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ABSTRACT

The use of surrogate models provides great advantages in working with computer-aided design and 3D modeling systems,
which opens up new opportunities for designing complex systems. They also allow us to significantly rationalize the use of
computing power in automated systems, for which response time and low energy consumption are critical. This work is devoted to
the creation of a surrogate model for approximating the finite element solution of the problem of dispersion—strengthened composite
plane sample deformation. An algorithm for constructing a parametric two—dimensional model of a composite is proposed. The
calculation model is created using the ANSYS Mechanical computer-aided design and analysis program using the APDL scripting
model builder. The parameters of the stress-strain state of the material microstructure are processed using a convolutional neural
network. A neural network based on the U-Net architecture of the encoder-decoder type has been created to predict the distribution
of equivalent stresses in the material according to the sample geometry and load values. A direct sequence of layers is taken from the
specified architecture. To increase the speed and stability of training, the type of part of the convolutional layers has been changed.
The architecture of the network consists of serially connected blocks, each of which combines layers such as convolution,
normalization, activation, subsampling, and a latent space that connects the encoder and decoder and adds load data. To combine the
load vector, such a neural network architecture as a concatenator is created, which additionally includes the Dense, Reshape and
Concatenate layers. The model loss function is defined as the root mean square error over all points of the source matrix, which
calculates the difference between the actual value of the target variable and the value generated by the surrogate model. Optimization
of the loss function is performed using the first—order gradient local optimization method ADAM. The study of the model learning
process is illustrated by plots of loss functions and additional metrics. There is a tendency for the indicators to coincide between the
training and validation sets, which indicates the generalizing capability of the model. Analyzing the output of the model and the value
of the metrics, a conclusion is made about the sufficient quality of the model. However, the values of the network weights after
training are still not optimal in terms of minimizing the loss function. And also, to accurately reproduce the solution of the finite
element method (FEM), the proposed model is quite simple and requires clarification. The speed comparison of obtaining results by
the FEM and using the architecture of the neural network is proposed. The surrogate model is significantly ahead of the FEM and is
used to speed up calculations and determine the overall quality of the approximation of problems of mechanics of this type.
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INTRODUCTION been used in industry for many years. However,
such solutions are limited in the configuration of
structural elements and do not have sufficient
accuracy, forcing designers to be more conservative
when choosing technological solutions.

At the same time, intelligent approximation
methods based on data (surrogate models) [1] have
unlimited possibilities for their complication and
approximation to the original mathematical model,
optimizing the similarity function between the
approximated solution and the <“classical” one,

Machine learning is getting deeper into various
industries and is widely used especially for pattern
and image recognition, natural language processing,
optimization of operations, data mining, and
knowledge discovery. Systems built on machine
learning algorithms are wused to approximate
solutions to differential or variational equations.
Simplified solutions for finding the physical
properties of structures (e.g. strains, stresses) have

obtained, for example, using the finite element
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method (FEM). An appropriate model can replace
the use of FEM with a certain accuracy, given
enough training data.

1. ANALYSIS OF LITERARY DATA

There are many studies related to the creation of
surrogate models for modeling structural mechanics
with machine learning (ML) or deep learning (DL)
approaches that confirm the feasibility of supervised
learning models trained using FEM modeling [2, 3],
[4, 5]. The authors of the study [6] propose to
predict the reaction of a projectile after impact with
steel armor using MLP, while their surrogate mode
is trained with simulation data. The analysis of
generalizing surrogate models for three-dimensional
farms using MLP and FEM training data is
considered in [7]. A different design of hot forged
products with ML trained on FEM data obtained
using the commercial DEFORM software is dealt
with by the author in [8]. In [9], the authors use
single-layer feed-forward neural networks instead of
FEM as a metamodel in the Sequential Approximate
Optimization (SAO) algorithm. Prediction of the
velocity field and the location of the neutral point of
cold flat rolling using MLP, trained on the results of
modeling hard plastic finite element analysis, is
described by the authors in [10]. In[11], the
mechanical properties of a two—dimensional
composite are estimated using a convolutional
neural network (CNN) trained on the results of the
FEM. The authors of [12] use Gaussian process
regression (GPR) in their approach.

