
Komleva N. O., Tereshchenko  O. I.   /   Herald of Advanced Information Technology 

    2023; Vol.6 No.1: 54–68 

54 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

DOI: https://doi.org/10.15276/hait.06.2023.4

UDC 004.4’24 

Requirements for the development of smart contracts and an 

overview of smart contract vulnerabilities at the Solidity code 

level on the Ethereum platform 

Nataliia O. Komleva1)

ORCID: http://orcid.org/0000-0001-9627-8530, komleva@op.edu.ua. Scopus Author ID: 57191858904 

Oleksandr I. Tereshchenko1) 

ORCID: http://orcid.org/0000-0003-4510-5255, alexandr.tereschenko2014@gmail.com. Scopus Author ID: 57705566400 
1) Odessa National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ABSTRACT 

The article is devoted to the consideration of automated decentralized programs on the blockchain, which are a modern tool for 

processing transactions without the help of a trusted third party. The purpose of the study is to generalize and systematize 

information on the requirements for smart contracts, as well as review the vulnerabilities of smart contracts at the Solidity code level. 

The blockchain architecture was studied and the advantages of smart contracts compared to conventional contracts were determined, 

namely: risk reduction, reduction of administration and maintenance costs, and improvement of business process efficiency. A 

thorough analysis of current literature has been carried out and the current problems faced by users and developers of smart contracts 

have been identified. It is noted that the process of developing smart contracts is not sufficiently standardized and it is advisable to 

create a system of recommended requirements for smart contracts used in various subject areas. The requirements for smart contracts 

have been collected and analyzed for areas related to healthcare, education, business, project management, data analysis, software 

development, trading, logistics, and jurisprudence. It is determined that the mandatory requirements for all these subject areas are 

security, process transparency, determination of conditions and criteria for success, and automation of work. The rest of the 

requirements are analyzed and the concepts of the measure of coincidence and uniqueness of requirements for a particular subject 

area based on the corresponding functions are introduced. The coincidence and uniqueness measures were calculated for the 

considered subject areas. The proposed measures will allow in the future to obtain a quantitative assessment of templates for 

gathering requirements for programs, taking into account the used subject area. The article reviews and systematizes the types of 

vulnerabilities of smart contracts at the level of Solidity code on the Ethereum platform. The best practices to avoid such 

vulnerabilities and possible examples of their exploitation by attackers are identified. It has been shown that increasing the reliability 

of smart contracts will help increase trust in the blockchain among users. 

Keywords: Blockchain; smart contract; requirements; coincidence measure; uniqueness measure; Ethereum; vulnerability; 

transaction 

For citation: Komleva N. O., Tereshchenko O. I. “Requirements for the development of smart contracts and anoverview of smart contract 

vulnerabilities at the Solidity code level on the Ethereum platform”. Herald of Advanced Information Technology. 2023; Vol.6 No.1: 54–68 . 
DOI: https://doi.org/10.15276/hait.06.2023.4 

1. INTRODUCTION

Smart contracts are automated decentralized 

applications on the blockchain that describe the 

terms of the agreement between buyers and sellers, 

reducing the need for intermediaries and arbitration. 

Smart contracts were originally proposed to 

digitize and automate legal contracts, but later in the 

context of blockchain, they came to mean scripts of 

code executed by nodes in the blockchain network 

[1, 2]. Certain misunderstandings related to the 

divergence of concepts have significantly slowed 

down the creation of smart contract standards [3]. 

The use of smart contracts simplifies work in 

many areas of business, increasing trust between 

© Komleva N., Tereshchenko O., 2023 

business partners and significantly reducing costs. 

However, frequent incidents related to the security 

of smart contracts not only lead to huge economic 

losses, but also destroy trust in the blockchain. 

According to statistics from Defiyield [4], the 

economic losses caused by security issues in smart 

contracts exceeded $47 billion in 2022, which is 

500% more than in 2021. For example, in June 

2016, hackers exploited the reentrancy vulnerability 

of “The DAO” contract to steal about $60 million 

worth of Ether (the digital currency of Ethereum). In 

July 2017, due to a vulnerability in the delegatecall

function of the Parity Multisig Wallet contract, Ether 

worth almost $300 million was frozen. In April 

2018, the attackers exploited an integer overflow 

vulnerability in the BeautyChain contract to issue an 

unlimited number of BEC tokens, which led to a 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Information technologies and computer systems

https://doi.org/#_blank
http://orcid.org/0000-0002-4078-3519
https://doi.org/


Komleva N. O., Tereshchenko  O. I.   /   Herald of Advanced Information Technology 

    2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

55 

drop in the price of BEC tokens to zero. In May 

2019, hackers hacked Binance Exchange, which led 

to the theft of more than 7000 BTC.  

To create secure smart contracts, developers 

should be aware of the most common smart contract 

vulnerabilities. This article provides an overview of 

the most common smart contract vulnerabilities, as 

well as examples of how these vulnerabilities are 

exploited by attackers and approaches to avoid these 

vulnerabilities in the Solidity code of smart contracts 

on the Ethereum platform. 

Innovative blockchain technology can be used 

to develop new types of services and platforms in 

various subject areas. For each subject area, the 

requirements for blockchain-based developments 

may be different and aimed at achieving specific 

goals and objectives. 

Thus, studying the requirements for smart con-

tracts for different subject areas and a detailed re-

view of possible vulnerabilities at the Solidity code 

level is an urgent task. 

The purpose of the study is to summarize and 

systematize information on the requirements for 

smart contracts, as well as to review the 

vulnerabilities of smart contracts at the Solidity code 

level.  

To achieve the purpose, the following tasks 

should be solved: 

 to study the blockchain architecture and the 

differences between the blockchain transaction 

model and the traditional transaction model;  

 to analyze the requirements for smart 

contracts and determine the degree of specificity of 

the requirements through the measure of their 

coincidence and uniqueness depending on the scope 

of the smart contract; 

 to systematize the types of vulnerabilities of 

smart contracts at the level of the Solidity code; 

 to perform an experimental study of the 

considered vulnerabilities.  

2. LITERATURE REVIEW AND

STATEMENT OF THE PROBLEM 

A blockchain is a system of distributed software 

that allows transactions to be processed without the 

help of a trusted third party. A blockchain is a 

sequence of records that are grouped into blocks, 

hashed, and linked to the previous block. Fig. 1 dis-

plays the structure of a blockchain. 

A transaction is a data storage operation in a

blockchain, during which crypto assets or other 

information are transferred between participants.

Due to the characteristics of a blockchain, such as 

transparency, decentralization and protection from 

tampering, trust is ensured by users, since it is 

almost impossible to forge the transactions stored in 

a blockchain, as all past transactions are verifiable 

and traceable.  

Smart contracts were proposed in the 1990s by 

Nick Szabo [5] and became one of the most 

successful applications of a blockchain. Contract 

clauses in a smart contract are executed 

automatically when predetermined conditions are 

met. Smart contracts consisting of transactions are 

stored, distributed, and updated on distributed 

blockchains. In contrast, conventional contracts must 

be executed by a verified third party centrally, 

which, as a result, leads to long execution times and 

additional costs.  

