA= </EIT3 PEKBIT3HTA=
<THIT PEKRBH3HUTA=T1=</THII PERBH3HTA>
<3ATIOJIHEHHE= </3AIIOJHEHHE=
</Record>
—<Record ID="4">
<HMH_T3ITA=Z02004</MH_T3TA=

<HMHA PEKBIT3HTA>pyana topapa</HMHA PERBH3HTA>

<EH3 PEKBH3HTA> </ET3 PEKBH3HTA=
<THII_PEKBI3HUTA>06</THII PEKBH3HTA>
<3ATTOJIHEHHE= <3AIIOJTHEHHE >
</Record>
—<Record ID="3">
<HUMWE TATA=Z020059<TINWH TATA=

Fig 5. An example of a named configurator
Source: compiled by the authors

physical structure, and this is one of the problems of
modern automation systems. To solve this problem
and build a new generation of systems, we use the
NoSQL data model, which is an extended relational
model that removes the restriction on the
indivisibility of data stored in table records. A set of
values for multiple fields is considered an
independent table embedded in the main table. The
main advantage is the ability to represent a

collection of related tables with a single NoSQL
table. This provides high visibility and improved
information processing.

The software platforms developed using this
technology provide minimal costs for the support
and development of such automated systems, as well
as reduce time resources, which allows a minimum
number of employees to support a larger number of
software systems.

REFERENCES

1. Malakhov, E. V. “Selection of the complex-structured subject domains”. Materials of the
International Scientific and Technical Conference “Modern methods, information, software and technic
support of the management systems of organizational and technological complexes”. Publ. NUFT. Kyiv:

Ukraine. 26-27 November, 2009. p. 79-80.

2. Musser, D., Durge, J. & Sainey, A. “C ++ and STL. Reference Guide.” Publ. Williams.

Moscow: Russian Federation. 2010.

3. Sadalj, P. J. & Fowler, M. “NoSQL: A New Methodology for the Development of Non-Relational
Databases”. Publ. Williams. Moscow: Russian Federation. 2013. 172 p.
4. “SSTable & LSM-Tree”. — Available from: http://www.mezhov.com/2013/09/sstable-Ism-tree.html.

— [Accessed 13.09.2020].

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 221

http://www.mezhov.com/2013/09/sstable-lsm-tree.html

Herald of Advanced Information Technology 2021; Vol.4 No.3:211-224

5. Carpenter, J. & Hewitt, E. “Cassandra: The Complete Guide”. Publ.O'Reilly Media. New York:
USA. 2016. 360 p.

6. “SSTable and log-structured storage: LevelDB”. - Available from:
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb. — [Accessed: 13.09.2020].

7. Aho, A. V. Hopcroft, D. E. & Ullman, D. D. “Data structures and algorithms”. Publ. Williams.
Moscow: Russian Federation. 2003. 382 p.

8. Kormen, T. Kh. [et al.] “Algorithms: construction and analysis”. Publ. Williams Publishing House.
Moscow: Russian Federation. 2005.1296 p.

9. Topp, W. & Ford, W. “Data structures in C ++”. Publ.Binom. Moscow: Russian Federation. 2000.
815 p.

10. “Collaborate with Adabas & Natural community experts”. [Electronic resource]. — Available from:
https:/ftechcommunity.softwareag.com/en_en/adabas-natural.html. — [Accessed: 13.09.2020].

11.Wirth, H. “Algorithms + data structures = programs.” Publ. Mir. Moscow: Russian Federation. 1985.
406 p.

12.“Data structures: binary trees”. Part 2. “An overview of balanced trees”. [Electronic resource]. —
Available from: https://habrahabr.ru/post/66926/. — [Accessed: 13.09.2020].

13. Knut, D. E. “The art of computer programming.” Publ. Mir. Moscow: Russian Federation. 1976.
736 p.

14. Sedgwick, R. “Fundamental algorithms in Java.” Part 1-4. “Analysis. Data structures. Sorting.
Search.” Pabl. DiaSoft. Kyiv: Ukraine. 2002. 688 p.

15. Aragon, C. R. & Seidel, R. “Randomized Search Trees, Proc. 30th Symposium Fundamentals of
Computer Science”. Publ. DC: IEEE Computer Society Press. Washington: USA. 1989. p. 540-545.

