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MODELING THE MOTION OF A SOLID BODY UNDER THE ACTION OF THE MOMENT OF 

LIGHT PRESSURE IN THE MEDIUM WITH RESISTANCE 

Annotation. The paper describes the simulation of fast rotational motion of a dynamically asymmetric satellite relative to the 

centre of mass under the influence of the joint effect of the moment of forces of light pressure and resistance. It is assumed that the 

surface of the spacecraft is a surface of revolution. The medium creates a weak resistance proportional to the angular velocity of the 

rigid body's own rotation relative to the centre of mass. Orbital motions with an arbitrary eccentricity are considered given. The 

mathematical model of satellite motion in this formulation is described by a rigid system of differential equations: the fast variables 

are Euler angles, and the slow variables are the modulus of the angular momentum vector, the kinetic energy, and the angles of ori-

entation of the angular momentum vector in space. Averaging is performed over the Euler-Poinsot motion. The averaged system of 

equations of body motion allows numerical simulation of the satellite's motion relative to the centre of mass. The study is carried out 

in a dimensionless form for a multiparameter system of equations. For numerical calculation, an implicit third-order Adams method 

is used to integrate systems of differential equations. A personal computational package was developed for the constructed mathe-

matical model of the satellite, as well as a library for calculating the complete elliptic integrals of the first and second kinds. Numer-

ical calculation allows one to obtain the functions of modulating the modulus of the satellite kinetic moment vector, its orientation 

angles to the orbit, as well as the satellite kinetic energy values. The analysis of the influence of the parameters of the problem on the 

nature of the motion of the satellite relative to the centre of mass is carried out. A qualitative picture was obtained of the influence of 

the initial values of the angles of orientation of the kinetic moment vector, the geometry of the masses, the eccentricity of the orbit, 

the characteristic numbers of disturbing moments on the hodograph character of the kinetic moment vector. The hodograph of the 

kinetic moment vector in three-dimensional space is simulated for various values of the system parameters. To construct three-

dimensional objects on the scene, according to the carried out numerical calculations, we developed our own software using DirectX 

technology in C# language, simulating a virtual laboratory of a numerical experiment.  
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Introduction. The study of the problems of the 

gyration of rigid bodies about a fixed point has re-

mained relevant for many decades. This is due to the 

increasing demands on the accuracy of solving prac-

tical problems of cosmonautics, gyroscopy, etc.   

The development of our own packages for 

modelling mechanical processes allows us to study 

the motion of a rigid body relative to a fixed point 

under the action of various force factors, as well as 

their combination. For each force factor, the 

necessary physical and mathematical models are 

constructed, and the question of the interaction of 

force factors is also investigated. To generalize the 

results obtained, it is necessary to build models in a 

dimensionless form, choosing the characteristic 

parameters of the problem as the scale. 

One of the important characteristics of the 

rotational motion of a solid relative to a fixed point 

is the vector of angular (kinetic) momentum. The 

hodograph of this vector is a spatial curve that 

allows you to explore the nature of the motion of a 

rigid body and determine the necessary relationships 

between the parameters of the model. 

Survey of prior research and formulation of 

the problem. The motion of rigid bodies about a 

fixed point in [1-11] composed of the Euler-Poinsot 

motion around the vector of the angular momentum 
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and the motion of the vector of the angular momen-

tum itself. If the body is not affected by the moments 

of applied forces, then it makes some movement, 

which is called unperturbed and is the Euler-Poinsot 

movement. In real conditions, the disturbing mo-

ments of external and internal forces act on the 

body. Such a movement is called perturbed. The task 

of studying the rotational motion of a spacecraft un-

der the action of a moment of light pressure force is 

one of the most important sections of the dynamics 

of the rotational motion of a rigid body relative to 

the centre of mass. The works [1-19] are devoted to 

the study of perturbed motions of a rigid body under 

the action of moments of forces of different physical 

nature (gravitational [1], light pressure [2-4; 13-16], 

influence of a cavity filled with a viscous fluid [5; 