The following advantages of smart contracts 

over conventional contracts can be identified: 

1. Risk reduction. Due to the immutability of

the blockchain, smart contracts cannot be arbitrarily 

changed after their creation. In addition, all 

transactions stored and duplicated across the entire 

distributed blockchain system can be tracked and 

verified.  

2. Reduction of administration and maintenance

costs. Blockchain ensures trust in the entire system 

using distributed consensus mechanisms without the 

use of an intermediary.  

Fig. 1. Structure of a blockchain 
Source: compiled by the authors

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

56 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

3. An increase of the efficiency of business 

processes. Elimination of dependence on 

intermediaries can significantly increase the 

efficiency of business processes.  

Ethereum is the first blockchain platform that 

supports smart contracts. It uses the Solidity 

programming language to develop smart contracts 

and provides a large number of application 

programming interfaces (API). Ethereum accounts 

are divided into two categories: externally owned

accounts (EOA), which have a balance and can 

make smart contract calls, and internal accounts, 

which, unlike external accounts, have a balance and 

a smart contract code that can be executed in 

addition to calls to other smart contracts. Smart 

contracts are executed by the Ethereum Virtual 

Machine (EVM), which is a Turing-complete, 

stackable virtual machine for executing smart 

contract bytecodes.  

The authors [5] note that the vast majority of 

smart contracts lack any formal specification 

necessary to establish their correctness. The code 

does not always do what it was originally intended 

to do, which leads to significant financial losses, so 

static verification of smart contracts is necessary [6]. 

Standards have appeared in the literature only 

recently and contain the properties of smart 

contracts, basic requirements for their development 

and some architectural solutions [7]. According to 

the PMBOK project management guide, 

stakeholders influence projects, performance, and 

results [8]. Thus, the involvement of stakeholders 

and relevant focus groups helps to identify the most 

important project requirements and improves the 

delivery of their value to the end user. Prioritization 

of requirements is an extremely important work 

aimed at achieving maximum value. According to 

the BABOK professional standard for business 

analysts, priority can reflect the relative value of a 

requirement or the order in which it will be 

implemented [9]. At the same time, prioritization is 

an ongoing process in which priorities can change 

with the changing context. 

Smart contracts have proven themselves and are 

used in many fields – medical, educational, legal 

sphere, project management, etc. It is advisable to 

use them in solving other complex intellectual tasks 

[10, 11]. 

A literature review of the modern use of smart 

contracts has shown that there are a number of issues 

that need to be addressed.  

The article [12] discusses the problems of 

preserving confidentiality in the field of medical 

insurance. It is noted that in medical insurance 

contracts it is necessary to enter information about 

the patient's condition as the logic of the decision in 

order to initiate further implementation. At the same 

time, since the blockchain is a closed network, it 

lacks a secure network environment for data 

interaction with the outside world. Information about 

privacy can still be obtained by analyzing the results 

of the transaction, since contract states are publicly 

available. At the same time, the authors [13] propose 

a blockchain security system that protects medical 

data collected from the Internet of Medical Things 

(IoMT) system with a modified SHA-256 hashing 

algorithm, using the code length algorithm to 

compress data. 

The work [14] studies the algorithms and 

features of the implementation of smart contracts, 

which solve the issues of accountability, 

transparency, traceability and audit due to the 

possible overproduction and insufficient 

consumption of medication stocks in the existing 

supply chain systems in the field of healthcare. 

Specialists who are engaged in the application 

of smart contracts for the learning process face many 

problems related to trust in the course, certification 

of credits and certificates, privacy of students and 

sharing of courses. The paper [15] contains research 

on the development of smart contracts that can store 

educational records in a reliable and distributed 

manner, provide reliable digital certificates, 

implement the exchange of educational resources, 

and protect intellectual property using data 

encryption. 

Researchers in the paper [16] raise the issue of 

fraud in the issuance of academic certificates and 

diplomas, as well as the verification of resumes, 

which have long been a problem in the academic 

community. A model is proposed, which includes a 

scheme with several signatures with the regulation 

of the issuance of academic documents in a 

decentralized manner. At the same time, anyone in 

the world can verify the authenticity of the 

document by activating the corresponding function 

of the smart contract, thereby eliminating any 

possibility of fraud.  

Legal contracts can potentially contain 

ambiguities and lead to misinterpretations. Smart 

contracts used for this purpose are designed to 

identify such ambiguities and quantify them [17]. 

Unifying models which encapsulate the main 

components of legal smart contracts are proposed to 

develop and verify the characteristics of smart 

contracts [18]. 

In the paper [19], the authors study the 

problems of managing scientific projects and note 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

57 

 

the tendency to increase the number of scientific 

research projects. Due to the lack of a standardized 

and unified research project management programs, 

many projects are delayed or even failed, and project 

fund management is confused. In addition, the 

output results are limited and the actual conversion 

rate is low. Management of scientific research 

projects according to blockchain consortium, smart 

contract and IPFS system allows to cope with two 

main problems of traditional scientific project 

management: breach of contract and confidentiality.

The paper [20] examines the advantages and 

disadvantages of using blockchain in project 

management in the commercial sphere and proposes 

a management model to replace manual operations.  

A number of studies have focused on the use of 

blockchain technology and smart contracts for 

managing agile projects using Scrum or Lean-

Kanban processes. This allows to delegate the 

product owner's responsibilities for confirming the 

correctness of the results to one or more smart 

contracts deployed on the Ethereum blockchain and 

written in Solidity [21]. At the same time, the 

customer agreement can also allow smart contracts 

to automatically enable payments and impose 

penalties based on the result. In this way, the product 

owner may be relieved of his duties and 

responsibilities, allowing resources to be allocated to 

more profitable and productive tasks. 

From a technical point of view, the 

vulnerabilities of Ethereum smart contracts can be 

divided into three levels, that is the Solidity code 

level, the EVM execution level, and the block 

dependency level. The NCC Group has created an 

analog of the OWASP TOP 10 project for smart 

contract vulnerabilities, called the Decentralized 

Application Security Project (DASP) TOP 10 [22]. 

The project presents the 10 most critical 

vulnerabilities of smart contracts. In addition, there 

is a register of smart contract vulnerabilities, the 

SWC Registry, which is constantly updated [23]. So 

far, more than 30 discovered vulnerabilities have 

been added to it. 

In the papers [24, 25], the authors introduced an 

error detection tool that detects various types of 

Solidity code level vulnerabilities in smart contracts.

Mutated contracts were used to evaluate the 

effectiveness of various analysis tools. In the paper

[26], experiments are described using 1838 real 

contracts, from which 12866 modified contracts 

were created by artificially seeding 8 different types 

of vulnerabilities. The technique's effectiveness in 

detecting vulnerabilities was evaluated and 

compared with five existing popular analysis tools –

Oyente, Securify, Maian, SmartCheck and Mythril.   

The following conclusions can be drawn from 

the above analysis of the literature: 

– the development and use of smart contracts is 

a very promising area and provides objective 

advantages when applied in various subject areas; 

– the process of developing smart contracts is 

not sufficiently standardized; there is no system of 

recommended requirements for creating effective 

smart contracts for different subject areas, so the 

creation of such a system would be advisable; 

– it is necessary to take into account various 

types of vulnerabilities that can interfere or even 

make it impossible to use smart contracts during the 

development of smart contracts; 

– research and systematization of smart contract 

vulnerabilities at the Solidity code level is an urgent 

task. 

