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ABSTRACT 

This paper describes the systematization of evaluation metrics for 2D human pose analysis models. Some of the most popular 

tasks solved using machine learning (ML) methods are detection, tracking and recognition of human actions for various practical 

applications. There are a lot of different metrics that allow evaluating the model from one point or another. To evaluate a specific 

task, a certain set of metrics is used. However, as literature analysis shows, the vast number of metric definitions, as well as the use 

of different terms and multiple representations of the same ideas, causes problems of interpretation and comparison of different ML 

models and methods in detecting, tracking, and recognizing human actions. The purpose of this work is to analyze the metrics for 

evaluating methods for processing 2D human poses in video in order to facilitate the informed choice of the metrics. To improve the 

objectivity of evaluating the results of empirical studies of existing and newly developed methods and models for detecting, tracking, 

and recognizing human actions, a systematization of existing metrics into subgroups was proposed, depending on what task they 

evaluate. Four classes of evaluation metrics were introduced: classification metrics, key point’s detection, object tracking, and 

general metrics. Classification metrics are based on quality evaluation and matching values from predicted bounding boxes with 

ground truths. Key point’s detection metrics are oriented on the quality of found joints of the human body skeleton. Tracking metrics 

evaluate the object detection on each frame and the correctness of determining its trajectory. General metrics are not specifically 

related to any of the human 2D pose analysis tasks. The prototype of the application based on suggested metrics systematization, the 

purpose of which is to help data scientists in formalizing the choice of metrics for evaluating models depending on the ML problem 

being solved and the application area was developed. To evaluate and demonstrate the metrics, that were suggested in this 

application, Faster R-CNN, SSD and YOLOv3 object detection models were analyzed and compared in scope of 2D human pose 

analysis application area. The results of the analysis showed that Faster R-CNN and YOLOv3 have the most accurate responses, 

although they have the disadvantage of a high False positive rate. The implementation also showed that metrics that based on True 

negative values are uninformative in scope of working with bounding boxes, because of the specific of application area and inability 

to calculate True negatives on the image data. 
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INTRODUCTION 

As technology advances, Machine Learning 

(ML) is becoming more and more popular in almost 

every field of human life. To solve ML problems such 

as classification, anomaly detection, estimation, etc., 

in connection with the expansion of the capabilities of 

computers and portable devices, the field of neural 

networks (NN), and specifically convolution neural 

networks (CNNs), continues to develop rapidly. 

To test the effectiveness of specific ML models 

and methods, the artificial intelligence (AI) commu-

nity has developed many datasets that are used to 

train and test Neural Networks (NNs). Each of them 

can be used to test the performance of ML models 
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and methods by calculating various performance 

metrics that reflect the results of their implementa-

tion. For instance, there are thousands of different 

free-to-use public datasets on 

Kaggle (Available from: https://www.kaggle.com) 

and comparisons of implementations various scien-

tific research based on almost 8000 datasets on the 

Papers with Code (Available from: 

https://paperswithcode.com/datasets) resources [1]. 

In data science, as in software engineering, a 

metric is a standard of measure of a degree to which 

a process possesses some property [2].  

Metrics functions and metrics as measurements 

(the numbers obtained by the application of metrics) 

are often used as synonyms.  

There are many performance indicators, the 

choice of which depends on such main factors as: 
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– which specific characteristic of the method is

being studied: reliability, speed (response time) and 

resource intensity; 

– ML task (regression, classification, etc.) and

in what application area is this task being solved: 

music source separation, language modeling, com-

puter code generation and analysis, robotics, com-

puter vision, recommendation systems, and others. 

Due to these factors and the lack of a clearly 

structured centralized database of existing metrics, 

as well as different knowledge of Statistics among 

data scientists (As Joel Grus wrote, some data sci-

entists are mote statisticians, while others are indis-

tinguishable from software engineers. [3]). Differ-

ent scientists very often use different terms and 

formulas for the same metrics in their scientific pa-

pers. This significantly complicates the objectivity 

of comparing the results of testing the performance 

of existing and newly developed models and meth-

ods of ML. 

An additional difficulty in choosing perfor-

mance metrics is the use of different abbreviations 

for the same metrics and the fact that many abbre-

viations are remarkably similar to words from hu-

man languages, which makes it even more challeng-

ing to track from the start. 