The disadvantages of surrogate models include,
for example, the fact that generalization to hidden
data is achieved only by discretization of the
computational domain, exclusively in one use
case [13]. Also, it may not be feasible to replicate
published experiments because important parameters
such as the number of finite elements, finite element
type, discretization method, and ML model
hyperparameters such as loss or activation functions
are not reported.

Despite the disadvantages, surrogate models
provide significant opportunities for computer-aided
design and 3D modeling systems, provide new
capabilities in the design of complex systems, and also
contribute to a significant rationalization of the use of
computing power in automated systems for which
response time and low power consumption are critical.

2. THE PURPOSE AND OBJECTIVES OF
THE RESEARCH

The main goal of the work is to create a
surrogate model for approximating a complex finite

element (FE) solution to the problem of determining
the stress-strain state (SSS). The study is based on the
approximation of a plane problem solution of elasticity
theory for a composite material representative sample
with a chaotic arrangement of inclusions.
To achieve the set goals, the following steps are
proposed:
e to create a computational deformation model of
a representative sample of a dispersion—
reinforced composite material;

to get a set of solutions for SSS of a certain

number of arbitrary configurations of composite

material samples and form a data set to create a

surrogate model;

e to determine the architecture of a surrogate
model based on a neural network to approximate
the distribution of equivalent stresses using the
finite element method:;

e to train the neural network to obtain a surrogate
model for approximating the results;

e to evaluate the error of the solutions by
comparing the solutions obtained using the finite
element method and the surrogate model.

A sample of a dispersion-reinforced composite
material is shown in Fig. 1. In this case, the
following boundary conditions are set: the element is
fixed on the left and bottom faces; loads — in the
form of displacements applied to the upper and right
faces in the direction that varies. The size and
number of inclusions vary, and the concentration of
inclusions varies from 10 % to 30 %. The matrix
material is isotropic, the inclusion material is
orthotropic. The parameters of the matrix material
and inclusions are given in Table 1 and Table 2,
respectively.

Fig. 1. An example of a composite sample
Source: compiled by the authors

Table 1. Matrix parameters

Material | Modulus of elasticity E, | Poisson’s ratio
GPa v
Ferrite 180 0.35

Source: compiled by the [14]
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Table 2. Parameters of inclusions

Material C11, c12 c13, €33 c44, C66
C22 Cc23 C55
GPa
Graphite | 1060 | 290 | 109 | 46.6 [ 2.3 | 385

Source: compiled by the [14]

3. CONSTRUCTION OF A SURROGATE
MODEL

Creation of a dataset. Finite element model

In the first stage, a model of the composite
material is creating (Fig. 1). The sample is a square
two—dimensional plate with inclusions in the form of
circles. To calculate the stress-strain state, the model
is fixed on two adjacent edges, and a load is applied
to two opposite edges. As a load, the displacements of
the ribs along the X and Y axes are taken, while the
magnitude of the displacements is a constant value.

The calculation model is created based on the
work [14, 15], [16, 17], [18], using ANSYS
Mechanical CAD and analysis tools [19], using the
APDL scripting model building tool [20], and has the
following steps:

e creating a model
inclusions;
construction of circles, which are inclusions;

e construction of a frame according to the size of
the sample;

e creation of the matrix area due to the extrusion of
inclusions (Fig. 2);

e division of geometry into finite elements;

e application of boundary conditions to sample
edges (Fig. 3);

e solving a system of algebraic equations.

The proposed sequence of actions allows you to
create a calculation model and obtain a solution for
the stress-strain state of the system in displacements
for various configurations of inclusions and loads.

of matrix materials and

Fig. 2. The geometry of the matrix and inclusions
Source: compiled by the authors

Fig. 3. Finite element mesh and loads

on the model
Source: compiled by the authors

Generation of a data set

The collection and subsequent processing of the
calculation results are carried out automatically
based on the above sequence of operations. This
allows the formation of a data set for further training
of the neural network. The required number of
examples for training is set to 10000. At the same
time, it is known from the theory of the finite
element method that the formation of the stiffness
matrix is the most costly action in the process of
system analysis. Therefore, 1000 different samples
of composite material are formed in the work, and
tension/compression is applied to each of them in 10
different directions. Such a scheme is implemented
using the Load Step functionality in the Ansys
Mechanical software package.