3. TYPES OF SMART CONTRACTS 

There are several types of smart contracts 

depending on their application [27]. 

1. Legal smart contracts. These contracts are 

legally binding and the parties are obliged to fulfill 

their contractual obligations. If they fail to fulfill the 

obligations, they may face legal consequences. Such 

smart contracts are used by cryptocurrency 

exchanges, DeFi and Game-Fi projects, and various 

blockchain platforms, from NFT markets to 

metauniverses and real estate trading. 

2. Decentralized Autonomous Organizations 

(DAO). Decentralized autonomous organizations are 

an organizational form in which the coordination of 

participants' activities and resource management 

takes place in accordance with a pre-agreed and 

formalized set of rules, which are monitored 

automatically. The rules of DAO operation are 

described in smart contracts. Records of DAO 

financial transactions and the programmatic rules of 

such contracts are stored on the blockchain. 

Examples of DAOs include the Decentraland, 

Uniswap, Polkadot, and MakerDAO governance 

protocols. According to the rules of these projects, 

they are managed by token holders who can make 

various proposals (for example, determine the 

structure of commissions) and vote for them. In this 

case, DAO smart contracts are responsible for voting 

and vote counting. 

3. Smart contracts of application logic. These 

contracts include program code that is usually 

synchronized with other smart contracts. They also 

provide a link between Internet of Things (IoT) 

devices and blockchain technology. In addition, such 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

58 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

smart contracts can handle communication between 

the blockchain and blockchain oracles. 

4. LIFE CYCLE AND REQUIREMENTS FOR 

SMART CONTRACTS 

Smart contracts perform different tasks at 

different stages of the life cycle, and each stage can 

lead to certain security issues due to technical 

inexperience of developers. Thus, the improvement 

of security of smart contracts requires developers 

and users to have a deep understanding of the 

characteristics of each phase of the smart contract 

lifecycle.  

The entire life cycle of smart contracts consists 

of four consecutive phases, namely creation, 

deployment, execution and destruction of a smart 

contract.  

1. Creation of a smart contract. Several 

involved parties first negotiate the obligations, rights 

and prohibitions in the contract. After careful 

discussions and negotiations, an agreement can be 

reached. Lawyers or consultants will help the parties 

draft the initial contractual agreement. Programmers 

then convert this agreement written in natural 

languages into a smart contract written in computer 

languages, including declarative languages. Similar 

to computer software development, the procedure of

creating a smart contract consists of design, 

implementation and testing. It is worth noting that 

the creation of smart contracts is an iterative process 

involving several rounds of negotiations and 

iterations with stakeholders, namely lawyers and 

software developers. Currently, there are more than 

40 platforms that support the deployment of smart 

contracts, all of which have corresponding contract 

development languages. In addition to Solidity, there 

are more than 10 programming languages for 

developing smart contracts, such as Vyper and Idris.

The developed smart contract code must be 

compiled. The Ethereum virtual machine converts 

the byte code into the corresponding operation code 

to execute the smart contract. Once compiled by the 

compiler, an Ethereum smart contract will also 

create an application binary interface (ABI) for the 

blockchain that enables other smart contracts and 

users to interact with that smart contract. 

2. Deployment of a smart contract. Smart 

contracts run on the blockchain platform and need to 

be deployed on the blockchain to synchronize them 

with each node for invocation. The contract is 

deployed by sending a transaction to the blockchain 

with an empty recipient containing a byte code and 

other information, and is packaged by the miner into 

a block and returns the address of the created smart 

contract. This address is a unique identifier of the 

contract and is used to invoke or access the contract. 

3. Execution of a smart contract. The invoca-

tion of a smart contract requires the use of the 

contract address and the application binary interface 

(ABI). There are two ways to invoke a smart 

contract: by sending a “transaction” or a “message”.

A “transaction” is defined in the Ethereum white 

paper as a string of data signed by an external 

account (EOA) [28], so an external account can 

invoke a contract by sending a transaction call. The 

definition of a “message” in the Ethereum Yellow 

Book is as follows: it is data and Ether sent between 

two accounts [28]. A smart contract calls other 

contracts through “messages”. The “messages” are 

transmitted internally and are not synchronized with 

the blockchain, so calls between contracts are not 

recorded in blockchain. 

4. Destruction of a smart contract. Smart 

contracts implement a self-destruct function that 

needs to be written into the contract during 

development. Since blockchain data cannot be 

deleted, a destroyed contract still exists in the 

blockchain, but it cannot be invoked again and its 

status is marked as destroyed.  

Fig. 2 displays the life cycle of a smart contract. 

Fig. 2. Life cycle of a smart contract 
Source: compiled by the authors 

The requirements for creating smart contracts 

may depend on the specific application and the 

desired functionality. According to the existing 

standard, the inherent properties of smart contracts 

are immutability, transparency, and automatic 

execution. The functional interaction of a smart 

contract with other smart contracts, scalability, and 

synchronization for independent and connected 

smart contracts are also important [7]. 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

59 

 

However, depending on the specific task, the 

creation of a smart contract may require additional 

requirements. Therefore, before creating a smart 

contract, it is necessary to conduct a detailed 

analysis of requirements and functionality to 

determine the optimal contract configuration. 

As part of this study, focus groups were created 

to determine the specifics of the requirements for 

smart contracts depending on the subject area of 

their application S:  

S = {S1, S2, …, S9},                     (1) 

where S1 is medicine; S2 is education; S3 is business;

S4 is project management; S5 is data analysis; S6 is

software development; S7 is trading; S8 is logistics;

S9 is legal sphere.  

The total set of potential critical requirements 

for smart contracts empirically identified by focus 

groups for subject areas S: 

R = {R1, …, R34},                            (2) 

where R1 is security; R2 is transparency of processes; 

R3 is determination of the conditions and criteria for 

the success of the smart contract; R4 is automation of 

work; R5 is privacy; R6 is compliance with 

legislation; R7 is ability to track changes in medical 

data and their sources; R8 is flexibility to support 

diverse needs; R9 is interoperability to ensure 

integration into the subject area; R10 is risk 

management to prevent unauthorized actions; R11 is

reduction of costs associated with the fulfillment of 

contractual obligations; R12 is integration with 

business processes and systems; R13 is 

standardization to simplify and accelerate the 

creation process and ensure compatibility with other 

systems; R14 is distribution of tasks within a specific 

project; R15 is monitoring of project implementation; 

R16 is data analytics for process optimization; R17 is

– data quality assurance, including data verification 

and validation, as well as protection against possible 

manipulation; R18 is data versatility in terms of 

supporting work with different types of data for the 

ability to analyze various information flows; R19 is

scalability in processing large amounts of data and 

the ability to work with distributed systems; R20 is

data access control to prevent unauthorized access; 

R21 is support of various data analysis algorithms to 

select the optimal method for a particular task; R22 is

transportability as the ability to transfer to other 

blockchains or distributed systems; R23 is data 

processing efficiency with minimization of time and 

resources; R24 is reporting on results with the ability 

to track them and make further decisions; R25 is

reliability and stability to guarantee contract 

fulfillment and data security; R26 is consideration of 

intellectual property rights and the possibility of its 

protection; R27 is authorization and authentication of 

users to prevent unauthorized access to data; R28 is

ease of use and intuitive interface to accelerate 

adaptation to use; R29 is the ability to control the use 

of data and receive income from their monetization; 

R30 is test acceleration to automatically check code 

for bugs and issues; R31 is acceleration of the speed 

of operations to reduce risks and increase the 

efficiency of operations; R32 is support of different 

types of assets such as currencies, securities, goods 

and services; R33 is tracking as an opportunity to 

track the location and status of goods/services at 

each stage of the logistics chain, which allows to 

control the delivery process and respond in a timely 

manner to possible delays and problems; R34 is audit 

control to establish compliance with legal 

requirements. 