Since the object of the research is 2D pose pro-

cessing models, the subject of this research is the 

validation metrics for these models. 

The 2D pose analysis process is divided into 

several subtasks; each of them has its own set of 

evaluation metrics: 

– Human detection.

– Keypoints detection.

– Object tracking.

– Action classification, pose estimation and

forecasting. 

The systematization of evaluation metrics for 

models, that solve these subtasks, is the main goal of 

this work. 

LITERATURE REVIEW 

As it was written earlier, in many scientific pa-

pers and articles on the Internet, the same metrics 

are often used in different meanings, depending on 

how much the author is immersed in software devel-

opment or Statistics as a subject. There are some 

good scientific works that shed light on what is 

stored behind the abbreviations of metrics and what 

their essence is. However, most of these metrics are 

considered only in the context of one small specific 

subtask and are not the main subject of the research 

itself [1, 2], [4, 5]. 

Other scientific works are focused on a specific 

metric [6, 7], its improvement (like the main goal or 

in scope of other investigation) [8, 9], [10] or the 

development of new metrics based on it [11]. 

Since there has been a significant surge of sci-

entific works on the topic of NN and deep learning 

over the past couple of years, some research teams 

have created projects on the topic of designing the 

ontology of development of this area and building 

dependency graphs, based on topics, citations, 

benchmarks and used metrics [10]. But this is more 

related to meta-research annotations and organizing 

information in the Artificial Intelligence (AI) do-

main. 

Another important free and open resource for 

getting up to date on current ML works is Papers 

with Code. It allows you to view the latest publica-

tions on the ML topic, get acquainted with the most 

relevant methods and most used datasets. This re-

source also provides evaluation tables for these 

methods based on various metrics. This resource is 

particularly important, because it allows you to keep 

track of the latest trends in ML and metrics, which is 

used to form a list of commonly used metrics in the 

context of two-dimensional people pose processing. 

There are also various manuals and documenta-

tion for existing frameworks with different metrics 

calculations implementation (for instance, some 

manuals for the free and open-source software li-

braries for ML and AI TensorFlow, which has a par-

ticular focus on deep neural networks (DNN)). 

Despite these resources containing a large data-

base of metrics, they either do not include a more 

detailed description of them or do not classify them 

according to metrics’ meaning. They also contain 

little to no information about metrics’ naming inter-

section aka synonyms. As a result, the resources 

themselves do an excellent job, but deeper research 

of the scientific works behind them will raise a prob-

lem of using different terminology by the authors of 

scientific works. 

THE PURPOSE OF THE ARTICLE 

The purpose of this work is to analyze metrics, 

which are used for evaluating peoples’ 2D pose 

analysis models, systematize them, and based on this 

systematization develop an application that will help 

data scientists determine the metrics depending on 

their needs. 

MAIN PART. EVALUATION METRICS 

SYSTEMATIZATION 

Classification metrics. These metrics are used 

to evaluate object detection quality. All of them are 

based on the Confusion matrix and are not connect-
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ed to specific class of the object (animal, human, 

etc.) or a specific stage of 2D human pose analysis. 

These metrics are used in scope of human segmenta-

tion and classification task and action classification, 

pose estimation and forecasting (for evaluation of 

detected human body parts or pose description).  

Intersection over union (IoU, also known as 

Average overlap score (AOS) and Jaccard Index (J) 

[2, 3]): it is an evaluation metric used to measure the 

Accuracy of an object detector on a particular image. 

Any algorithm that provides predicted bounding 

boxes as an output can be evaluated by using this 

approach [4].  

Two parameters are used to calculate (1) this 

metric (Fig. 1): 

– the ground-truth bounding boxes (bounding

boxes from the testing set that localize objects); 

– the predicted bounding boxes.

nAreaofUnio

lapAreaofOver
IOU  . (1) 

a         b 

Fig. 1. Example of IoU:  

a –  IoU =±0.4; b – IoU=±0.9 
Source: compiled by the authors 

As shown on Fig. 2, Area of Overlap from the 

IoU formula is the overlap of predicted and ground-

truth bounding boxes, and Area of Union is their 

union. 

a         b 

Fig. 2.  Representation of IoU components: 

a  – Area of Overlap: b – Area of Union 
Source: compiled by the authors 

Success rate: the percentage of frames that has 

a higher IoU than the threshold [4]. 