17-19], resistance [6-7], etc.) The task of studying 

the rotational motion of a spacecraft under the action 

of a moment of light pressure force is one of the 

most important sections of the dynamics of the rota-

tional motion of a rigid body relative to the centre of 

mass. Initially, satellites and spacecraft equipped 

with extended solar panels or reflecting antennas 

were studied. Then came the task of controlling ori-

entation using light pressure. A literature on these 

issues can be found in the book [13] and the review 

[14]. In [2], the integral characteristics of the force 

effect of the light pressure on the body of the flight 

device were obtained, and formulas for the moment 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)
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of the forces of light pressure acting on the body 

bounded by the surface of rotation were given. The 

second research direction is the effect of light pres-

sure on the rotational-translational motion of aster-

oids [15]. The third direction is the study of the Yar-

kovsky effect [16]. 

The rapid development of IT-technologies al-

lows not only to apply new methods of research 

tasks, but also to carry out modelling of the studied 

processes [11; 20; 21]. 

The purpose and objectives of the study. The 

main goal of the study is to simulate the hodograph 

of the kinetic momentum vector for various values 

of the parameters of the disturbing moments to con-

duct a qualitative analysis of the influence of the 

disturbing moments on the satellite's motion relative 

to the centre of mass. 

To achieve this goal, the following tasks were 

set: 

 building a mathematical model of the motion 

of a rigid body relative to the centre of mass in a 

medium with resistance under the action of the mo-

ment of force of light pressure; 

numerical experiment at various values of pa-

rameters of disturbing moments; 

three-dimensional modelling of the hodograph 

of the kinetic momentum vector. 

Building of a mathematical model. Consider 

the motion of the satellite relative to the centre of 

mass under the action of the joint influence of the 

light pressure and resistance forces' moments. Rota-

tional motions are considered within the framework 

of a model of a rigid body whose centre of mass 

moves along a given fixed elliptical orbit around the 

Sun [1]. 

Introduce three Cartesian coordinate systems 

whose origin is compatible with the center of inertia 

of the satellite [1]. The coordinate system 

( 1,2,3)iOx i   moves progressively along with the 

center of inertia: the axis 
1Ox  is parallel to the orbit 

perihelion radius vector, the axis 
2Ox  is the velocity 

vector of the center of mass of the satellite at the 

perihelion, and the axis 3Ox  is normal to the orbit 

plane. The coordinate system ( 1,2,3)iOy i   is as-

sociated with the vector of kinetic moment G . The 

axis 3Oy  is directed along the vector of the kinetic 

moment G , the axis 2Oy  lies in the plane of the 

orbit (ie, in the plane 1 2Ox x ), the axis 
1Oy  lies in 

the plane 
3 3Ox y  and is directed so that the vectors  

1y , 
2y , 

3y  form the right triple [1]. The axes of the 

coordinate system ( 1,2,3)iOz i   are associated 

with the main central axes of inertia of the rigid 

body. The mutual position of the main central axes 

of inertia and the axes 
iOy  is determined by the Eu-

ler angles. In this case, the direction cosines ij  of 

the axes 
iz  relative to the system 

iOy  are expressed 

in terms of the Euler angles  ,  ,   according to 

known formulas [1]. The position of the angular 

momentum vector G  with respect to its center of 

mass in the coordinate system 
iOx  is determined by 

the angles   and  , as shown in [1].   

The equations of motion of the body relative to 

the center of mass are written in the form [1]: 

3

dG
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dt
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dt G
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1 1
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Here 
iL  are the moments of external forces rel-

ative to the axes 
iOy , G  is the magnitude of the 

kinetic moment, ( 1,2,3)iA i   – the main central 

moments of inertia about the axes 
iOz . 