Thus, the total number of requirements is very 

large, and collecting requirements for the 

development of blockchain-based platforms and 

services can be a difficult task. Creating templates 

for collecting requirements that would include all the 

requirements of the set R(Si) for a particular subject 

area Si, 𝑖 = 1. . |𝑆| can help determine the basic 

needs and goals of users. The set R(Si) must be 

finite, necessary, sufficient, and comprehensive.  

Let's define the general requirements for all 

considered subject areas: 

R(S1)∩R(S2)… ∩R(S9) = {R1, R2, R3, R4},     (3) 

that is, the general requirements for smart contracts 

of all areas are security, transparency, definition of 

conditions and success criteria, and automation of 

work. 

Now let's analyze the rest of the requirements. 

Let's introduce the function of matching 

requirements 𝑚𝑎𝑏
𝑟  for subject areas 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆, 

𝑎 ≠ 𝑏, which is calculated as: 

𝑚𝑎𝑏
𝑟 =  {

1, if r is present in both a and b
0 otherwise

       (4) 

Let's introduce the concept of the measure of 

coincidence of requirements 𝑀𝑎
𝑟 for a specific 

subject area a: 

𝑀𝑎
𝑟 = ∑ ∑ 𝑚𝑎𝑏

𝑟|𝑆|
𝑏=1 , 𝑎 ≠ 𝑏,

|𝑅|
𝑟=1           (5) 

where |𝑅| is the power of the set of requirements, 

|𝑆| is the power of a set of subject areas. 

The greater the measure of uniqueness 𝑀𝑎
𝑟 with 

other subject areas, the more their templates for 

requirements gathering should overlap. 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

60 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

Let's introduce the requirement uniqueness 

function 𝑢𝑎
𝑟  for the subject area 𝑎 ∈ 𝑆,  which is 

calculated as: 

𝑢𝑎
𝑟 =  {

1, if the r is present only in a
0 otherwise

         (6) 

Let's introduce the concept of the measure of 

uniqueness of requirements 𝑈𝑎
𝑟 for a certain subject 

area a ∈ 𝑆: 

𝑈𝑎
𝑟 = ∑ 𝑢𝑎

𝑟 ,   
|𝑅|
𝑟=1                       (7)  

where |𝑅| is the power of the set of requirements. 

The measure of the uniqueness of requirements 

𝑈𝑎
𝑟 will reflect the number of requirements present 

only in the template of the corresponding subject 

area. It should be noted that the mechanism and 

algorithms for generating requirements templates are 

not the subject of this article.  

Table 1 summarizes the results of the analysis 

of requirements for various subject areas. The 

second column contains the elements of the 

requirement set R(Si) ∈R for the respective subject 

area. The last two columns contain the values of the 

coincidence and uniqueness measures calculated 

according to (5) and (7).  

Table 1. Results of the requirements analysis 
Subject 

area 

The most 

important 

requirements 

The measure 

of coincidence

of 

requirements 

The measure of 

uniqueness of 

requirements 

S1 R1-R8 45 0 

S2 R1-R5,  

R7-R10 

47 0 

S3 R1-R6,  

R10-R13 

49 0 

S4 R1-R4, R8, 

R10-R16 

48 2 

S5 R1-R5, R8, 

R9, R12,  

R17-R29 

50 11 

S6 R1-R4, R13, 

R30 

36 1 

S7 R1-R4, R7, 

R12,R13, 

R15,R19,R25,

R31, R32 

46 2 

S8 R1-R4, R8, 

R12,R13, 

R19, R33 

46 1 

S9 R1-R7, R9, 

R25,R34 

45 1 

Source: compiled by the authors 

It is evident that there are significant 

differences in the definition of requirements for 

smart contracts depending on the chosen subject 

area. This suggests the need to define mechanisms 

and templates for collecting requirements based on 

the subject area used.   

5. REVIEW AND DISCUSSION OF THE 

TYPES OF VULNERABILITIES OF SMART 

CONTRACTS AT THE LEVEL OF  

SOLIDITY CODE 

1. Reentrancy vulnerability. Reentrancy 

vulnerability is the most common vulnerability of 

smart contracts [29]. The execution of smart 

contracts is not atomic and consistent, which leads to 

certain security gaps. Attackers can re-enter the 

called function during the current program execution 

[30]. Like most programming languages, smart 

contracts use cross-functional or cross-contract calls 

to process business logic. But the difference is that 

such calls aim to transfer some valuable assets. 

Calling the transfer function in the sender's contract 

will inevitably trigger the fallback function in the 

recipient's contract. When a smart contract performs 

a cross-contract money transfer operation, attackers 

can intercept such an external call and perform some 

malicious operations. An example of such an 

operation is when an attacker injects malicious code 

into his fallback function, which implements a 

recursive entry into the victim's contract to re-call 

the transfer function to steal ether. The reentrancy

vulnerability led to the largest security incident in 

the history of smart contracts (the attack on “The 

DAO”), which not only resulted in a loss of almost 

$60 million but also caused the Ethereum hardfork.

Fig. 3 displays the scheme of a reentrancy attack on 

“The DAO”. 

One approach to prevent the reentrancy vulner-

ability is to change the user's balance before per-

forming any interactions with other smart contracts.  

The following code snippet demonstrates ex-

amples of vulnerable and secure functions: 

// vulnerable contract 

function vulnerableWithdraw() public {  

    uint256 amount = 

balances[msg.sender]; 

    

require(msg.sender.call.value(amount)(

)); 

    balances[msg.sender] = 0; 

} 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

61 

 

Fig. 3. Reentrancy attack
Source: compiled by the authors 

// secure contract 

function withdraw() external { 

    uint256 amount = 

balances[msg.sender]; 

    balances[msg.sender] = 0; // 

change the balance before calling the 

call method 

    

require(msg.sender.call.value(amount)(

)); 

} 

Since the user's balance in the secure function is 

set to zero in advance, when the withdraw method is 

recursively called, the cryptoassets will not be re-

sent to the attacker's address. 

2. Integer overflow/underflow vulnerability.

Integer overflow/underflow is a common 

vulnerability in programs. There are three types of 

integer overflow/underflow vulnerabilities in smart 

contracts, namely multiplication overflow, addition 

overflow, and subtraction underflow. In the source 

code of smart contracts, integers are treated as 

unsigned integers with a fixed size. Obviously, if an 

integer variable exceeds a certain range, an integer 

overflow error will occur. 