16. Sleator, D. D. & Tarjan, R. E. “Self-Tuning Binary Search Trees“. ACM Journal. 1985; No. 32:
652—686.

17. Andersson, A. “Improving Partial Reorganization Using Simple Balance Criteria. Tr. Workshop on
algorithms and data structures”. Publ. Springer-Verlag. Berlin: Germany. 1989. p. 393-402.

18. Levitin, A. V. “Algorithms. Editorial introduction and analysis”. Publ. Williams. Moscow: Russian
Federation. 2006. 576 p.

19. Zubov, V. S. & Shevchenko, I. V. “Structures and methods of data processing. Workshop in Delphi
environment”. Publ. Filin. Moscow: Russian Federation. 2004. 304 p.

20. Berliner, H. “A tree search algorithm B*. Best First Evidence Procedure”. Artificial Intelligence.
1979; No. 12: 23-40.

21. Ardzh, L. “Buffer Tree: A New Method of Optimal I. Algorithms in Sb. Workshop on algorithms
and data structures.” Publ. Springer-Verlag. Berlin: Germany. 1995. p. 334-345.

22. Bender, M., Farach-Colton, M., Jannen, V., Johnson, R., Kushmaul, B. C, Porter, D. E., Yuan, J. &
Zhang, Yu. “Introduction to Be-trees and record optimization”. In: login; Magazine. 2015; Vol. 40 No. 5:
22-28.

23. Buchsbaum, A. L., Goldwasser,, M., Venkatasubramanian, S. & Westbrook, J. R. ”On external
memory graph traversal” . Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA '00). Society for Industrial and Applied Mathematics. Philadelphia: USA. 2000. p. 859-860.

24. O'Neil PE, Cheng E, Gawlick D & O'Neil EJ. “Log-structured merge tree (LSM-tree)”. Acta
Informatica. 1996; Vol. 33 No. 4: 351-385.

25. Sears, R. & Ramakrishnan R. “bLSM: A fusion tree with a general purpose logical structure”.
Proceedings of the ACM SIGMOD 2012 International Conference on Data Management. NY: ASM. 2012.
p. 217-228.

26.Tan, V., Tata, S., Tan, Y. & Fong, L. “Differential Index: Differential Index in Distributed Storages
of Log-Structured Data”. Proceedings of the 17th International Conference on the Expansion of Database
Technology, EDBT. OpenProceedings.org. Konstanz: Germany. 2014. p. 700-711.

27. Bender, M. A., Farach-Colton, M., Fineman, J., Vogel, J., Kuzmaul, B. & Nelson J. “Streaming B-
trees without caching”. Proceedings of the 19th ACM Annual Symposium on Parallelism in Algorithms and
Architectures. Publ. ACM Press. CA. 2007. p. 81-92.

222 Information technologies and computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb

Herald of Advanced Information Technology 2021; Vol.4 No.3: -

28. Alekseev, V. E. & Talanov, V. A. “Graphs and algorithms. Data structures. Computation models”.
Publ. Internet Un-t Inform. Technology BINOM. Moscow: Russian Federation. 2006. 320 p.

29. Cormen, T. H. [et al.]. “Algorithms: Construction and Analysis = Introduction to Algorithms”. Publ.
Williams. Moscow: Russian Federation. 2005. 1296 p.

30. Fredman, M. L. & Tarjan, R. E. “Fibonacci heap and their use in improved network optimization
algorithms”. Journal of the Association for Computational Engineering. 1987; Vol. 34 No. 3: 596-615.

31. Kaplan, H. & Tarjan, R. E. “Thin heaps, thick heaps”. ACM Algorithm Transactions (TALG). 2008;
Vol. 4 Article No. 3: 1-14.

32. Clark, A. “Linelists and Priority Queues as Balanced Binary Trees”. Stanford University. Stanford:
1972.

33.Takaoka, T. “The theory of 2-3 heaps”. Discrete Applied Mathematics. 2003; Vol. 126: 115-128.

34. Brodal, G. S. & Okasaki, S. “Optimal purely functional priority queues”. Journal of functional
programming. 1996; Vol. 6: 839-857.

35. Potapov, D. R., Artemov, M. A. & Baranovsky, E. S. “Review of adaptation conditions for self-
adapting associative data containers”. Bulletin of the Voronezh State University. Series: System Analysis and
Information Technology. 2017; No. 1: 112-119.

36. Gulakov, V. K. & Trubakov, A. O. “Multidimensional data structures”. Publ. BSTU. Bryansk:
Russian Federation. 2010. 387 p.