In some cases, along with the variable   it is 

convenient to use as an additional variable an im-

portant characteristic  kinetic energy T , the de-

rivative of which has the form: 

3

2
sin cos

dT T
L G

dt G
   

 
2 2

2 1

1 2 3

sin cos 1
cos sinL L

A A A

 
 

 
    

 

 1 2

1 2

1 1
sin cos cos sinL L

A A
   

 
    

  
.(2) 



Herald of Advanced Information Technology                                                                                 2019; Vol.2 No.1:47–56 

Simulation and Diagnostics of Complex Systems and Processes 

 
 

ISSN 2663-0176 (Print) 49 

The centre of mass of the satellite moves along 

the Keplerian ellipse with eccentricity e  and orbital 

period Q . The dependence of the true anomaly   

on time t  is given by the ratio: 

          

2

0

2 3/2

(1 cos )

(1 )

ed

dt e

  



, 

0

2

Q


  ,          (3) 

where: 
0  is the angular velocity of the orbital mo-

tion, e  is the eccentricity of the orbit. 

A dynamically asymmetric satellite is consid-

ered under the assumption that the angular velocity 

  of the satellite’s motion relative to the centre of 

mass is substantially greater than the angular veloci-

ty of the orbital motion 0 , i.e.  

0 1 0/ ~ / 1A G     . In this case, the kinetic 

energy of rotation of the body is large compared 

with the moments of disturbing forces. 

The projections 
iL  of the moment of external 

forces are added up from the moment of the forces 

of light pressure 
c

iL  and the moment of forces of 

external resistance 
r

iL . 

Assume that the surface of the spacecraft is a 

surface of rotation, with the unit vector of the axis of 

symmetry k  directed along the axis 3Oz . As shown 

in [1; 2], in this case for the moment of the forces of 

light pressure acting on the satellite, the equation 

takes the form: 

  2 2

0 /c

c sa R R rL e k , (4) 

     
2

'0
02c s c s s

R
a p S Z

R
   , 
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R

R
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E
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Here re  is the unit vector in the direction of the 

radius vector of the orbit;  s  is angle between di-

rections re  and k  so that sin s re k ; R  is 

current distance from the centre of the Sun to the 

centre of mass of the satellite;  0R  is fixed value of 

R , for example, at the initial moment of time; 

 c sa   is a coefficient of moment of light pressure 

force, determined by surface properties; S  is area of 

“shadow” on a plane normal to the flow; 
'

0Z  is a 

distance from the centre of mass to the centre of 

pressure;  cp  is light pressure value at a distance R  

from the centre of the Sun; c  is the speed of light;  

0E  is the magnitude of the energy flow of light 

pressure at a distance 0R  from the centre of the Sun.  

Assume [1] that, due to symmetry, the corre-

sponding function (4) has the form   cosc c sa a   

and approximate it by a trigonometric polynomial in 

degrees of cos s . Represent the function 

 cosc sa   as 0 1 cosc sa a a    . Consider 

the second term of the expansion, 

  1cos cosc s sa a    1cos cosc s sa a 
 

when 

assuming that 1 ~a  . 

It is assumed that the moment of resistance 

forces 
rL  can be represented in the form 

r IL ω , 

where the tensor I  has constant components ijI  in 

the system 
iOz , associated with the body [1, 6]. The 

medium resistance is assumed to be weak of the or-

der of smallness 
2 : 

2

0/ ~ 1I G   , where I  

is the norm of the matrix of resistance coefficients, 

0G  is the kinetic moment of the satellite at the initial 

moment of time.. 

The projections of the moment of external re-

sistance forces 
r

iL  on the axis 
iOy   are written in 

the form [1; 6]. Here is the projection on the axis 

1Oy , and projections on the other axes have a simi-

lar view 
3

1 1 31 2 1 32 3 1 33
1

1 1 2 3

r i i i i i i

i

I I I
L G

A A A

     



 
    

 
 . 