Ethereum smart contracts are written in high-

level languages such as Solidity, which support the 

range of integers from uint8 to uint256. For 

example, if a number is of type uint8, its value is 

stored as an 8-bit unsigned number in the range from 

0 to 256−1. If a value outside of this range is 

assigned to a variable of type uint8, the Ethereum 

Virtual Machine (EVM) will automatically truncate 

the leading digits. For example, let's imagine that we 

have a variable of type uint8 that stores the value 

255 in the decimal system or 11111111 in the binary 

system. If we want to add 1 to this variable, then in 

the binary system we get the number 100000000, 

which takes 9 bits. Since our data type takes only 8 

bits, the leading bit will be discarded. Thus, we will 

get the value of the variable 0, not 256 as planned. 

Unlike other applications, the losses caused by 

the integer overflow vulnerability in smart contracts 

are huge and irreparable. For example, the integer 

overflow vulnerability was exploited by attackers 

who infinitely copied BEC tokens, causing the BEC 

token price to drop to zero. The mintToken function 

of the Coinstar (CSTR) token smart contract has an 

integer overflow that allows the owner of the 

contract to set any value of the balance of an 

arbitrary user. Currently, to prevent integer overflow 

in smart contracts, developers need to not only check 

code manually, but also use the SafeMath library to 

check arithmetic logic, or the Solidity compiler, 

starting with version 0.8, which automatically takes 

care of checking code for integer 

overflow/underflow vulnerabilities. 

3. Access control vulnerability. The main 

reason for the access control vulnerability is that 

developers forget to explicitly set access restrictions 

to functions in the smart contract, which allows 

attackers to use functions or variables that they 

should not have access to. Access control 

vulnerabilities usually occur at two levels: the code 

level and the logical level. At the code level, there 

are four types of access restrictions to smart contract 

functions and variables, namely public, private, 

external, and internal. At the logical level, modifiers 

are used to restrict access rights to functions in smart 

contracts, such as onlyOwner and onlyAdmin.

Functions without restriction modifiers indicate that 

anyone has access to them, which can lead to 

manipulation of key functions by attackers, 

compromising the security of smart contracts. 

4. Vulnerability of improperly handled 

exception from an external function. Correct 

exception handling is one of the most important 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

62 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

mechanisms for improving the reliability and 

resilience of applications. In general, a smart 

contract handles abnormal behavior with a rollback, 

namely stopping the current execution of the 

contract, restoring the previous state, and returning 

an error ID. However, the smart contract which calls 

the external function may not be able to retrieve the 

exception information from the called contract. In 

most cases, an exception thrown in an external smart 

contract function is returned to the contract that 

called it. However, some low-level function calls, 

such as call, callcode, send, and delegatecall, only 

return false and not the exception itself. Therefore, it 

is not possible to judge the successful execution of a 

contract based on whether an exception was 

generated in the smart contract. As a result, the 

execution of the contract will continue even if an 

exception occurs in the external contract, which will 

lead to a violation of the program logic and it can be 

exploited by attackers. Therefore, it is necessary to 

process the return value when calling such functions. 

The following code snippet demonstrates a 

vulnerable smart contract that does not handle the 

return value of the call method when the external 

smart contract's malicious_func method is called: 
pragma solidity 0.4.25; 

contract VulnerableContract { 

    address MaliciousContract; 

    function callnotchecked() public { 

        // call the vulnerable 

function of the contract

VulnerableContract, which returns 

false 

             

MaliciousContract.call(bytes4(sha3(“ma

licious_func()”)));  

    } 

} 

The given code fragment shows an example of 

an attacker's smart contract, which generates an 

exception when the malicious_func method is called 

by third-party contracts: 
pragma solidity 0.4.25; 

contract MaliciousContract { 

    function malicious_func() public { 

        require(false); // throw an 

exception 

    } 

} 

One approach to dealing with this vulnerability 

is to wrap low-level functions, such as call, with a 

require function. 

5. Denial of service vulnerability. Denial of 

service (DoS) is a common vulnerability of 

Ethereum smart contracts [31]. Attackers typically 

exploit this vulnerability to break the original 

program logic and make the contract unable to 

provide the usual services for some time or even 

permanently. There are three types of DoS attacks 

against smart contracts. 

1) A DoS attack launched by an unexpected call 

of the revert function in an external function. The 

smart contract will be susceptible to a DoS attack if 

it tries to send funds to the user, and the further 

operation of the smart contract depends on the 

success of this operation. The problem can arise if 

funds are sent to a smart contract created by attack-

ers, as they can simply create a callback function 

that cancels all payments. 

A code snippet vulnerable to a DoS attack 

launched by an unexpected call of the revert

function in an external function: 
contract Auction { 

 address currentLeader; 

 uint highestBid; 

 function bid() payable { 

     require(msg.value > 

highestBid); 

 // Payment to the previous leader is 

not made  

        // due to a call of the revert 

function in an external contract 

        

require(currentLeader.send(highestBid)

); 

        currentLeader = msg.sender; 

        highestBid = msg.value; 

    } 

} 

It is easy to see in this example that an attacker 

makes a bid from a smart contract with a callback 

function that cancels all payments. Therefore, the 

funds will never be refunded to him and no one will 

ever be able to make a higher bid. 

An effective way to deal with such a 

vulnerability is to separate the refund operation into 

a separate function that the participant will need to 

call independently. An example of secure code is 

provided in the following code snippet:  
contract Auction { 

    address highestBidder; 

    uint highestBid; 

    mapping(address => uint) refunds; 

    function bid() payable external { 

        require(msg.value >= 

highestBid); 

        if (highestBidder != 

address(0)) { 

 // record in a separate array the 

funds that should be refunded 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

63 

 

            refunds[highestBidder] += 

highestBid; 

        } 

        highestBidder = msg.sender; 

        highestBid = msg.value; 

    } 

    // the user calls the method to 

get the refund 

    function withdrawRefund() external 

{ 

        uint refund = 

refunds[msg.sender]; 

        refunds[msg.sender] = 0; 

        (bool success, ) = 

msg.sender.call.value(refund)(""); 

        require(success); 

    } 

} 

2) The DoS attack was launched due to 

exceeding the gas limit of the block. A block gas 

limit was implemented to prevent an attacker from 

creating an infinite loop in transactions. If the gas 

usage for a transaction exceeds this limit, the 

transaction will be blocked. An example of such a 

vulnerability is the execution of logic in a loop with 

a very large number of iterations. Therefore, even if 

there is no malicious attack, the smart contract can 

have problems due to exceeding the gas limit. For 

example, a large set of users to send funds to can 

exceed the gas limit and prevent a successful 

transaction, potentially blocking funds forever. The 

following code snippet displays this situation: 
struct Payee { 

    address addr; 

    uint256 value; 

} 

Payee[] payees; 

function payOut() { 

    while (i < payees.length) { 

      

payees[i].addr.send(payees[i].value); 

      i++; 

    } 

} 

A more serious problem is when an attacker 

manipulates the amount of gas used by the contract 

so that it reaches the limit and the transaction 

process fails. 