37. Knut, D. “The art of programming. Vol. 3. Sorting and search “.Publ. Williams. Moscow: Russian
Federation. 2007. 824 p.

38. Pug, R. & Flemming, F. R.”Cuckoo hashing”. Journal of Algorithms. 2004; Vol. 51: 122-144.

39. Fredman, M. L., Komlos, J. & Szemeredi, E. “Saving a Sparse Table with O (1) Worst Access
Time”. ACM Journal. 1984; Vol. 31 No. 3: 538-544.

40. Herlihi, M., Shavit, N. & Tsafrir, M. “Hashing of the classics”. Proceedings of the 22nd
International Symposium on Distributed Computing. Publ. Springer-Verlag. Arcachon: France. 2008.

p. 350-364.

Conflicts of Interest: the authors declare no conflict of interest

Received 08.02.2021
Received after revision 26.08.2021
Accepted 23.09.2021

DOI: https://doi.org/10.15276/hait.03.2021.1
VJIK 004.65:519.172

Mogaeab i MeTOA MOJAHHS CKJIAMHUX JMHAMIYHMX iHGOpManiiiHUX
00'exTiB Ha ocHOBI LMS-1epeB y NOSQL 6a3ax manux

Ounekcanap Cemenosnu Makcumon?)
ORCID: https://orcid.org/0000-0001-8951-5251; oleksandr.s.maksymov@onu.edu.ua
€greniii Banepiiionu Manaxos?
ORCID: https://orcid.org/ 0000-0002-9314-6062, eugene.malakhov@onu.edu.ua. Scopus: 1D: 56905389000
Burauiii Ianosnu Mexyen?
ORCID: https://orcid.org/0000-0002-9335-6131; vitaliy.mezhuyev@fh-joanneum.at. Scopus I1D: 24468383200
D Onecwknit HanionansHUi yHiBepcuTeT iM. 1.1. Meunukosa, Byn. JIBopsHchka, 2. Oneca, 65082, Ykpaina
2 FH Joanneum: Kanden6epr, Werk-VI-Strale 46, 8605, ABcTpis

AHOTALIA

VY crarTi BUKOHAHO aHaji3 iCHYIOUMX MiJXOMAIB 10 ONHCY CKJIQJHMX JUHAMIYHUX iH(OpMaliiHMX 00'€KTiB mpH MOOYIOBI
aBTOMATH30BaHMX CHCTEM YIpaBlIiHHA. BBexmeHo 1 Bu3HaueHO mOHATTA CKIaAHOTO AWHAMIYHOro iH(opMariifHOoro o00'eKTa.
ITpoBeneHO MOPIBHAIBHUI aHaNi3 THMYAaCOBHMX CKJIAJHOIIIB JEPEBOBHIHUX CTPYKTYp i BHOpaHHH ONTUMAIbHUN Ui POOOTH 3

ISSN 2663-0176 (Print) Information technologies and computer systems 223
ISSN 2663-7731 (Online)

https://www.goodreads.com/author/show/2777035.Clark_A_Crane
https://doi.org/
https://orcid.org/0000-0002-9335-6131