Procedure averaging method. The task is to 

study the evolution of satellite rotations on an as-

ymptotically large time interval 
2t  

 over which a 

significant change in motion parameters occurs.  
Consider the unperturbed motion ( 0  ), 

when the moments of external forces are zero. In 

this case, the rotation of a rigid body is the Euler-

Poinsot motion [22]. Values G ,  ,  , T ,   turn 

into constants, and   ,  ,   are some functions of 

time t . The slow variables in the disturbed motion 

will be G ,  ,  , T ,  , and the fast Euler angles 

 ,  ,  . 

Consider movement provided by 
2

1 22 2TA G TA  . Introduce the value 

  
  

 
2

2 3 12 2

2

1 2 3

2
0 1

2

A A TA G
k k

A A G TA

 
  

 
,        (5) 

that is a constant in undisturbed motion i.e. the mod-

ulus of elliptic functions [23] describing this motion. 
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To construct the averaged system of the first 

approximation, we substitute the solution of the un-

perturbed Euler-Poinsot motion [22] to the right-

hand members of equations (1) – (2) and conduct 

averaging over the variable  , and then over the 

time t , taking into account the dependence of  ,   

on  t  [24]. At the same time, for the slow varia-

bles ,  , G , T  the former notation is preserved. 

As a result, we get the following expressions: 

   
1
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d
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dt
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Here 
2( )K k  and 

2( )E k  are complete elliptic 

integrals of the first and second kind, respectively 

[23]. 

The function 
2( )H k  in the first two equations 

is determined by the ratios: 
2
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From equations (6) it follows that only the re-

sistance force affects the change in G  and T . In [6,  

8, 9] it was shown that the variables G  and T  

strictly decrease for any 
2 [0,1]k  .  

As is known [1] that  0 1 cosR e   , the 

focal parameter of the orbit is determined by the 

equality  1 3 2 2 3

0 01 e    , where   is the 

gravitational constant. Then the first two equations 

of system (6) for the angles of orientation of the ki-

netic moment vector will take the form: 
2 4/3 2

1 0 0

2/3 2 2

(1 cos )
sin sin 2( )

2 (1 )

a R ed
H

dt G e
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21 0 0
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a R ed
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(8) 

After averaging the equation for 
2k  will take 

the form: 

  
2
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.          (9) 

Numerical analysis of averaged satellite spin. 

To conduct a numerical study, we construct a 

mathematical model in a dimensionless form. To 

nondimensionalize the system, we take the unit of 

measurement of time
1

0


, moment of inertia- 1A  and 

modulus of the vector of kinetic moment - its initial 

value 0G , then the dimensionless values of the mod-

el are denoted and defined as: 

0t  , 2
2

1

A
A

A
 , 3

3

1

A
A

A
 , 

0

G
G

G
 , 1

2

0

AT
T

G
 , 

1 0

ii
ii

I
I

A
  ( 1,2,3i  ).  
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Introduce the dimensionless characteristic num-

ber of this mode 
2 1/3

1 0 0
1 2/3

0

a R

G





  .                 (10) 

System (6), taking into account (8), in the di-

mensionless form takes the form: 
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Relations (7) after nondimensionalization take 

the form: 
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.  

Conduct a numerical study for the system of 

equations (11), and the equations for changing the 

true anomaly (3) in a dimensionless form: 
2

2 3/2

(1 cos )

(1 )

d e

d e

 







. 

Conduct a numerical calculation of the satel-

lite's motion relative to the centre of mass when its 

centre of mass moves in a circular orbit ( 0e  ). For 

the moments of inertia of the satellite, set the values 

2 0.8A  , 
3 0.5A  . The initial values of the angles 

of orientation of the kinetic moment vector relative 

to 
iOx  are: 0 0.33  , 0 0  . The true anomaly 

at the initial moment of time is 
0 0  . The module 

of elliptic functions has the value 
2 0.5k  . The 

study is conducted for a small moment of resistance 

forces with the same coefficients along the three 

axes of inertia 11 22 33 0.01I I I   . For the 

characteristic number of the moment of the force of 

the light pressure we choose the value 1 1  .  