To avoid this vulnerability, it is better to split 

such a transaction into several and check in the pre-

condition of the cycle whether the gas limit has been 

exceeded. The secure code is described in the 

following fragment: 

struct Payee { 

    address addr; 

    uint256 value; 

} 

Payee[] payees; 

uint256 nextPayeeIndex; 

function payOut() { 

    uint256 i = nextPayeeIndex; 

    // check that the amount of used 

gas  

    // does not exceed the limit for 

the block 

    while (i < payees.length && 

msg.gas > 200000) { 

      

payees[i].addr.send(payees[i].value); 

      i++; 

    } 

    nextPayeeIndex = i; 

} 

6. Type mismatch vulnerability. Solidity is a 

strongly typed programming language that can 

automatically check if a program has a type 

mismatch. For example, if a string value is assigned 

to an integer variable, a type mismatch error will 

occur. However, in smart contracts, even if the type 

does not match in some cases, the contract cannot 

throw an exception at runtime. The lack of manual 

audit of a smart contract can lead to a type mismatch 

vulnerability. 

7. Vulnerability of unknown function call. Like 

most programming languages, a smart contract 

ensures the uniqueness of functions by matching the 

function name and number of parameters. If the 

function name and the number of parameters do not 

match any function in the called contract, then the 

fallback function is automatically invoked. 

Therefore, unexpected security problems can arise if 

malicious code is hidden in the fallback function. 

8. Vulnerability of an unprotected call of the 

self-destruct function of a smart contract. Smart 

contracts can use the delegatecall function to call 

functions in an external contract. A function called 

using delegatecall is executed in the context of the 

contract that called it. Therefore, if the called 

external function has self-destruct operations such as 

selfdestruct or suicide, the Ether in the current 

contract (which calls the function via delegatecall) 

will likely be frozen forever due to the execution of 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

64 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

such a self-destruct operation. The following code 

snippet demonstrates two smart contracts: a 

MaliciousContract created by an attacker and a 

VulnerableContract that has a vulnerability of an 

unprotected call of the self-destruct function: 

contract MaliciousContract { 

    function getMoney() { 

 // destroy the contract 

VulnerableContract 

        

selfdestruct(payable(address(this))); 

    } 

} 

contract VulnerableContract {  

    function call(address a) { 

 // call the getMoney method of the 

MaliciousContract contract 

        

a.delegatecall(bytes4(sha3("getMoney()

")));  

    } 

} 

If the VulnerableContract calls the getMoney

method of an external MaliciousContract through 

the call function, the VulnerableContract contract 

will self-destruct, because the selfdestruct method in 

the getMoney method will be called in the context of 

the VulnerableContract contract. 

The delegatecall method should be used for 

contracts that are fully trusted. 

This attack was used in the Parity protocol. An 

anonymous user found and exploited the

vulnerability in the library's smart contract, making 

himself the owner of the contract. The attacker then 

proceeded to self-destruct the contract. This resulted 

in the blocking of funds in 587 unique wallets with a 

total amount of 513,774.16 Ether. 

9. Exploitation of the transaction source. The 

Ethereum smart contract has a global variable, 

namely tx.origin, which can track the entire call 

stack and return the address that initiated the 

transaction. If the contract uses this global variable 

for authorization and authentication, attackers can 

use this feature of tx.origin to develop a suitable 

attack to steal Ether. For example, another contract 

can use the fallback function to re-call the smart 

contract and pass authorization. The following code 

snippet demonstrates a vulnerable smart contract, 

VulnerableContract, which writes the address of the 

contract that created it to the owner variable during 

creation: 
contract VulnerableContract { 

    address owner; 

    constructor() public { 

        owner = msg.sender; 

    } 

    function transferTo(address 

payable dest, uint amount) public { 

        require(tx.origin == owner); 

        dest.transfer(amount); 

    } 

} 

When the transferTo method is called, 

authorization is first performed by comparing the 

value of tx.origin and the owner variable, and then 

the Ether is transferred to the attackers’ smart 

contract address.  

The following snippet demonstrates the 

MaliciousContract code: 
interface TxUserWallet { 

    function transferTo(address 

payable dest, uint amount) external; 

} 

contract MaliciousContract { 

 address payable owner; 

 constructor() public { 

     owner = msg.sender; 

 } 

 function() external { 

     

TxUserWallet(msg.sender).transferTo(ow

ner, msg.sender.balance); 

    } 

} 

When the VulnerableContract sends Ether to 

this contract, it calls a callback function that calls the 

vulnerable smart contract's transferTo method again. 

This way, when the transferTo method is executed, 

the value of tx.origin will remain the past, meaning 

the value will be the address of the 

VulnerableContract contract, not the 

MaliciousContract contract. Thus, attackers will be 

able to pass authorizations and transfer Ether from 

the VulnerableContract until it ends. 

Developers should use the msg.sender global 

variable instead of tx.origin to authorize users. 

10. Strict balance comparison. Strict balance 

comparison means that the contract execution logic 

relies on the contract balance being equal to an exact 

value, but the value of the contract balance is 

transparent and can be changed by any user. For 

example, when a contract calls the self-destruct 

Information technologies and computer systems



Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

65 

 

function, Ether can be sent to any contract and the 

receiving contract cannot reject the transaction. If 

the contract has a vulnerability such as strict balance 

comparison, an attacker can change the contract 

balance and cause the contract execution logic to 

fail. As shown in the following code snippet, it is 

safer to use the “greater than or equal” comparison 

operator to compare this.balance to 3ether rather 

than the “strictly equal” comparison: 
if (this.balance == 3ether): // bad 

approach 

dosomething(); 

if (this.balance >= 3ether): // good 

approach 

dosomething(); 

6. CONCLUSIONS 

Smart contracts have become widespread 

thanks to the emergence of blockchains that support 

them, including Ethereum. The scope of smart 

contracts application is quite wide: they are used by 

cryptocurrency exchanges, DeFi and Game-Fi 

projects, and various platforms on the blockchain, 

from NFT markets to metauniverses and real estate 

trading. 

This article describes the blockchain 

architecture, provides an overview of smart contracts 

on the Ethereum blockchain platform, and identifies 

the existing types of smart contracts. The life cycle 

of smart contracts is analyzed in detail. 

The requirements for smart contracts were 

analyzed depending on the subject area of their 

application, the features of the requirements for such 

smart contracts were determined. For the first time, 

the terms “measure of coincidence of requirements”

and “measure of uniqueness of requirements” were 

proposed using the corresponding functions for 

different subject areas. Measures of coincidence and 

uniqueness of requirements for nine subject areas 

were determined. It is concluded that it is necessary 

to determine the mechanisms and templates for 

collecting requirements, taking into account the 

characteristics of the subject area. The proposed 

measures will make it possible to obtain a 

quantitative assessment of templates for collecting 

requirements for smart contracts and other types of 

software in the future. 

The article considers 10 types of vulnerabilities 

of smart contracts at the Solidity code level: 

reentrancy vulnerability, integer overflow/underflow 

vulnerability, access control vulnerability, 

vulnerability of improperly handled exception from 

an external function, denial of service vulnerability, 

type mismatch vulnerability, vulnerability of 

unknown function call, vulnerability of an 

unprotected call of the self-destruct function of a 

smart contract, exploitation of the transaction 

source, strict balance comparison. Approaches to 

avoid these vulnerabilities and examples of their 

exploitation by attackers are presented. 

REFERENCES 

1. Janssen, A. & Patti, F. “Demystifying smart contracts”. Osservatorio Diritto Civile Commerciale. 

2020; 9 (1): 31–50. DOI: https://doi.org/10.4478/98131. 