Confusion matrix (also known as an error ma-

trix) [3]: it is used to visualize the performance of a 

model. It contains number of True positive (TP), 

False positive (FP, type I error), True negative (TN) 

and False negative (FN, type II error) predictions. 

Precision-Recall curve (PR curve, also known 

as the receiver operator curve (ROC) curve) (Fig. 3): 

Metric that summarizes both Recall and Precision. A 

suitable measure to assess the model’s performance 

on imbalanced datasets [5, 10], [29]. 

Accuracy: Describes how the model performs 

across all classes and it is useful when all classes 

have equal importance [5, 6], [7, 8]. It is calculated 

(2) as the ratio between True positive and True nega-

tive numbers to the total number of predictions: 

FNFPTNTP

TNTP



 . (2) 

Top-1 Accuracy (Acc@1) means that the model 

answering with the highest probability must be ex-

actly the True one. 

Top-5 Accuracy (Acc@5) means that the model 

answering with the top five probabilities must con-

tain the expected answer. 

3-fold Accuracy is an Average Accuracy over 

three splits (running model on three different train-

ing/testing splits). It is used to measure the final per-

formance. 

Fig. 3. An example of the Precision-Recall curve 

Source: compiled by the authors 

Recall: The Recall score measures the model's 

ability to detect positive samples [7]. The higher the 

Recall (3), the more actual positive samples would 

be detected: 

FNTP

TP


. (3) 

Average Recall: is a numerical metric that can 

be used to compare detector performance [9, 11]. 

AR (4) is the Recall averaged over all IoU∈ [0.5,

1.0]: 



1

5.0

)(2 dIoUIoUrecallAR . (4) 

There is a specific notation max which means 

the number of objects for detection:  

– AR max=1 means one object for detection per

image, 
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– AR max=10 and AR max=100 mean 10 and 

100 items, respectively. 

Specificity: This metric (5) shows the coverage 

of actual negative samples [1, 10]. 

FPTN

TN


. (5) 

Precision: Precision score (6) in scope of work-

ing with confusion matrix determines how well a 

model can find True positives (TP) among all posi-

tive predictions (True positives plus False positives 

(FP)) [11]: 

FPTP

TP


. (6) 

In scope of IoU, the Precision P is measured as 

the distance in pixels between the centers Cgt and 

Ctr of the ground truth and the tracker bounding 

box, respectively. 

Average Precision (AP): It is a single number 

metric that summarizes (7) Precision and Recall [9, 

11], [12, 13], [14, 15], [16, 17]. It is done to reduce 

the impact of the slopes in the curve. 

There are several ways to choose the levels of 

Recall to interpolate the Precision [18]. 

The traditional one is when 11 levels with 0.1 

step are taken: 

)~(max)(
~int rprp

rr
erp


 , 

(7) 





}1,...,2.0,1.0,0{

int )(
11

1

r

erp rpAP , 

where pinterp is the interpolated Precision and the cer-

tain Recall level r is defined as the highest Precision 

found for any Recall level  ≥ r. 

A new standard chooses all unique Recall levels 

presented by the data. 

)~(max)(
1

~1int rprp
nrr

nerp


  , 
(8) 

)()( 1int1   nerpnn rprrAP . 

AP@IoU=.50 or AP@IoU=.75 notation could 

be used to specify the IoU value the model will use 

to determine a positive response. There is a specific 

way to show the size of detected objects: 

– AP small is for small objects with size 
232

pixels; 

– AP medium is for medium objects with size 

between 
232 and 

296 pixels; 

– AP large is for large objects with area 
296

pixels.  

Mean Average Precision (mAP). The mAP 

metric represents the mean of AP values for differ-

ent classes [18]:  

K

AP
mAP

k

i i  1 . (9) 

Some examples of mAP metric with extra nota-

tions: 

– mAPIOU@0.1: mAP with IoU threshold 0.1 

(the model will say that there is an object if IoU=0.1 

and higher). 

– mAP@[.5:.95]: Average mAP over IoU 

thresholds from 0.5 to 0.95 with step 0.05. 

– AvgmAP(0.3:0.7): The same Average mAP 

over different IoU thresholds: from 0.3 to 0.7 with 

step 0.1. 

Normalized Precision: Helps to solve the prob-

lem of the error influence on objects with the differ-

ent size in scope of trackers ranking [10]. Instead of 

computing the absolute error in pixels, it calculates 

errors relative to the object size. These errors are 

then plotted in the range [0, 0.5] and the area under 

this curve is called Normalized Precision. 