Load direction variations are shown in Fig. 4,
where in case a — different directions of loads for
one sample are shown, and on b - different
directions of loads are shown for different samples.

The algorithm for collecting and post-
processing the results is shown in Fig. 5 and Fig. 6.
The construction of the composite geometry is based
on the developed method for generating a
statistically equivalent artificial microstructure of
cast iron [14]. According to the paper, it is assumed
that the size distribution of inclusions obeys the
normal law, and the placement of inclusions on the
plane is realized by the function of uniform
distribution of the value and occurs randomly. This
allows a sufficient number of samples to be
generated for analysis. Here |F| — is the displacement
modulus, is a constant and is chosen according to
[14]. The creation of a data set is implemented using
ANSYS. At each overload step, a displacement
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a b

Fig. 4. Changing the direction of the load:

a — for one sample; b — for different samples
Source: compiled by the authors

vector is formed and applied to the corresponding After the automatic solution of the equations
finite element nodes. The initial bias is obtained system, the stresses inside the finite elements are
from the uniform distribution. The SSS calculation  calculated from the obtained displacements of each
is performed simultaneously for all load steps for node of the structure. The calculation results for 10

one generated sample geometry. load steps of one sample are shown in Fig. 7.
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Fig. 6. Receiving a data set.

Scheme B — further data processing
Source: compiled by the authors

Fig. 5. Creation of a data set.
Scheme A — obtaining a solution in the ANSYS

Source: compiled by the authors
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Fig. 7. Calculations of the stress state for 10 loading steps of one sample.

Equivalent stresses, GPa
Source: compiled by the authors

The formation of an algorithm for constructing
a computational model and subsequent processing of
the results is carried out using the Python
programming language, which provides
opportunities for creating software tools and
analyzing data (Fig.6). The convolutional neural
network algorithm takes structured matrices as input,
So stress data imported into Python requires further
processing. Suitable datasets are restructured by
cubic spline interpolation [21]. At the output,
stresses are obtained at the centers of the pixels.

When working with neural networks, the
geometry of each sample needs to be rasterized to
get a binary mask that is applied to the input of the
neural network. The load vector data array
corresponding to each load distribution is
concatenated with the latent space of the model.

Neural network creation

A neural network for predicting the von Mises
equivalent stress distribution during
tension/compression  of a  two-dimensional
composite sample is implemented in the Python
programming language using the TensorFlow open-
source deep learning library [22].

To achieve the set goals, an encoder-decoder
type model is chosen, where the encoder
“compresses” the input data array into a latent
(limited in size) space; the decoder — "reveals” the
feature vector compressed into the latent space to
obtain a modified data array at the output The serial
connection of the encoder-decoder model in
combination with the algorithm for simultaneously
optimizing the weights of the neurons of both
networks makes it possible to obtain a neural
network, which is a surrogate model for searching
for the SSS of a composite sample.

The model architecture used in this work is
based on the U-NET architecture [23]. One of the
features of U-NET is the duplication of the feature
map of each block of layers. In this case, one copy
goes “deeper” through the network, and the other
one joins the symmetrical decoder block, bypassing
the deeper blocks of the network. This feature is not

implemented in this work due to the impossibility of
concatenating these loads into large feature maps
without a significant increase in the calculation time.
Thus, a direct sequence of layers is taken from the
named architecture. Among the changes made to the
architecture, it should be noted a change in the type
of convolutional layers to increase the speed and
stability of training.

The encoder and decoder architectures are
shown in Fig. 8 and Fig. 9 respectively.

fBre-

InputLayer ‘:' Conv2D

. Activation . SeparableConv2D ' MaxPooling2D

Fig. 8. Architecture of the neural network.

Encoder
Source: compiled by the authors

= (0 (ﬂ[ﬂ

BatchNormalization

i InputLayer . Conv2DTranspose BatchNormalization

. Activation

Fig. 9. Architecture of the neural network.