2. Zou, W., Lo, D., Kochhar, P. S., Le, X.-B.-D., Xia, X., Feng, Y., Chen, Z. & Xu, B. “Smart contract 

development: Challenges and opportunities”. IEEE Trans. Softw. Eng. 

https://www.webofscience.com/wos/woscc/full-record/WOS:000707441900003. 2021; 47 (10): 2084–2106. 

DOI: https://doi.org/10.1109/TSE.2019.2942301. 

3. Tolmach, P., Li, Y., Lin, S.-W., Liu, Y. & Li, Z. “A survey of smart contract formal specification and 

verification”. ACM Comput. Surv. https://www.webofscience.com/wos/woscc/full-

record/WOS:000697296500014. 2022; 54 (7): 1–38. DOI: https://doi.org/10.1145/3464421. 

4. Heise, K. “DeFi lost over $47 billion in 2022: DEFIYIELD report”. Bsc news. 2023. – Available 

from: https://bsc.news/post/defi-lost-over-47-billion-in-2022-defiyield-report.  [Accessed: Nov. 2022]. 

5. Abdellatif, T. & Brousmiche, K. L. “Formal verification of smart contracts based on users and block-

chain behaviors models”. Proceedings of the IFIP NTMS. IEEE. 

https://www.webofscience.com/wos/woscc/full-record/WOS:000448864200067. Electronic. 2018. p. 1–5. 

DOI: https://doi.org/10.1109/NTMS.2018.8328737.  

6. Ahrendt W., Bubel, R., Ellul, J., Pace, G. J., Pardo, R., Rebiscoul, V. & Schneider, G. “Verification 

of smart contract business logic”. Proceedings of the FSEN. Springer International Publishing. 2019. 

p. 228–243. DOI: https://doi.org/10.1007/978-3-030-31517-7_16. 

Information technologies and computer systems

https://doi.org/10.1145/3464421
https://bsc.news/post/defi-lost-over-47-billion-in-2022-defiyield-report
https://doi.org/10.1109/NTMS.2018.8328737


Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

66 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

7. “ETSI GS PDL 011 V1.1.1, Permissioned distributed ledger ETSI industry”. Specication Group, 

ETSI. Sophia Antipolis: France: 2021. – Available from: https://www.etsi.org/technologies/permissioned-

distributed-ledgers.  [Accessed: Nov. 2022]. 

8. “A guide to the project management body of knowledge and the standard for project management”. 

PMBOK® Guide. Seventh Edition. USA. 2021. 274 p.  

9.  “A guide to the business analysis body of knowledge”. BABOK® Guide. – Available from: 

https://www.iiba.org/career-resources/a-business-analysis-professionals-foundation-for-

success/babok/.  [Accessed: Nov. 2022]. 

10.  Mazurok, I. E., Leonchyk, Y. Y., Antonenko, O. S. & Volkov, K. S. “Smart contract sharding with 

proof of execution”. Applied Aspects of Information Technology. 2021; 4 (3): 271–281. 

DOI: https://doi.org/10.15276/aait.03.2021.6. 

11.  Mazurok, I.Y., Leonchyk, Y.Y., Grybniak, S.S., Nashyvan, O.S. & Masalskyi, R.O. “An incentive 

system for decentralized DAG-based platforms”. Applied Aspects of Information Technology. 2022; 5 (3): 

196–207. DOI: https://doi.org/10.15276/aait.05.2022.13. 

12.  Wang, H., Liu, Z., Ge, C.P., Sakurai, K. & Su, C.H. “A privacy-preserving data feed scheme for 

smart contracts”. IEICE Transactions on Information and Systems. 

https://www.webofscience.com/wos/woscc/full-record/WOS:000748957000002. 2022; E105D (2): 195–204. 

DOI: https://doi.org/10.1587/transinf.2021BCI0001.  

13.  Farahat, I. S., Aladrousy, W., Elhoseny, M., Elmougy, S. & Tolba, A. E. “Improving healthcare 

applications security using blockchain”. Electronics, https://www.webofscience.com/wos/woscc/full-

record/WOS:000887069100001. 2022; 11 (22): 3786. DOI: https://doi.org/10.3390/electronics11223786.  

14.  Hawashin, D., Salah, K., Jayaraman, R., Yaqoob, I. & Musamih, A. A. “Blockchain-based solution 

for mitigating overproduction and underconsumption of medical supplies”. IEEE Access. 

https://www.webofscience.com/wos/woscc/full-record/WOS:000838387800001. 2022; 10: 71669–71682. 

DOI: https://doi.org/10.1109/ACCESS.2022.3188778. 

15.  Sun, H., Wang, X. Y. & Wang, X. E. “Application of blockchain technology in online education”. 

International Journal of Emerging Technologies in Learning,

https://www.webofscience.com/wos/woscc/full-record/WOS:000448443800019. 2018; 13 (10): 252–259. 

DOI: https://doi.org/10.3991/ijet.v13i10.9455.  

16.  Awaji, B. & Solaiman, E. “Design, implementation, and evaluation of blockchain-based trusted 

achievement record system for students in higher education”. CSEDU: Proceedings of the 14th International 

Conference on Computer Supported Education, https://www.webofscience.com/wos/woscc/full-

record/WOS:000814755400023. 2022; 2: 225–237.  

DOI: https://doi.org/10.5220/0011044200003182.  

17.  Upadhyay, K., Dantu, R., Zaccagni, Z. & Badruddoja, S. “Is your legal contract ambiguous? Con-

vert to a smart legal contract”, https://www.webofscience.com/wos/woscc/full-

record/WOS:000647642100032. IEEE International Conference on Blockchain. 2020: 273–280. DOI:

https://doi.org/10.1109/Blockchain50366.2020.00041. 

18.  Shah, A. & Alsadiey, J. “Legal adaptation of smart contracts (analytical study)”. International 

Journal of Early Childhood Special Education, https://www.webofscience.com/wos/woscc/full-

record/WOS:000791906700004. 2022; 14 (3): 1802–1807. DOI: https://doi.org/10.9756/INT-

JECSE/V14I3.210.  

19.  Meng, Q.F. & Sun, R.G. “Towards secure and efficient scientific research project management 

using consortium blockchain”. Journal of Signal Processing Systems for Signal Image and Video Technolo-

gy, https://www.webofscience.com/wos/woscc/full-record/WOS:000524385500001. 2020;  

93(2-3): 323–332. DOI: https://doi.org/10.1007/s11265-020-01529-y. 

20.  Chen Y.W. “Blockchain in enterprise: An innovative management scheme utilizing smart con-

tract”. https://www.webofscience.com/wos/woscc/full-record/WOS:000588568400005. 9th International 

Conference on Industrial Technology and Management. 2020. p. 21–24.  

21.  Lenarduzzi, V., Lunesu, M.I., Marchesi, M. & Tonelli, R. “Blockchain applications for agile 

methodologies”. 19th International Conference on Agile Software Development 

Information technologies and computer systems

https://www.iiba.org/career-resources/a-business-analysis-professionals-foundation-for-success/babok/
https://www.iiba.org/career-resources/a-business-analysis-professionals-foundation-for-success/babok/
https://doi.org/10.3390/electronics11223786


Komleva N. O., Tereshchenko  O. I.      /      Herald of Advanced Information Technology  

                                                                                      2023; Vol.6 No.1: 54–68 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

67 

 

https://www.webofscience.com/wos/woscc/full-record/WOS:000474466600030. 2018. DOI: 

https://doi.org/10.1145/3234152.3234155.  