Mean Precision: May be confused with mAP 

and means just the mean value of the Precision 

score. 

F1 Score (also known as Harmonic  

Precision-Recall Mean, F-measure, F1 measure): It 

was designed to be a useful metric when classifying 

between unbalanced classes or other cases with sim-

pler metrics could be misleading [10, 29]. You can 

also find F1-score (10) Canonical and Augmented 

metrics.  

These ones are connected to variants of super-

vised learning settings: 

– Canonical. The training, validation, and test-

ing sets are from the same dataset. 

– Augmented. In this case 20% of a given da-

taset is for testing and augment the remaining 80% 

with the other three datasets to form an augmented 

training and validation dataset.  

– Transfer. Three datasets are used for training 

and validation and selected dataset for testing the 

learned models 

callecision

callecision

RePr

RePr
2



 , 

(10) 

FNFPTP

TP

2

2
. 

Area under the curve (AUC): It is the average 

of the success rates corresponding to the sampled 

overlap thresholds. AUC provides an aggregate 

measure of performance across all possible classifi-

cation thresholds. This metric has been criticized; 
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calling the AUC metric’s usage an “equivalent to 

using different metrics to evaluate different classifi-

cation rules” [28].  

Crowd index: The metric which shows how 

crowded is an arbitrary image and describes how 

many people appear in the bounding box of each 

person [21]. 

There are notations by Crowd Index of the da-

taset: Easy (0-0.1), Medium (0.1-0.8) and Hard (0.8-

1)  





n

i
a

i

b

i

N

N

n
CrowdIndex

1

1
, (11) 

where n is a total number of people on the image, 

a

i

b

i

N

N
is a crowd ratio, 

a

iN is a number of joints of a 

i-person in i-person’s bounding box and 
b

iN is the 

number of joints of other persons in i-person’s 

bounding box. 

Keypoints detection metrics. These metrics 

are used to evaluate methods of key point’s detec-

tion of human bodies (joints of the human skeleton, 

head, etc.) in scope of key point’s detection and 2D 

pose estimation tasks evaluation. For instance, they 

are used in human pose detection with COCO-

Whole Body dataset (Available from: 

https://github.com/jin-s13/COCO-WholeBody). 

Percentage of correct parts (PCP): It considers 

a body part to be correctly localized if the predicted 

end points of the body segments are within 50 % of 

the ground segment length from their true location 

[30]. Foreshortened body parts must be localized 

with greater Precision to be considered correct. 

PCPm uses 50 % of the average ground truth seg-

ment length. 

Percentage of detected joints (PDJ): Measures 

the distance between the predicted and the True joint 

within a certain fraction of the torso diameter [31].  

Percentage of correct keypoints (PCK): It de-

termines the Accuracy of localization of body joints 

[29, 30]. It measures if the predicted keypoint and 

the True joint are within a certain distance threshold.  

PCKh or PCKh@0.5measures the 50 % of the 

length of the head segment [30]. 

PCKh@0.2 is used when a distance between 

predicted and True joint is less than 0.2 torso diame-

ter. 

Object keypoint similarity (OKS): OKS is 

commonly used in different keypoint challenges and 

shows how close a predicted keypoint is to the true 

keypoint [31]. 

 

 

















 






i i

i i

i

i

v

v
ks

d

OKS

0

022

2

2
exp

, 
(12) 

where ik is the Euclidean distance between the 

ground truth and predicted keypoint; s is the square 

root of the object segment area; ik is the per-

keypoint threshold constant (Available from: 

https://cocodataset.org/#keypoints-eval); iv is a vis-

ibility flag that can be 0 for ‘not labeled’, 1 for ‘la-

beled, but not visible’ and 2 for ‘labeled and visible’.  

Object tracking metrics. These ones are ori-

ented on tracking, but also include combined met-

rics, that validate all steps for object tracing process. 

They are based on Classification metrics. 

Some basic terms, that is used in scope of ob-

ject tracking methods validation metrics [33]: 

– False negative or Misses; 

– False positive; 

– Merge or ID switch (IDSW): when objects 

get confused after their trajectories (Traj.) intersect; 

– Deviation: when an object track is reinitial-

ized with a different ID; 

– Fragmentation: when an object stops getting 

tracked, but his ground truth track still exists. 