Decoder
Source: compiled by the authors

UpSampling2D Conv2D
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The network architecture consists of a series—of
connected blocks, each of which contains the
following layers:

1) convolution (Conv2D, SeparableConv2D,
Conv2DTranspose). These layers are different
implementations of the idea of convolutional layers.
Conv2D is a regular convolutional layer,
SeparableConv2D is a layer that implements the
convolution function by superimposing two 1D
convolution kernels instead of one 2D kernel.
Conv2DTranspose — a convolution layer with a
dilation factor of more than 1 (implements a
“sweep”);

2) batch normalization;

3) activation. Activation function overlays;

4) subsampling (MaxPooling2D,
UpSampling2D). Layers that implement feature map
scaling (2x reduction in case of MaxPooling2D and
increase in case of UpSampling2D).

At the input to the neural network — InputLayer
(Fig. 8), a mask representing the geometry of the
composite sample is supplied. The input block
receives an image of 256x256 pixels, which has one
channel, while the encoder dimension is (256,
256, 1). The initial dimension of the decoder is
respectively (256, 256, 1) — at the output, the decoder
creates a matrix of equivalent stresses 256x256.

The last element of the network architecture is
the latent space connecting the encoder and decoder
and adding load data. The load vector has the
dimension (2, 1) and is represented by the vector of
node displacements of the specimen edges under the
action of the load.

The output of the encoder, as well as the
input of the decoder, have the dimension (16, 16,
256), that is, 256 feature maps with a size of 16x16
pixels. To combine the load vector of the dimension
of the latent space, a concatenator is created
(Fig. 10). The input images are 256x256, so there
are 16x16 in the latent space of the feature map. The
architecture of the concatenator is explained by the
need to create geometry feature maps and load
feature maps of the same size. Such an element of
the network architecture, in addition to the already
indicated layers, also has Dense, Reshape and
Concatenate layers. At the same time, the first block
of the developed architecture expands the input
vector into one feature map. Dense is an ordinary
fully connected layer, the input to which is a vector
of dimension (2, 1), and the output has dimension
(256, 1). Reshape — used to change the dimension of
the space to (16, 16, 1).

In the next step, the first block is combined
with the convolutional block (without sub-
describing). The output of the last layer has the

dimension (16, 16, 32), subsequent concatenation
with the output of the encoder changes the
dimension to (16, 16, 288). With the help of
Conv2DTranspose, the layers are folded into a latent
space of dimensions (16, 16, 256), into which the
input data is encoded.

s

Dense Reshape . Conv2DTranspose
BatchNormalization ' Activation . Concatenate

InputLayer

Fig. 10. Architecture of the neural network.

Latent Space concatenation
Source: compiled by the authors

After the initialization of the neural network,
the loss function and target metrics are determined.
The loss function is a function that calculates the
difference between the actual value of the target
variable (in our case, the stress distribution
calculated using ANSYS) and the value generated
by the surrogate model.

For the loss function, the root-mean-square
error (RMSE) is selected for all points of the original
matrix (1):

1 _N\2
RMSE = J—zsexmzﬁi Py -7 @

Thus, neural network training occurs by
minimizing the mean square error. At each iteration
of network training, the values of the functions are
also calculated: the root-mean-square difference
(RMSEmax) of the maxima of equivalent stresses (2)
and the root-mean-square error at 80 % (RMSEsox)
of the quantile (3).

The considered metrics are defined as the
difference between the actual and model-generated
stress values:

RMSEpqyx = \/(ymax - %)2, (2)

RMSEgqy, = (3)
L 256 256
_\2
256 X 25622 [(yij — 7)) X0y — Qso()’))];
i=1j=1

where Qgo(y) — 80 % quantile of the actual stress
distribution; 6 — the Heaviside function (4) (Fig. 11):

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

203



Babudzhan R., Vodka O., Shapovalova M. / Herald of Advanced Information Technology
2022; Vol.5 No.3: 198-209

oe-w={13 e @

of a

Fig. 11. Heaviside function
Source: compiled by the authors

Using the first-order gradient local optimization
method (ADAM) [24], the cost function is
optimized. At each iteration of the optimization of
the network weights, this method takes into account
the exponential damping of the gradient (5) and the
square of the gradient (6) in previous iterations.