22.  “This is the very first iteration of the decentralized application security project Top 10 of 2018”. 

NCC Group. – Available from: https://dasp.co/.  [Accessed: Nov. 2022]. 

23.  “Smart contract weakness classification and test cases”. SWC Registry. – Available from:

https://swcregistry.io/.  [Accessed: Nov. 2022]. 

24.  Kalra, S., Goel, S., Dhawan, M. & Sharma, S. “ZEUS: Analyzing safety of smart contracts”. 25th 

Annual Network and Distributed System Security Symposium.

https://www.webofscience.com/wos/woscc/full-record/WOS:000722005800065. 2018. DOI: 

https://doi.org/10.14722/ndss.2018.23082.  

25. Gao, J.B., Liu, H., Liu, C., Li, QSLi., Guan, Z. & Chen, Z. “EASYFLOW: Keep ethereum away 

from overflow”. IEEE/ACM 41st International Conference on Software Engineering: Companion 

Proceedings. https://www.webofscience.com/wos/woscc/full-record/WOS:000503272600010. 2019. p. 482–

489. DOI: https://doi.org/10.1109/ICSE-Companion.2019.00029. 

26. Akca, S., Rajan, A. & Peng, C. “SolAnalyser: A framework for analysing and testing smart con-

tracts”. 26th Asia-Pacific Software Engineering Conference (APSEC). 

https://www.webofscience.com/wos/woscc/full-record/WOS:000517102200060. 2019. p. 482–489. DOI: 

https://doi.org/10.1109/APSEC48747.2019.00071. 

27. “Three types of smart contracts. How to develop a smart contract?”.  Merehead. – Available from: 

https://merehead.com/blog/develop-smart-contract/. – [Accessed: Nov. 2022]. 

28.  Gavin, W. “Ethereum: A secure decentralised generalised transaction ledger”. Ethereum Yellow 

Book. Berlin. 2022. p. 41–42. – Available from:  http://surl.li/glboa. – [Accessed: Nov. 2022].  

29. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B. & Roscoe, B. “ReGuard: Finding reentrancy bugs in 

smart contracts”. Proceedings of the 40th International Conference on Software Engineering: Companion 

Proceeedings. Association for computing machinery. New York. 2018. p. 65–68. 

30. “Ethereum smart contract best practices”. Consensys. – Available from: 

https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/. – [Accessed: Nov. 2022]. 

31. “Denial of service (DoS) attack on smart contracts”. Finxter. – Available from: 

https://blog.finxter.com/denial-of-service-dos-attack-on-smart-contracts/. – [Accessed: Nov. 2022]. 

Conflicts of Interest: the authors declare no conflict of interest 

Received 23.12.2022 

Received after revision 18.03.2023 

Accepted 25.03.2023 

DOI: https://doi.org/10.15276/hait.06.2023.4 

УДК 004.4’24 

Вимоги до розробки смарт-контрактів та огляд вразливостей 

смарт-контрактів на рівні Solidity-коду на  

платформі Ethereum 

Комлева Наталія Олегівна1) 

ORCID: http://orcid.org/0000-0001-9627-8530; komleva@op.edu.ua. Scopus Author ID: 57191858904 

Терещенко Олександр Ігорович1) 
ORCID: http://orcid.org/0000-0003-4510-5255; alexandr.tereschenko2014@gmail.com. Scopus Author ID: 57705566400 

1) Національний університет «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044,Україна  

АНОТАЦІЯ 

Стаття присвячена розгляду автоматизованих децентралізованих програм на блокчейні, які є сучасним інструментом 

обробки транзакцій без допомоги довіреної третьої сторони. Метою дослідження є узагальнення та систематизація інформа-

Information technologies and computer systems

https://swcregistry.io/
https://merehead.com/blog/develop-smart-contract/
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/
https://blog.finxter.com/denial-of-service-dos-attack-on-smart-contracts/
https://doi.org/#_blank
http://orcid.org/0000-0002-4078-3519


Komleva N. O., Tereshchenko  O. I.   /   Herald of Advanced Information Technology 

    2023; Vol.6 No.1: 54–68 

68 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 

ції щодо вимог, які висуваються до смарт-контрактів, а також огляд вразливостей смарт-контрактів на рівні Solidity-коду. 

Вивчено архітектуру блокчейну та визначено переваги смарт-контрактів у порівнянні зі звичайними контрактами, а саме: 

зменшення ризиків, скорочення витрат на адміністрування та обслуговування та підвищення ефективності бізнес-процесів. 

Проведено ретельний аналіз сучасних літературних джерел та виявлено поточні проблеми, з якими стикаються користувачі 

та розробники смарт-контрактів. Зазначено, що процес розробки смарт-контрактів є недостатньо стандартизованим та доці-

льним є створення системи рекомендованих вимог для смарт-контрактів, використовуваних у різних предметних областях. 

Зібрано та проаналізовано вимоги до смарт-контрактів для областей, що стосуються медичної сфери, області навчання, біз-

несу, управління проектами, аналізу даних, розробки програмного забезпечення, організації торгівлі, логістики та юридич-

ної сфери. Визначено, що обов’язковими вимогами для всіх цих предметних областей є безпека, прозорість процесів,  ви-

значення умов та критеріїв успіху роботи та автоматизація роботи. Проаналізовано решту вимог та введено поняття міри 

співпадіння та унікальності вимог для певної предметної області, які спирається на відповідні функції. Для розглянутих 

предметних областей обчислено міри співпадіння та унікальності. Запропоновані міри дозволять у подальшому отримувати 

кількісну оцінку шаблонів для збору вимог до програм з урахуванням використовуваної предметної області. Проведено 

огляд та систематизовано види вразливостей смарт-контрактів на рівні Solidity-коду на платформі Ethereum. Визначено най-

кращі практики, які дозволяють уникнути подібних вразливостей, та можливі приклади їх експлуатації з боку зловмисників. 

Показано, що підвищення надійності смарт-контрактів посприяє збільшенню довіри до блокчейну серед користувачів. 

Ключові слова: Блокчейн; смарт-контракт; вимога; міра співпадіння; міра унікальності; Ethereum; вразливість; тран-

закція 

ABOUT THE AUTHORS 

Nataliia O. Komleva - PhD (Eng), Associate Professor, Head of Software Engineering Department,  
Odessa National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine 

ORCID: http://orcid.org/0000-0001-9627-8530; komleva@opu.ua. Scopus Author ID: 57191858904 

Research field: Data analysis; software engineering; knowledge management  

Комлева Наталія Олегівна – канд. техніч. наук, завідувач кафедри Інженерії програмного  
забезпечення Національного університету «Одеська політехніка», пр. Шевченка,1, Одеса, 65044, Україна 

Oleksandr I. Tereshchenko - Master  of  Science, graduate  student, Software Engineering Department,  

Odessa National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine  

ORCID: http://orcid.org/0000-0003-4510-5255; alexandr.tereschenko2014@gmail.com. Scopus Author ID: 57705566400
Research field: Machine learning; blockchain 

Терещенко Олександр Ігорович – аспірант кафедри Інженерії програмного забезпечення.  

Національний університет «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044, Україна 

Information technologies and computer systems

mailto:komleva@opu.ua