Trajectory similarity score (Str): It is the sum 

of the spatial intersection of bounding boxes across 

the whole trajectories, divided by the sum of the spa-

tial union of BB across the entire trajectories. This 

one is intricately connected to the IoU metric. A 

predicted trajectory (prTraj) is True positive (TPTr) 

and is matched with a ground trajectory (gtTraj) if it 

has the highest confidence score of all prTraj-s with 

Str equal or more than a threshold (αtr) [32]. 

Track-mAP: This one match predictions and 

ground truth at a trajectory of detected objects [32]. 

It is calculated in the same way as mAP, except that 

trajectories are used instead of bounding boxes of 

detected objects.  

Track-mAP requires a trajectory similarity 

score (Str) between trajectories and a threshold αtr. 

Trajectories are matched only if the trajectory simi-

larity score is greater than the threshold. 

Str is the sum of the spatial intersection of the 

boxes across the whole trajectories, divided by the 

sum of the spatial union of the boxes across the en-

tire trajectories. “The most commonly used similari-

ty metric for 2D boxes; 3D boxes and segmentation 

masks are IoU” [32]. 

Multiple objects tracking Precision (MOTP): Is 

the average similarity score (S) over the set of TPs 

[32]: 
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
S

TP
S

TP
MOTP

||

1
. (13) 

Multiple objects tracking Accuracy (MOTA): It 

measures the overall Accuracy of both the tracking 

and detection and connected to predict detections 

value (prDets) and ground truth detection (gtDets) 

[32]: 

||

||||||
1

gtDet

IDSWFPFN
MOTA


 , (14) 

The Identification metrics (IDF1): It calculates 

a bijective mapping between the sets of gtTraj-s and 

prTraj-s [32] of Identities (IDTP, TDTN, etc.): 

||||

||
Re

IDFNIDTP

IDTP
callID


 , (15) 

||||

||
Pr

IDFPIDTP

IDTP
ecisionID


 , (16) 

||5.0||5.0||

||
1

IDFPIDFNIDTP

IDTP
IDF


 . (17) 

Higher-order tracking Accuracy (HOTA): A 

combination of three IoU scores for detection (Det-

IoU), association (Ass-IoU) and localization (Loc-

IoU) [32]. 

When we talk about Ass-IoU TP, FP, TN, FN 

are called True positive associations (TPA), False 

positive Associations (FPA), etc. (see an example of 

the tracking validation on Fig. 4) [32]. 

Localization Accuracy (LocA) is an average 

Loc-IoU over all pairs of matching predicted and 

ground-truth detections in the dataset [32]: 





TPc

cLocIoU
TP

LocA )(
||

1
. (18) 

Association Accuracy (AssA) is average Ass-

IoU over all detections in the whole dataset [32]: 





TPc

cAssIoU
TP

Assa )(
||

1
, (19) 


||

1

TP
AssA

|)(||)(||)(|

|)(|

cFPAcFNAcTPA

cTPA


 . 

(20) 

The final HOTA formula looks like this: 

 AssADetAHOTA s  , (21) 














95.0

05.0
05.0

10

19

1

a

HOTA

HOTAHOTA









, (22) 

here α is a threshold for Loc-IoU calculations and 

HOTA is HOTA, calculated for a specific thresh-

old. 

Fig. 4. Multiple objects tracking basic terms: 

a – ground-truth detections and trajectories:  

b – predicted detections and trajectories: c – FP; 

d – FPA; e – TP; f – TPA; g – FN; h - FNA 
Source: compiled by the authors 

Here are basic terms that are used in object 

tracking evaluation process (Fig. 4): 

– multi-colored circles, which are connected by

an unbroken line (Fig. 4a), are examples of detec-

tions and trajectories of objects (GT). At this specif-

ic example there are two separate objects with inter-

secting paths; 

– objects detected and tracked by the model are

marked with rhombuses connected with dotted line 

aka predicted trajectory (Fig. 4b), because on this 

example there is only one detected and tracked ob-

ject. 