Herald of Advanced Information Technology 2021; Vol.4 No.3:211-224

CkiIagHuM AvHaMivHEM iH(GOpMamifHUM 00’eKTOM. bBiNbIIicTh CydacHHX aBTOMATH30BAaHHX CHUCTEM YIPAaBIiHHS UL CBOTO
(GYHKLIOHYBaHHS BUKOPUCTOBYIOTh Pi3HOMAHITHI MigXoau omnucy ob'ektiB aBromarn3auii. I1ix 00'exrom aBTromMaTH3arii Mu OyaeMo
po3yMiTi (yHKLIIOHATBHI 00'€KTH, SIKi ONMHCaHI y BUIVISAAI CTPYKTYPHHX MOJENEi, II0 BiZOOpakaroTh BIACTHBOCTI (i3UUHHX
00'exTiB. TaknM 9MHOM, JUIST ONTHMAIBHOI POOOTH 3i CKIQIHUMH ANHAMIYHAMH iHQOPMAaIifHUMHU 00'€KTaMH MH PO3pOOHIIH BIaCHY
Mozenb i Meron omucy LMS-aepesa (Log-structured merge-tree), 3 MOXIHBICTIO MOIiTY i 30epiraHHs O €IEMEHTApHUX DiBHIB.
OpHi€r0 3 0COONMMBOCTEH HAIIOTO MIAXOAY IO ONHUCY 00'€KTIB € HAasBHICTH AEPEBOBHIHNX PIBHIB — TaK 3BAHHX (JIUCTIBY, IMiJ| IKHMHI
MH OyJIeMO PO3YMITH CIIELiaNbHI eleMEHTH JepeBa, 0 PO3MIMPIOIOTH OINC JIePEBOBHIHOI CTPYKTYpH KOHKPETHOTO PIBHS JiepeBa.
MiHiManbHi €JIeMEHTH JIUCTA AEPEBa - «IIPOKWIKH» - IIe AeTalli, ToOTO eleMeHTapHi iHdopMamiliHi exemenTu. Jluct sBise cob6or0
00'eIHAHHS 332 IEBHIMH XapaKTePUCTHKAMU <OKUJIOK» (AeTaneil), 10 JaloTh po3LIMpeHy iHpopMalilo mpo piBeHb 00'ekta aepesa.
Jleckpunrop eneMeHTapHOro piBHS - Lie MHOKHHHE mousie (MacuB) NOSQL 6a3u naHuX, B SIKOMY HOMEp PiBHS JiepeBa € iHAEKCOM
MacuBy 0a3u naHuX. Takuid MigXiA Z03BOJISIE BUTATYBATH 1 TPYMYBaTH 00'€KTH BiAMOBITHO O PiBHS €JIEMEHTIB BU3HAYECHHS AEpeBa,
1m0 3abe3nedye MBUIKHH TOCTYII 0 AaHHX, a TAKOXK JI0 PO3IINPEHB PIBHS JIepeBa — <«JIUCTSI».
Korouogi coBa: Crutanui; auHamivHi; ingopmariiai 00'exti; LMS-nepesa; NOSQL; mozeni; epeBoBHAHI CTPYKTYpH

ABOUT THE AUTHORS

Oleksandr S. Maksymov, Senior Lecturer, Department of Mathematical Support of Computer Systems, Odessa |I. I.
Mechnikov National University, 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0001-8951-5251; oleksandr.s.maksymov@onu.edu.ua

Research field: Information technology; business process automation; NoSQL databases; cross-platform systems;
storage of unstructured baths; integration systems

Ounexcanap CemeHoBHY MakcHMOB, CTapiuuii BHKIazad, kadenpa MaremMaTHYHOrO 3a0€3MEUEHHS KOMIT IOTEPHHX
cucreM. Hanionansuuii yHiBepcurer Ykpainu «Opecbkuii Harjonamsauii VHiBepcurer iM. 1. 1. MeunikoBa», By
JIBopsiHCBKa, 2. Oneca, 65082, Ykpaina

Eugene V. Malakhov, Dr. Sci. (Eng), Professor of Mathematical Support of Computer Systems Department. Odessa
I. 1. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine.

ORCID: https://orcid.org/0000-0002-9314-6062; eugene.malakhov@onu.edu.ua. Scopus I1D: 56905389000
Research field: Information technology; databases theory; expert systems; system modelling; cloud computing;
distributed computing

€preniii BajepiiioBuu MaJjaxoB, [OKTOp TeXHIUYHHX Hayk, mnpocdecop, 3aBigyBau kabeapu MaTeMaTHIHOTO
3abecrevyeH s KOMIT I0TepHuX cucteM. HamionanpHuit yHiBepcuter Ykpainu «Onecbkuit HamionanpHuil YHIBepCHTET iM.
1. I. MeunikoBay, Byi. J[BopsiHchKa, 2. Oneca, 65082, Ykpaina

Vitaliy I. Mezhuyev Dr. Sci. (Eng.), Prof., FH Joanneum: Kapfenberg, Werk-V1-Strale 46, 8605, Austria
ORCID: https://orcid.org/0000-0002-9335-6131; vitaliy.mezhuyev@fh-joanneum.at. Scopus ID: 24468383200
Research field: Software engendering; information technology; data analysis

Butaniii IsanoBna MeiyeB, 1-p TeXHHY. HayK, npodecop IHCTUTYTy MPOMMIIUIEHHOTO MEHEIKMEHTY. YHUBEPCUTET
npuknaaanx Hayk FH JOANNEUM. Kandenbepr, ABctpist

224 Information technologies and computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

https://orcid.org/0000-0001-8951-5251?lang=ru
mailto:oleksandr.s.maksymov@onu.edu.ua
mailto:eugene.malakhov@onu.edu.ua
https://orcid.org/0000-0002-9335-6131