The change in weights occurs according to (7):

my = Bimi_1+ (1 - B1)Ie (5)
Ve = Boveor + (1= B2)ge’ (6)
Wiy1 = We — \/Lu_tmf’ (7)

where; and B, — attenuation coefficients for
calculating the average gradient and the average
square of the gradient, respectively; n — gradient
descent step; w; — the value of the network weights
at the current iteration; g, — gradient over the current
iteration.

Attenuation  coefficients are  algorithm
hyperparameters that can be optimized, but for this
algorithm, the standard values defined by its
developers usually work at a sufficient level.

To train the neural network, a sample of 10,000
examples is divided into three sub-samples: training
for direct network training (6000 els.), validation —
for controlling the cost function and metrics (2000
els.), test sub-sample — for the final assessment of
the quality of the model (2000 els.).

Network training takes place over 30 epochs,
which corresponds to 30 passes of the test dataset
through the network. Each epoch takes an average of
270 seconds, and network weight optimization takes
135 minutes.

4. INVESTIGATION OF THE MODEL
LEARNING PROCESS

The course of training a surrogate neural
network model for determining the equivalent

stresses of a flat composite sample is illustrated in
the graphs of the dependence of loss functions and
additional metrics (Fig. 12, Fig. 13 and Fig. 14).

RMSE loss during model training
16

14
12

T

— Train
—— Validation

=
(=]

RMSE, GPa

o N & O @

0 5 10 15 20 25 30
epochs

Fig. 12. The loss function on the training and

validation samples
Source: compiled by the authors

RMSEax metric during model training

— Train

—— \alidation

RMSE max, GPa

Q 5 10 15 20 25 30
epochs

Fig. 13. RMSEmax on the training and

validation samples
Source: compiled by the authors

RMSEgqe, metric during model training

—— Train
—— Validation

20

RMSEgqs, GPa

0 5 10 15 20 25 30
epochs

Fig. 14. RMSEge, on the training and validation

samples
Source: compiled by the authors

There is a tendency for the indicators to
coincide between the training and validation
samples. According to the theory of deep learning,
this behavior of indicators indicates the generalizing
the capability of the model. Therefore, prediction on
unknown data (on the validation set) occurs with the
same quality as on known data (on the training set).

The obtained results (Fig. 12) indicate that the
intensity of the decrease in the loss function is
constant. This can serve as an indicator that the
gradient method has not reached a local minimum
and further optimization of the network weights can
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improve the results. Approaching a local minimum
is displayed on the graph of the loss function as a
decrease in the rate of change of the function on the
training sample. If this does not happen, it is
necessary to increase the number of epochs.

It is a predicted field of equivalent stresses on
the training set. It also helps to determine whether
the developed model architecture is suitable for
solving the main goal of the problem. Comparing the
output of the model and the value of the metrics with
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acceptable ones, it is concluded that the quality of
the model is sufficient.

5. THE RESULTS OF THE MODEL

A graphic representation of the geometry of the
samples, the direction of tension/compression, as well
as the actual and predicted stress distribution for the
training set are shown in Fig.15. The data for the
validation and test sets are shown in Fig.16 and Fig.17.

-l |
1.97 R 0 A 440 2.04HER W 1452

Fig. 15. Sample geometry, MCE solution, and surrogate model output.

Training sample, GPa
Source: compiled by the authors
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Fig. 16. Sample geometry, MCE solution, and surrogate model output.

Validation sample, GPa
Source: compiled by the authors
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Fig. 17. Sample geometry, MCE solution, and surrogate model output.
The test sample, GPa.

Source: compiled by the authors

The values of the loss function and metrics for
all three samples are shown in Table 3.

Table 3. Loss function results on subsamples

Sample RMSE, Metrics Metrics

GPa RMSEg(q,, RMSE,, .,
GPa GPa
Training 0.339 0.386 0.474
Validation 0.386 0.460 0.521
Test 0.412 0.478 0.540

Source: compiled by the authors
CONCLUSIONS

In this work, a surrogate model based on a
convolutional neural network was constructed to
approximate the finite element solution of the
dispersion-strengthened composite plane sample
deformation to accelerate the material microstructure
stress-strain state calculations. And also the overall
guality of approximations for typical problems is
determined. To train the neural network,
10.000 variants of the SSS of the parameterized
calculation model of a composite material sample
are analyzed. A neural network based on the U-Net
architecture of the encoder-decoder type is created to
predict the distribution of equivalent stresses in the
material according to the sample geometry and load
values.

Analysis of the results showed that the mean
squared error (MSE) for maximum stresses is about
540 MPa, and the average for the entire stress

distribution is 412 MPa. The average maximum
stresses in the samples are 5310 MPa. Evaluation of
the results shows that: the values of the network
weights after training are still not optimal in terms of
minimizing the cost function; and also that the
model is simple enough to accurately reproduce the
solution of the finite element method.

A comparison of the calculation speed showed
that the neural network is significantly ahead of the
finite element method (FEM). The calculation of the
FEM for 10,000 configurations on a stationary PC
takes 430 minutes. Formation of the stiffness matrix
and calculation of one loading step — 19 seconds.
The training of the neural network on these samples
takes 135 minutes, and the resulting surrogate model
generates a matrix of equivalent stresses
simultaneously for 32 samples in 9 seconds. Thus,
the time advantage when using an already trained
model is up to 70 times.
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AHOTALIA

BuKopHUCTaHHs CyporaTHHX MOJENeH Jae BeJUKi mepeBarn y poOoTi 3 cHCTeMaMH aBTOMAaTH30BaHOTO MPOeKTyBaHHS Ta 3D—
MOJICIIIOBaHHs, IO BIIKPHBaE HOBI MOXJIMBOCTI y MPOEKTYBaHHI CKJIAJHUX CHCTEM. Tak0X BOHHM JO3BOJSAIOTH 3HAYHO
pauioHasi3yBaTH BHKOPHUCTaHHS OOYHMCIIOBAIIBHUX TMOTYXXHOCTEH B aBTOMAaTH30BaHUX CHCTEMax, IS SIKMX KPUTHYHHUMH € 4Yac
BIIryKy Ta HEBHCOKE CIIOXHBaHH: eHeprii. laHa poOoTa MpHUCBSYEHA CTBOPEHHIO CYpOTraTHOI MOJIEN Uil ampoKCHMaIlii CKiHYeHO—
€JIEMEHTHOT'O pillleHHs 3aaui e(OpMyBaHHS IJIOCKOTO 3pa3Ky IMCIIEPCiiiHO—3MIIIHEHOTO KOMIIO3UTY. 3alpOlOHOBAHO alIrOPUTM
noOyJI0BH MapaMeTPUYHOI JBOBUMIPHOI MOJENI KOMIIO3HTY. Po3paxyHKoBa MOJeib CTBOPIOETHCS 3a JOIOMOrOK 3aco0iB
aBTOMATH30BaHOTO NpoeKTyBaHHS Ta aHaNizy ANSYS Mechanical, BUKopuCcTOBYyI0UM CKpHIITOBHH 3aci6 mobymosu mozxeneit APDL.
O0poOka mapaMeTpiB HampyKeHO—Ie(OPMOBAHOTO CTaHy MIKPOCTPYKTYpH MaTepiany BilIOYBa€ThCs 3a JOMOMOTOIO 3rOPTKOBOI
HelipoHHOI Mepexi. CTBOpeHa HeWpOHHa Mepeka Ha OCHOBI apxiTekTrypun U-—Net TUIy eHKoAep—AeKojep, Uil HependadeHHs
PO3MIOAITY eKBiBaICHTHUX HAaNpYXXEHb Yy MaTepiajii 3a TeOMETpIi€ro 3pa3ka Ta 3HaUCHHSMH HaBaHTa)keHb. Bix Ha3BaHOI apXiTEeKTypH
OepeTbes MpsiMa MOCTIOBHICTE MIapiB. (st 301LIbIIEHHs IIBUIKOCTI Ta CTa0UTPHOCTI HABYAHHS 3MIHEHO THUIl YaCTHHU 3TOPTKOBHX
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mapiB. ApXiTeKTypa Mepexi CKIalaeThCs 13 HOCTIJOBHO 3’€HAHUX OJIOKIB, KOXKEH 3 SKUX 00 €IHye Taki IIapH, SK 3TOPTKH,
nobar4yeBoi HOpMai3alii, akTuBalii, cyoaucKpeTH3alii, Ta JaTEeHTHUH MPOCTIp, IO CIIOIYydy€e EHKOJEp Ta AEKOAep, AOJAI0UU JaHH1
PO HaBaHTaXeHHs. [ 00’ e€fHAHHS BEKTOPY HaBAHTA)XKEHHS CTBOPIOETHCS TaKa apXiTeKTypa HEHPOHHOI Mepexi K KOHKaTeHaTop,
0 JojaTKoBO BKitoyae mapu Dense, Reshape Ta Concatenate. @yHKIlis BTpaT MOJeNi BU3HAYA€THCA, SIK CEPEAHBOKBAAPATHYHA
nmoxu0Ka 3a yciMa TOUYKaMH BUXiHOI MaTpHIli, III0 PO3PAXOBYE PI3HULIO MIX AIMCHUM 3HAYEHHSIM IJIbOBOI 3MIHHOI Ta 3HAYECHHSM,
3TeHepOBAaHNM CYpOTaTHOIO Mojeiutio. OnTumizarist GyHKIii BUTPaT MIPOBOIUTECS 3a JOMOMOTOI0 I'PaJi€HTHOTO METOAY JIOKAIBHOT
ontumizanii nepmoro nopsaky ADAM. JlocnmimkeHHS THpolecy HaBYaHHS MOZET NPOLTIOCTPOBaHO Ha Tpadikax 3alexHOCTI
(GYHKIIH BTpaT Ta JOAATKOBHX METpHK. CHOCTEpIraeThCs TEHIEHIIs CIIBIAIHHS IOKa3HUKIB MiX TPEHYBaJIHHOIO Ta BATiAIIHOO
miABUOIpKaMH, IO CBIAYUTH MPO Y3aralbHIOIYY MOXKJIHMBICTH MOAETI. AHATI3yIOUH BHUXiX MOJEN Ta 3HAYCHHS METPHUK POOHUTHCS
BHCHOBOK IIPO JIOCTaTHIO SKicThb Mojeni. [IpoTe 3HadeHHS Bar Mepeski Iicis HaBYaHHS Bce Ie HE € ONTHMAIbHUMH y CEHCI
MiHiMi3auii GyHKIIT BUTpaT. A TaKOXK, JUI1 TOYHOTO BIATBOPEHHS PILICHHS METOJY CKIHUCHHUX €JIEMEHTIB 3allpOIIOHOBAaHA MOJIEINb €
JIOCHTh TIPOCTOI0, Ta TOTpedye yTO4HeHHsS. [IpoBereHO MOpPIBHSAHHS IIBHIKOCTI OTPHMAHHS pE3YJbTaTiB METOAOM CKIHUYEHHHX
€JIEMEHTIB Ta 3a JOMOMOTOI0 3aIPOIIOHOBAHOI apXiTEKTypu HeWpoHHOI Mepexi. CyporaTHa MOJAENb CYTTEBO BHUIIEPEIKYE METOJ
CKIHYEHUX €JIEMEHTIB, Ta BUKOPHCTOBYETHCS JUISl IIPUCKOPEHHS PO3PaxXyHKIB 1 BU3HAUCHHS 3arajbHOi SKOCTI ampoKCHMamii 3amad
MEXaHIKH TaKOTo TUILY.

Kntouogi cnoea: 3roprouHa HEHPOHHA Mepexka; HalpyKeHO—Ae(OPMOBAaHUH CTaH; METO]] CKIHUEHHHX CJIEMEHTIB; CyporaTHa
mozenb; U-Net; konep—aekoaep
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