Each intersection between prediction and GT or 

its absence is marked with a separate color and cor-

responds to such terms: 

– there is a predicted object that does not exists

in the GT: FP, marked ad rectangle with unbroken 

borders (Fig. 4c); 

– there are three detected object’s states (two of

them are FP and one is TP) that are falsely connect-

ed with trajectory: FPA, marked as red rectangle 

with dotted border (Fig. 4d); 

– the TP detection is marked as green rectangle

with unbroken border (Fig. 4e); 

– the truly detected object’s states connected too

right trajectory: TPA, marked as green rectangle 

with dotted border (Fig. 4f); 
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– FN object detection is marked as yellow rec-

tangle with unbroken borders (Fig. 4g); 

– undetected GT objects and trajectory: FNA, 

marked as yellow rectangle with dotted border 

(Fig.4h). 

Euclidean error metric (DEucl): Uses predicted 

trajectory to calculate metric for quantitative evalua-

tion purposes [33]: 





d

i

jjeucl yyyyd
1

2)ˆ()ˆ,(


, (23) 

where y


is a GT,  ŷ


is a predicted position of the 

object and d is the number of positions of the 

tracked object. 

Identity switch (IDSW): Counts the number of 

times that a tracked trajectory changes its matched 

identity [33]. 

Tracking success can also be described in terms 

of these characteristics [34]: 

– Mostly tracked (MT) if the trajectory is suc-

cessfully tracked at least in 80 % cases; 

– Mostly lost (ML) if only the 20 % of trajecto-

ry was recovered; 

– and Partially tracked (PT) in-between. 

FM: Counts the number of times that a trajectory in 

ground is interrupted by the tracking output [34]. 

General metrics. This type of metrics contains 

some basic ones, that are not connected to any spe-

cific task of 2D pose processing and are related to 

speed and resource intensity of the model and the 

specifics of its implementation and training. 

Metrics that evaluate the performance of the 

model include: 

– FPS: Frame rate [3] (expressed in frames per 

second) is the frequency of frames which an object 

detection model can process per second. 

– FLOPs [3]: How many floating-point opera-

tions are required to run a single instance of a given 

model. 

FLOPS: Shows floating-point operations per 

second and means the computing power of hard-

ware. Unlike the FLOPs (with small‘s’) metric, it 

helps to evaluate the resource intensity of the devel-

oped model [3]. 

Metrics that show the specifics of the dataset 

that was used to train and evaluate the model: 

– Extra training data [4]: informs that more 

than one dataset was used in the training process. 

– Seen/Unseen [10]: Is used during different 

metrics usage. It shows if a metric was calculated 

basing on the results with seen or unseen dataset 

categories. Unseen categories are those that do not 

exist in the training dataset. They are used to evalu-

ate the generalization ability of methods and model. 

IMPLEMENTATION 

The prototype of a software product Metric 
Crawler has been developed (Fig. 5) that contains 
classified information (Fig. 6) about the considered 
evaluation metrics (Available from: https://metric-
crawler.herokuapp.com/). It was created to help data 
scientists in formalizing the choice of evaluation 
metrics for their models. 

Used technologies: Python, Django, JavaScript 
and Bootstrap. The application is hosted on Heroku 
cloud platform service. 

Three NN models for object detection (which is 
the part of human 2D pose analysis process) were 
evaluated with the suggested metrics.  

NN pretrained models were used and tested as 
an example:  

Faster Region-based Convolutional Neural 
Network (Faster R-CNN, faster_rcnn_resnet50_ 
v1b_coco), Single-Shot Detector (SSD, 
ssd_512_resnet50_v1_coco) and You Only Look 
Once version 3 (YOLOv3, yolo3_ 
darknet53_coco). All these models were used only 
for people detection, other object classes were ig-
nored. 

Virtual machine characteristics (standard work-
er node on Kaggle platform):  

73.1 GB HDD, 30GB RAM, 8 vCPU, no GPU 
acceleration to reduce costs.  

Used datasets (both for learning and valida-
tion):  

COCO 2017 Dataset. Used python runtime en-
vironment was in docker, image is gcr.io/kaggle-
images/python:v122. 

The project was created in as a Python Note-
book (Fig. 7, Fig. 8 and Fig. 9). Additional used li-
braries are pandas, cv2, gluoncv, mxnet, py-
cocotools.coco, torchvision, seaborn. 

Some of metrics have already been implement-
ed in libraries (for instance, IoU, mAP and mAR 
calculations). Others have been implemented in 
scope of this work (Fig. 10).  

Confusion matrix (Fig. 11) calculation was im-
plemented.  

Response of a model assumed to be: 
– TP, if IoU ≥ threshold; 
– FP, if IoU < threshold, but not zero (the spe-

cific of IoU calculation), or when there was any val-
ue in response but no GT; 

– FN was in that case when bounding box was 
not detected but supposed to be there (there is GT 
values in dataset annotations, but no in results);  

– TN if there are no data both in annotations and 
no BB results, which means that there are no people 
on validation image. 
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Fig. 5. The mind map diagram of the Metric Crawler 

working flow 
Source: compiled by the authors 

Fig. 6. Evaluation metrics systematization 

Source: compiled by the authors 
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Fig. 7. Faster R-CNN model result without  

using IoU threshold 
Source: compiled by the authors 

Fig. 8. SSD model result without using 

IoU threshold 
Source: compiled by the authors 

Fig. 9. YOLOv3 model result without using 

IoU threshold 
Source: compiled by the authors 

During the implementation process, some fea-

tures of calculating metrics in the context of pro-

cessing results with bounding boxes were clarified. 

For instance, in the context of calculating the 

confusion matrix and further metrics, it is impossible 

to rely on TN values, since we are working with an 

image and TN can be located everywhere except TP. 

This fact makes the TN value uninformative in the 

context of validation with detection metrics that 

work specifically with image and bounding boxes 

(without TP specification in annotations data). 

As it was shown on Confusion matrix and Ac-

curacy graphs, all models have low level of FN. In-

stead of that the problem caused a high amount of 

FP. As the result, Recall in a standard implementa-

tion (without output data filtration) equals 1. 

The Precision, F1 and other calculated detection 

metrics (table 1, 2) also demonstrate a high amount 

of False positive responses (which worsen the relia-

bility indicators of the considered models). Metrics 

show that YOLO is better overall, but SSD has the 

most accurate responses on large objects detection 

(mAP large and mAR large values are the highest). 

Fig. 10. Calculated Precision 
Source: compiled by the authors 

a b c 

Fig. 11. Confusion matrix example for tested 

NN models with IoU threshold 0.9: 

a – R-CNN; b – SSD (b); c – YOLO 
Source: compiled by the authors 
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Table 1. Calculated F1 metric based on different IoU thresholds 

Mod-

el\Metri

c 

IoU0.3 IoU0.4 IoU0.5 IoU0.6 IoU0.7 IoU0.8 IoU0.9 

R-CNN 0.371681 0.296296 0.280374 0.230769 0.196078 0.065217 0.083333 

SSD 0.239130 0.148571 0.079051 0.063745 0.040323 0.014403 0.016327 

YOLO 0.431138 0.352201 0.309677 0.276316 0.241611 0.106870 0.128571 

Source: compiled by the authors

Table 2. Calculated metrics based on the R-CNN, SSD and YOLO models validation 

Metric/Model R-CNN SSD YOLO Metric/Model R-CNN SSD YOLO

Acc@0.3 0.25263 0.13934 0.29629 mAP medium 0.2826 0.5505 0.7218 

Acc@0.9 0.07368 0.01229 0.09629 mAP large 0.7285 0.7710 0.7541 

Recall 1 1 1 mAR 1 0.1148 0.1148 0.1333 

Precision@0.3 0.22826 0.1358 0.2748 mAR 10 0.2815 0.2889 0.4926 

Precision@0.9 0.04347 0.00823 0.0687 mAR 100 0.3074 0.3741 0.5630 

mAP 0.2753 0.2905 0.5124 mAR small 0.1375 0.1562 0.4375 

mAP50 0.4226 0.4996 0.7939 mAR medium 0.3400 0.5800 0.7200 

mAP75 0.2376 0.3065 0.4667 mAR large 0.7333 0.7833 0.7667 

mAP small 0.0948 0.0496 0.3196 

Source: compiled by the authors

CONCLUSIONS 

The article proposes analysis and 

systematization of the metrics that are commonly 

used for evaluating 2D human pose analysis models. 

To facilitate further the empirical studies of existing 

methods and models for detection, tracking and 

action recognition, a systematization of existing 

metrics into subgroups, depending on what task of 

2D human pose analysis process they evaluate, was 

proposed.  

Four classes of evaluation metrics were 

introduced: classification, key point’s detection, 

object tracking metrics, and general metrics. 

Classification metrics are based on a quality 

evaluation and matching values from predicted 

bounding boxes with ground truths. Key point 

detection metrics are aimed at improving the quality 

of found joints of the human body. Tracking metrics 

simultaneously evaluate the object detection on each 

frame and the correctness of determining its 

trajectory. General metrics are not specifically 

related to any of the ML tasks and application area 

and evaluate the speed, resource intensity and type 

of training and test datasets. For action 

classification, pose estimation and forecasting step 

of human 2D pose analysis classification metrics are 

being used. 

The prototype of the application that used 

suggested metrics systematization was developed. 

Its purpose is to help data scientists in formalizing 

the choice of metrics for evaluating models 

depending on the ML problem being they solve and 

the application area they are working in. To evaluate 

the implemented application and demonstrate the 

metrics that were suggested Faster R-CNN, SSD and 

YOLOv3 object detection models were analyzed and 

compared in scope of 2D human pose analysis 

application area. Metrics were calculated and 

compared. This analysis showed that SSD and 

YOLOv3 have the most accurate responses on large 

objects detection. However, both have several 

shortcomings such as high False positive rates on 

small and medium objects. This implementation also 

showed inability to calculate True negative values in 

the context of working with bounding boxes during 

the metrics calculations, that makes the Recall 

metric uninformative in certain contexts. This 

information has been added in the corresponding 

section of the developed software.
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АНОТАЦІЯ 

Ця стаття присвячена систематизації метрик оцінки моделей для аналізу 2D поз людини. Одними з найпопулярніших 

завдань, які вирішуються за допомогою методів машинного навчання (ML), є виявлення, відстеження та розпізнавання дій 

людини для різних практичних застосувань. Існує багато різних метрик, які дозволяють оцінити моделі з того чи іншого 

боку. Для оцінки конкретного етапу аналізу пози людини (виявлення людини, виявлення ключових точок скелета людини, 

відстеження об'єктів, класифікація та оцінка пози) використовується певний набір метрик. Однак, як показує аналіз 

літератури, велика кількість метрик, а також використання різних термінів для представлення одних і тих самих понять,

спричиняє проблеми з інтерпретацією та порівнянням різних моделей ML. Метою цієї роботи є аналіз та систематизація

метрик для оцінки методів аналізу 2D поз людини, щоб полегшити подальший обґрунтований вибір метрик. Для 

підвищення об’єктивності оцінки результатів емпіричних досліджень існуючих і нових методів і моделей виявлення, 

відстеження та розпізнавання дій людини запропоновано систематизацію існуючих метрик на підгрупи залежно від того, які

прикладні завдання вони оцінюють. Було введено чотири класи метрик оцінювання: метрики класифікації, виявлення 

ключових точок, відстеження об’єктів і загальні метрики. Показники класифікації базуються на оцінці якості та зіставленні 

значень із передбачених обмежувальних рамок із реальними об'єктами. Метрики виявлення ключових точок орієнтовані на 

якість знайдених суглобів скелета людського тіла. Метрики відстеження оцінюють виявлення об'єкта на кожному кадрі та 

правильність визначення його траєкторії. Загальні показники конкретно не пов’язані з жодними завданнями аналізу 2D пози 

людини та використовуються для оцінки швидкодії, ресурсоємності та опису особливостей навчання моделі та 

використаного набору даних. Розроблено прототип веб-застосунку на основі запропонованої систематизації метрик, мета 

якого – допомогти науковцям із обробки даних у формалізації вибору метрик для оцінки моделей залежно від розв’язуваної 

задачі ML та прикладної області застосування розробленої моделі. Щоб оцінити та продемонструвати метрики, які були 

запропоновані реалізованим прототипом, були проаналізовані та порівняні моделі виявлення об’єктів Faster R-CNN, SSD і 

YOLOv3 у контексті їх застосування для аналізу 2D поз людей. Результати аналізу показали, що Faster R-CNN і YOLOv3 

мають найточніші відповіді, хоча вони мають недолік — високий рівень помилкових позитивних результатів. Реалізація 

також показала, що метрики, які базуються на справжніх від’ємних значеннях, неінформативні для застосування у контексті 

роботи з зображеннями через специфіку області застосування та неможливість обчислення справжніх негативних значень на 

даних зображення (ці значенні можуть знаходитися де завгодно на зображенні).  

Ключові слова: комп'ютерний зір; нейронні мережі; глибоке навчання; метрики; обробка відео; 2D; ефективність 
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