The result of changing the angle of deviation of 

the kinetic momentum vector G  from the axis of 

the vertical to the satellite orbit plane is shown in 

Fig. 1, the angle of rotation of the kinetic moment 

vector about the vertical axis is shown in Fig. 2 

From fig. 1, it can be seen that the angle function 

    is periodic with a non-constant amplitude. 

The angle function     in Fig. 2 has gaps of 

ascending and descending, which allows to conclude 

that at first stage the kinetic momentum vector G  

rotates about the vertical axis to the orbit plane 

counter-clockwise, slowing the rotation, and then 

clockwise. 

 

 
 

Fig. 1. Graph of changes in the angle of  

deviation of the vector G  from the vertical to the 

plane of the orbit 
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Fig. 2. Graph of changes in the 

angle of rotation of the vector G  around the 

             vertical to the plane of the orbit 

 

Fig. 3 shows the variation curves of the 

modulus of the kinetic momentum vector ( )G   

(Curve 1), the kinetic energy ( )T   (Curve 2), and 

the modulus of the elliptic functions 
2 ( )k   

 (Curve 3). All functions are decreasing, since under 

the influence of the moment of resistance forces the 

attenuation of the perturbed motion of the satellite 

relative to the centre of mass occurs. 

 

 
Fig. 3. Graphs of changes in kinetic energy,  

kinetic momentum and modulus of elliptic functions 

 

Conduct the simulation of hodograph of the 

kinetic moment vector according to the performed 

numerical calculations. Fig. 4 shows the result using 

our own visualization package for a three-

dimensional hodograph curve. The outer sphere of 

the frame type corresponds to the initial value of the 

modulus of the angular momentum vector, and the 

inner continuous sphere corresponds to the final 

calculated value of the modulus of the vector G . 

The black curve is a three-dimensional hodograph 

that simulates the motion of a satellite relative to the 

centre of mass under the influence of the combined 

moments of light pressure and resistance for given 

parameters of the model.  

From Fig.4 it can be seen that the hodograph of 

the kinetic moment vector G  covers the  3Ox axis. 

The influence of the moment of the forces of 

light pressure is characterized by the dimensionless 

parameter 
1 (10), which is included in the right set 

of members of the first equations of the system  (11). 

Changing this parameter affects changes in the 

functions      and    . Fig. 5 shows the result 

of calculating the function of the deviation of the 

angular momentum vector from the vertical to the 

orbit plane. Curve 1 corresponds to the value of 

1 1  , curve 2 - 1 2  , curve 3 - 1 3  . It can be 

seen that an increase in the parameter of the light 

pressure leads to an increase in the amplitude and a 

decrease in the oscillation period, but the nature of 

the function is preserved. 

 

 
Fig. 4. Hodograph of the kinetic 

momentum vector 

 

 
 

Fig. 5. The influence of the moment of force  

     of light pressure on the angle of deviation 

 

The magnitude of the modulus of the elliptic 

functions affects the gradients of the functions of the 

satellite’s motion characteristics relative to the 
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centre of mass. Fig. 6 shows the curves of the angle 

of rotation   for different values of the input 

parameter. Curve 1 corresponds to 
2 0.99k  , curve 

2 - to 
2 0.5k  , curve 3 – to 

2 0.3k  . The 

hodograph of the kinetic moment vector has a 

character similar to that shown in Fig. 4. 

 
Fig. 6. The influence of the moment of force  

of light pressure on the angle of rotation 

  

The study of satellite motion in an elliptical 

orbit for 0 1e   showed that the hodograph of the 

angular momentum vector has minor changes. 

The hodograph of the kinetic moment vector 

has a significant effect on the initial value of the 

orientation angle  . 

Carry out a numerical calculation for the 

parameters  0e  ,
2 0.8A  , 

3 0.5A  , 
0 0  , 

2 0.5k  , 11 22 33 0.01I I I   , 1 1  , 0 0   

for different initial values of the angle of deviation 

of the vector G  from the vertical axis to the plane of 

the orbit. Fig. 7 shows the result of modelling the 

hodograph of the kinetic moment vector for 

0 0.25  , in Fig. 8 – for 0 0.5  .  

 
Fig. 7. Hodograph for 0 0.25   

 
Fig. 8. Hodograph for 0 0.5   

 
According to the simulated hodographs of the 

kinetic moment vector of  Fig. 4, Fig.7, Fig 8, it can 

be concluded that increasing the initial angle of 

deflection of the vector  G  from the vertical to the 

orbital plane reduces the time of rotation of this 

vector near the vertical axis in the counterclockwise 

direction. 

Changing the initial value of the angle of 

rotation of the vector G  does not change the 

character of the hodograph, but performs the rotation 

of the curve by the initial angle 0 .    

Conduct a study for a satellite with a different 

mass geometry, taking into account the fulfillment 

of the inequality 
2 31 A A   for which relation (5) 

is valid. Perform a numerical calculation for the 

parameters  0e  , 
0 0  , 

2 0.5k  , 

11 22 33 0.01I I I   , 1  , 0 0  , 0 0.33  .  

Set the moments of inertia of the satellite 
2 0.2A  , 

3 0.1A  . These values correspond to the body 

which mass is more distributed along the 1Ox  axis.   

According to Fig. 9, the rotation of the kinetic 

moment vector occurs only in the clockwise 

direction, while the hodograph itself has a different 

form. The same direction of motion of the angular 

momentum vector will be maintained in the case of a 

satellite with a mass distributed along the two axes 

1Ox  and 
2Ox . Fig. 10 shows the simulated 

hodograph of the kinetic moment vector for the 

geometry of masses 
2 0.9A  , 

3 0.1A  . It is seen 
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that an almost uniform mass distribution in the 

1 2Ox x  plane leads to a more sinusoidal hodograph 

curve. 

 
Fig. 9. Hodograph for a satellite with a mass 

distributed along the 1Ox axis 

 

 
Fig. 10.  Hodograph for a satellite with a mass 

distributed in the 1 2Ox x  plane 

 

To conduct numerical simulations of a satellite 

with 
2 31 A A   mass geometry, it is necessary to 

swap 
1A  and 

3A  in the equations of system (6) and 

equality (5). In addition, the value of   in equation 

(9) is replaced by  , and in equation (9) add the 

minus sign (“-“). The conducted numerical analysis 

did not reveal any new types of hodographs of the 

kinetic moment vector. 

For a complete analysis of the constructed 

model, it is necessary to consider the moment of 

resistance forces for which 11 22 33I I I  . 

Perform a numerical calculation for the 

parameters 0e  ,
2 0.8A  , 

3 0.5A  , 
0 0  , 

2 0.5k  ,  1 1  , 0 0  ,  0 0.33   provided 

that the moment of resistance force has a projection 

only on 3Ox . Fig. 11 shows the result of modelling 

the hodograph of the kinetic moment vector for 

11 22 0I I  ,  
33 0.1I  . It is seen from the figure 

that a feature of this hodograph is its rotation on a 

small value of the modulus of the vector of the 

kinetic moment. 

 
Fig.11 Effect of resistance on the hodograph. 

 

A numerical analysis carried out for different 

values of the components of the inertia tensor 

showed that all possible hodographs of the kinetic 

moment vector in this satellite model have been 

modelled. 

Conclusions and prospects for further re-

search. A numerical study of the perturbed motion 

of the satellite under the influence of the combined 

effect of the moments of the forces of light pressure 

and resistance has been carried out. An analysis of 

the model obtained and the results showed that by 

modelling satellites with different mass geometries, 

we can obtain the rotation of the angular momentum 

relative to the centre of mass in different directions 

around the vertical axis to the orbit plane. The hodo-

graph of the vector G  always covers the vertical 

axis to the orbit plane. 
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The analysis showed that the initial value of the 

deviation of the angular momentum vector from the 

vertical axis to the orbit plane has a significant effect 

on the hodograph form. 

It makes sense to construct a similar model in 

the case of a quasi-rigid body with a cavity com-

pletely filled with a viscous fluid, to simulate a liq-

uid satellite core.  
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МОДЕЛЮВАННЯ РУХУ ТВЕРДОГО ТІЛА ПІД  ДІЄЮ МОМЕНТУ 

СВІТОВОГО ТИСКУ В СЕРЕДОВИЩІ З ОПОРОМ 

Анотація. Моделюється швидкий обертальний рух динамічно несиметричного супутника відносно центру мас під 

дією спільного впливу моменту сил світлового тиску і опору. Передбачається, що поверхня космічного апарату 

представляє собою поверхню обертання. Середовище створює слабкий опір пропорційний кутової швидкості власного 

обертання тіла відносно центру мас. Орбітальні руху з довільним ексцентриситетом вважаються заданими. 

Математична модель руху супутника в такій постановці описується жорсткою системою диференціальних рівнянь. 

Проводиться усереднення за рухом Ейлера-Пуансо. Усереднена система рівнянь руху тіла дозволяє проводити чисельне 

моделювання руху супутника відносно центру мас. Дослідження проводиться в безрозмірному вигляді для 

багатопараметричної системи рівнянь. Проведено аналіз впливу параметрів завдання на характер руху супутника відносно 

центру мас: початкових значень кутів орієнтації вектора кінетичного моменту, геометрії мас, ексцентриситету орбіти, 

характерних чисел збурюючих моментів. Моделюється годограф вектора кінетичного моменту у тривимірному просторі 

для різних значень параметрів системи. 

Ключові слова: геометрія мас, годограф; кінетичний момент; світловий тиск; опір; супутник 

 

 
 
1Рачинская, Алла Леонидовна, кандидат физико-математических наук, доцент, доцент каф. 

теоретической механики, E-mail: rachinskaya@onu.edu.ua 
1Одесский национальный  университет имени И. И. Мечникова, ул. Дворянская, 2, Одесса,  

Украина, 65082 

 

МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ПОД ДЕЙСТВИЕМ МОМЕНТА 

СВЕТОВОГО ДАВЛЕНИЯ В СРЕДЕ С СОПРОТИВЛЕНИЕМ 

 

Аннотация. Моделируется  быстрое вращательное движение динамически несимметричного спутника относительно 

центра масс под действием совместного влияния момента сил светового давления и сопротивления. Предполагается, что 
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поверхность космического аппарата представляет собой поверхность вращения. Среда создает слабое сопротивление 

пропорциональное угловой скорости собственного вращения тела относительно центра масс. Орбитальные движения с 

произвольным эксцентриситетом считаются заданными. Математическая модель движения спутника в такой постановке 

описывается жесткой системой дифференциальных уравнений. Проводится  усреднение  по движению ЭйлераПуансо.   

Усредненная система уравнений движения тела позволяет проводить численное моделирование движения спутника 

относительно центра масс. Исследование проводится в безразмерном виде для многопараметрической системы уравнений. 

Проведен анализ влияния параметров задачи на характер движения спутника относительно центра масс: начальных 

значений углов ориентации вектора кинетического момента, геометрии масс, эксцентриситета орбиты, характерных 

чисел возмущающих моментов. Моделируется годограф вектора кинетического момента в трехмерном пространстве при 

различных значениях параметров системы. 

Ключевые слова: геометрия масс; годограф; кинетический момент; световое давление; сопротивление; спутник 


	.                 (10)
	Relations (7) after nondimensionalization take the form:
	Conduct a numerical study for the system of equations (11), and the equations for changing the true anomaly (3) in a dimensionless form:

