
Sheremet O. I., Sadovoi O. V., Sheremet K. S., Sokhina Yu. V.      /     Herald of Advanced Information Technology                            

                                                                                                                         2025; Vol. 8 No. 1: 43–53 

ISSN 2663-0176 (Print) 

ISSN 2663-7731 (Online) 

Theoretical aspects of computer science,  

programming and data analysis 

43 

 

DOI: https://doi.org/10.15276/hait.08.2025.3 

UDC 004.932.4  

Using deep neural networks for image denoising in  

hardware-limited environments 

Oleksii I. Sheremet
1)

 

ORCID: https://orcid.org/0000-0003-1298-3617; sheremet-oleksii@ukr.net. Scopus Author ID: 57170410800 

Oleksandr V. Sadovoi
2)

 

ORCID: https://orcid.org/0000-0001-9739-3661; sadovoyav@ukr.net. Scopus Author ID: 57205432765 
Kateryna S. Sheremet1) 

ORCID: https://orcid.org/0000-0003-3783-5274; artks@ukr.net. Scopus Author ID: 57207768511 

Yuliia V. Sokhina2) 
ORCID: https://orcid.org/0000-0002-4329-5182; jvsokhina@gmail.com. Scopus Author ID: 57205445522 

1) Donbas State Engineering Academy, 39, Mashinobudivnykiv Blvd. Kramatorsk, 84313, Ukraine 
2) Dniprovsky State Technical University, 2, Dniprobudivska Str. Kamyanske, 51918, Ukraine 

ABSTRACT 

Image denoising remains a vital topic in digital image processing, as it aims to recover visually clear content from observations 
compromised by random fluctuations. This article provides an overview of advanced deep neural network methods for image 
denoising and compares their performance with classical techniques. Emphasis is placed on the capacity of modern deep 
architectures to learn data-driven relationships that preserve structural details more effectively than traditional strategies. 
Implementation is conducted in a programming environment using open-source libraries, and the research is carried out in a cloud-
based platform with Google Colab to facilitate reproducible and scalable experimentation. Both classical and deep learning-based 
solutions undergo quantitative and visual assessment, measured through standardized quality indices such as signal-to-noise ratio and 
a measure of structural similarity, alongside processing speed analysis. Results indicate that neural network-based approaches deliver 
superior restoration accuracy and detail preservation, although they typically require more computational resources. Classical 
methods, while simpler to implement and often feasible on hardware with minimal capabilities, frequently struggle when noise levels 
are high or exhibit complex characteristics. Methods based on block matching and three-dimensional filtering achieve competitive 
outcomes but impose higher computational overhead, limiting their practicality for time-sensitive applications. Potential future 
directions include hybrid techniques that merge the benefits of convolutional and transformer-inspired frameworks, along with 
refined training methodologies that extend applicability to scenarios lacking large volumes of clean reference data. By addressing 
these challenges, the evolving field of image denoising stands to offer more efficient and robust solutions for diverse real-world 
tasks. 
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INTRODUCTION 

Image denoising is a fundamental challenge in 

digital image processing, aimed at restoring clear, 
noise-free images from degraded observations. 

Noise often appears as random fluctuations in pixel 

intensities and arises during image acquisition under 
adverse conditions. Consequently, images captured 

under these conditions frequently suffer from 

compromised clarity, diminished detail visibility, 

and reduced overall interpretability, which can 
adversely affect further processing tasks such as 

object recognition, scene analysis, and automated 

decision-making.  
The task of effectively suppressing noise and 

simultaneously preserving crucial image features, 
______________________________________________ 
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including fine textures, edges, and structural content, 

is very important across diverse application areas. 

These areas encompass digital photography, 
medical image diagnostics, satellite and aerial 

remote sensing, astronomical imaging, surveillance 

systems, industrial inspection, and various computer 
vision applications, where image quality 

significantly affects the accuracy and reliability of 

subsequent processing tasks. 

Historically, researchers have approached the 
denoising task using classical filtering and 

algorithmic strategies. Such traditional approaches 

include linear filtering methods, such as Gaussian 
smoothing and Wiener filtering, as well as nonlinear 

techniques, such as median filters and bilateral 

filters. Transform-domain methods, particularly 
those employing wavelets or Fourier transforms, 

have been widely utilized as well, benefiting from  
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their ability to isolate and suppress noise in specific 

frequency bands. Additionally, variational 

techniques and algorithms based on partial 
differential equations (PDE) have been explored 

extensively, as they provide strong theoretical 

foundations and intuitive geometric interpretations. 
Nevertheless, despite their theoretical advantages 

and computational efficiency, these classical 

methods frequently encounter practical limitations. 
They commonly assume simplistic noise models – 

most notably Additive White Gaussian Noise 

(AWGN) – and often prove insufficiently robust 

when dealing with realistic noise types characterized 
by complex statistical distributions and spatial 

correlations. Furthermore, classical filtering methods 

can unintentionally introduce artifacts or overly 
smooth images, thereby degrading important visual 

structures and textures, diminishing image 

interpretability, and negatively affecting downstream 

image analysis tasks. 
In recent years, significant advances in machine 

learning, and particularly deep learning techniques, 

have profoundly reshaped the field of image 
denoising. Deep neural network methods, such as 

Convolutional Neural Networks (CNNs), have 

demonstrated remarkable effectiveness by 
automatically learning sophisticated, non-linear 

mappings from noisy inputs to their clean 

counterparts. Unlike traditional approaches, neural 

network-based denoising does not rely on explicit 
modeling of noise distributions or manual parameter 

tuning, but instead derives optimal filtering and 

restoration strategies directly from large-scale 
datasets comprising paired noisy and noise-free 

images. Through training on diverse examples, deep 

learning models can implicitly capture complex 
statistical properties of real noise patterns, allowing 

for superior denoising quality, especially under 

challenging real-world conditions. Modern deep 

neural network architectures, such as residual 
networks, dense convolutional networks, attention-

based mechanisms, transformer-based models, and 

methods using self-supervised and unsupervised 
learning schemes, have progressively elevated image 

denoising performance to state-of-the-art (SOTA) 

levels. These neural architectures typically achieve 

higher values in standard quality metrics, such as 
Peak Signal-to-Noise Ratio (PSNR) [1], measured in 

decibels, and Structural Similarity Index Measure 

(SSIM) [1], a perceptually-motivated measure 
designed to evaluate structural preservation in 

images. 

Quantitative evaluation of denoising algorithms 
typically involves metrics like PSNR and SSIM, 

where higher values indicate superior restoration 

performance. While PSNR remains a widely-

adopted measure due to its simplicity and ease of 
computation, it assesses quality based solely on 

pixel-wise error and often correlates weakly with 

human perceptual assessments. Conversely, SSIM 
provides a more perceptually aligned measure by 

explicitly considering luminance, contrast, and 

structural similarities. Due to the complementary 
nature of these metrics, modern studies commonly 

employ both PSNR and SSIM when evaluating 

denoising methods. Additionally, inference speed 

and computational complexity represent crucial 
practical considerations, as rapid image restoration is 

essential in many real-time or resource-constrained 

scenarios, such as mobile photography or embedded 
vision systems. 

THE PURPOSE OF THE ARTICLE 

The main goal of this article is to provide a 

concise review of modern image denoising 
approaches, emphasizing SOTA neural network 

solutions, and to experimentally compare their 

restoration performance.  
Specifically, the objectives are to. 

‒ Summarize key developments in both 

classical and deep neural network-based image 

denoising techniques, highlighting architectures such 

as convolutional networks and transformer-inspired 

models. 

‒ Compare a selection of methods (including 

linear, non-linear, and deep CNN-based denoisers) 
under controlled experiments, focusing on 

restoration quality (PSNR, SSIM) and computational 

effort (inference time). 

‒ Discuss practical considerations such as 

resource constraints and hardware requirements, 

given that efficient denoising is often desirable in 
mobile or industrial applications. 

‒ Provide direction for future research, 

including investigations into more advanced 

transformer-based approaches and optimization 

techniques (e.g., pruning or quantization) to balance 
speed and quality. 

By focusing on these aspects, the article offers 

both a theoretical overview and an empirical 

demonstration of how modern deep learning 
methods can significantly improve image denoising 

outcomes over classical algorithms, while 

acknowledging the trade-offs related to 
computational complexity. 

The scientific novelty of the research lies in the 

integrated approach for experimental evaluation, 
which employs a real-world collection of 
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architectural photographs to explicitly compare 

denoising quality and inference time between 

classical filters and a deep CNN model under 
constrained hardware conditions. 

LITERATURE REVIEW 

Image denoising has been extensively studied 
due to its significance in various applications 

requiring high image quality. Classical denoising 

methods predominantly rely on mathematical 
models and heuristics, which offer fast computation 

and interpretability but exhibit limitations in 

preserving essential image details. 

Linear filters represent some of the simplest 
classical denoising approaches, including averaging 

and Gaussian smoothing. These methods reduce 

noise by averaging pixel values within local 
neighborhoods, which inevitably leads to 

undesirable blurring of edges and loss of fine 

textures, particularly under conditions of substantial 

noise [2]. Wiener filtering improves upon this by 
adaptively adjusting smoothing strength based on 

local variance estimates, thereby better preserving 

high-frequency image content; however, it still 
struggles to maintain sharp edges and fine details at 

higher noise levels [3]. 

Non-linear filters provide a more effective 
alternative to linear methods. Median filtering, for 

example, effectively handles impulse (salt-and-

pepper) noise by replacing each pixel with the 

median intensity of its neighborhood, thus 
preserving edges better than averaging methods [4]. 

Bilateral filtering advances this approach further by 

combining spatial proximity and intensity similarity, 
significantly reducing noise while effectively 

preserving edges and structural details [5]. 

Variational and PDE-based methods, such as 
anisotropic diffusion and total variation (TV) 

denoising, significantly advanced denoising theory. 

Anisotropic diffusion reduces noise by iteratively 

smoothing images while selectively restricting 
diffusion across edges; however, it requires careful 

parameter tuning and can produce oversmoothing 

artifacts [6]. TV denoising employs an L1 
regularization penalty on image gradients to 

preserve sharp edges, yet it may introduce 

characteristic staircase artifacts, leading to unnatural 

block-like effects and loss of fine textures [7]. 
Transform-domain and sparsity-based methods 

marked another significant development in classical 

denoising. Wavelet thresholding techniques 
selectively suppress insignificant wavelet 

coefficients, exploiting sparse representations, 

though their performance heavily depends on 
appropriate basis selection and thresholding rules [8]. 

Dictionary learning approaches, such as K-SVD, 

improved adaptability by learning image-specific 

sparse representations. Weighted Nuclear Norm 
Minimization (WNNM) further enhanced quality 

using low-rank approximations of similar patch 

groups but required extensive computational 
resources due to iterative optimization [9]. 

A significant advancement in classical 

denoising was achieved through non-local self-
similarity, recognizing repetitive patterns across 

images. Non-Local Means (NLM) improved texture 

preservation by averaging pixels based on structural 

similarity rather than spatial proximity alone [10]. 
Block-Matching and 3D (BM3D) filtering extended 

this idea by grouping similar patches into stacks and 

applying collaborative transform-domain filtering, 
achieving SOTA results for many years but at the 

cost of higher computational complexity and 

occasional block artifacts at high noise levels [11]. 

Despite these successes, classical methods 
inherently face trade-offs between noise suppression 

and detail preservation, requiring careful manual 

tuning and often struggling with real-world noise 
complexities. These limitations motivated the 

transition to deep learning approaches, which 

implicitly learn denoising strategies from data. 
Early neural network approaches, like the 

Multi-Layer Perceptron based method demonstrated 

competitive performance compared to BM3D but at 

substantial computational cost [12]. The Trainable 
Nonlinear Reaction-Diffusion (TNRD) method 

bridged classical models with neural networks, 

achieving competitive results through learned 
diffusion filters in shallow convolutional networks 

[13]. The limitations of classical methods and 

promising initial results from early neural network-
based approaches motivated intensive research 

towards more advanced deep learning solutions. 

Among these, convolutional neural networks 

(CNNs) rapidly emerged as the leading technique 
due to their powerful feature extraction capabilities, 

flexible architectures, and ability to learn directly 

from large-scale data. 

IMAGE DENOISING WITH DEEP 

LEARNING 

Advanced convolutional neural networks 

(CNNs), such as Denoising CNN (DnCNN), 
significantly improved denoising performance by 

introducing residual learning and batch 

normalization techniques [14, 15]. Building upon 
this, fast and Flexible Denoising CNN (FFDNet) 

enhanced robustness and efficiency by explicitly 

integrating noise-level information and processing 
downscaled image inputs [16, 17]. 
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Deep learning approaches have transformed 

image denoising by learning rich models of images 

and noise directly from data. Instead of manually 
designing filters or priors, neural networks can learn 

how to remove noise by training on large datasets of 

noisy and clean image pairs. This section details the 
most widespread and interesting neural network 

architectures for denoising, from early attempts to 

current SOTA designs. 
The watershed moment for deep learning in 

denoising came with the introduction of DnCNN 

[18]. DnCNN is a deep CNN (17 layers) that 

introduced two key ideas: residual learning and 
batch normalization for denoising. Instead of 

directly predicting the clean image, DnCNN is 

trained to predict the residual noise (the difference 
between noisy and clean image). This residual 

learning formulation makes the job easier, since the 

residual is often a simpler pattern (mostly high-

frequency noise) and the network doesn’t have to 
learn to reproduce the entire image content. After 

predicting the noise, the clean output is obtained by 

subtracting the noise from the input. DnCNN also 
used batch normalization layers to stabilize and 

accelerate training, which was novel in the context 

of low-level vision at the time (Fig. 1). With these 
innovations and a sufficiently deep architecture, 

DnCNN was able to significantly surpass BM3D in 

denoising performance for additive white Gaussian 

noise across a range of noise levels (about 0.5-0.7 
dB higher PSNR than BM3D). 

One limitation of DnCNN was that it was 

trained for a specific noise level (or had separate 
models for several discrete noise levels). If the noise 

variance changed, one would need to know it and 

possibly switch models. To address this, FFDNet 
was proposed as a fast and flexible denoising CNN 

[19]. FFDNet accepts an additional noise level map 

as input – essentially a constant channel indicating 

the estimated noise sigma. 
This allows a single network to handle variable 

noise levels by adjusting its output based on the 

provided sigma. FFDNet also employs an 
architectural tweak: it operates on downsampled 

sub-images (e.g. splitting the image into four sub-

images of half resolution) for efficiency. Operating 

on a smaller spatial size both speeds up processing 
and increases the effective receptive field of the 

filters on the original image. Thanks to these ideas, 

FFDNet is flexible (one model works for a range of 
noise) and fast in practice, while delivering 

denoising quality on par with DnCNN. In fact, for 

higher noise (σ > 25), FFDNet was reported to 
slightly outperform DnCNN in PSNR [20] (Table 1). 

As shown, the CNN-based methods (DnCNN and 

FFDNet) generally achieve higher PSNR values 

compared to classical methods (BM3D and WNNM), 
especially at moderate noise levels (σ = 25 and 50). 

 

Fig. 1. DnCNN architecture and residual-based 

denoising workflow 
Source: compiled by the authors 

Table 1. Comparison of PSNR for BM3D, WNNM, 

DnCNN, and FFDNetat different noise levels 

Method σ = 15 σ = 25 σ = 50 

BM3D 31.07 28.57 25.62 

WNNM 31.37 28.83 25.87 

DnCNN 31.72 29.23 26.23 

FFDNet 31.62 29.19 26.30 
Source: compiled by the [20] 

Following the pioneering methods such as 

DnCNN and FFDNet, research has increasingly 

focused on pushing denoising performance further 
by deepening and widening network architectures 

while incorporating novel mechanisms. One 

prominent direction has been the integration of 
residual and dense connections inspired by high-

level vision models like residual neural network 

(ResNet) [21] and densely connected networks 

(DenseNet) [22]. 
Recent methods incorporate attention 

mechanisms and non-local blocks to capture long-
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range dependencies by modeling similarities 

between distant image regions, echoing classical 

self-similarity approaches. For example, models 
such as N3Net [23] integrate learnable NLM-style 

filtering within a CNN; in N3Net, convolutional 

features are used to compute an affinity matrix that 
guides the weighted aggregation of information from 

spatially distant but similar patches. 

Transformer-based models [24] have been 
recognized as the most modern and effective 

solution for image denoising since around 2021. 

These architectures use self-attention to capture 

long-range dependencies, which is essential for 
distinguishing noise from fine image details. For 

example, the Image Processing Transformer (IPT) 

leverages a large pretrained transformer originally 
developed for natural language processing to 

perform multiple restoration tasks – denoising, 

super-resolution, and inpainting – by effectively 

modeling global context. Building on this, SwinIR 
[25] partitions images into non-overlapping 

windows and applies self-attention locally, 

dramatically reducing computational complexity 
while still capturing long-range relationships 

through hierarchical merging [26]. 

For medium and small computing power, 
DnCNN is the most practical option. Transformer-

based models require substantial resources. Their self-

attention mechanism scales quadratically with image 

resolution, leading to high memory usage and slower 
inference, especially for high-resolution images [27]. 

Additionally, they demand large training datasets, 

increasing costs and making them less practical for 
resource-constrained environments [28]. 

IMAGE DENOISING EXPERIMENTS 

In continuation of the theoretical framework 

presented earlier, a series of experiments were 

conducted to assess the performance of several 

image denoising methods under controlled 

conditions, with special attention to the practical 

viability of deep learning‐based approaches in 

environments with limited computational resources.  

Linear and basic nonlinear filters remain widely 

used in many image-processing pipelines due to 

their simplicity and low computational requirements. 

Evaluating these simpler methods provides a 

baseline for illustrating incremental improvements 

achieved by more advanced classical approaches 

such as BM3D, and subsequently demonstrates the 

additional benefits provided by deep learning 

techniques. Traditional filtering techniques – 

including Gaussian filtering, bilateral filtering, and 

BM3D – were implemented alongside a pretrained 

deep convolutional neural network (DnCNN) 

derived from the KAIR framework [29]. The 

objective was to quantitatively compare these 

methods using standard quality metrics (PSNR and 

SSIM) and to visually inspect the restoration results. 

The experimental implementation was carried 

out in Python. The code begins by establishing the 

necessary environment and importing libraries such 

as OpenCV [30] for classical image processing, 

BM3D for advanced patch-based filtering, and 

PyTorch for deep learning inference. A set of helper 

functions was defined to simulate image degradation 

by adding synthetic Gaussian noise, compute image 

quality metrics, and facilitate visual comparisons by 

displaying the noisy, denoised, and reference images 

side by side. A test image is loaded, resized, and 

then corrupted with additive white Gaussian noise to 

generate the noisy observation. 

While well-known datasets such as the 

Smartphone Image Denoising Dataset (SIDD) or the 

Darmstadt Noise Dataset (DND) are frequently 

employed to benchmark image denoising methods, 

the experimental evaluation in this study utilized a 

set of multiple real-world photographs captured 

under varying lighting and environmental conditions. 

These photographs, which primarily depict 

architectural landmarks in large Ukrainian cities, 

serve not only to assess denoising performance on 

scenes featuring intricate structural details and 

diverse textures but also to demonstrate how such 

technologies may be integrated into industrial design 

workflows where maintaining high-quality visual 

information is essential. Moreover, the dataset was 

carefully curated to capture a broad spectrum of 

noise conditions and image qualities, thereby 

reflecting the challenges encountered in real-world 

scenarios and highlighting the impact of data 

variability on the performance of deep learning 

models. Although the dataset is comparatively 

smaller and more focused than standard benchmarks, 

it comprises several distinct images rather than a 

single photo, ensuring that the reported outcomes are 

not tied to an isolated case. 

For the classical methods, Gaussian filtering, 

bilateral filtering, and BM3D were applied using 

parameters optimized to balance noise reduction 

with detail preservation. In parallel, the pretrained 

DnCNN model was implemented as a 20-layer 

network that mirrors the architecture specified by the 

KAIR framework. The model’s weights were 

downloaded from an external repository [31]. An 

inference function converts the input image into the 
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appropriate tensor format and processes it through 

the network to produce a denoised output. 

Finally, the outputs from all denoising methods 

were aggregated into a single framework where 

PSNR and SSIM were computed against the original 

clean image, and the results were presented both 

numerically and visually. This experimental design 

enables a direct, quantitative comparison between 

classical filtering techniques and the deep learning-

based DnCNN model (Fig. 2). 

The performance was measured using PSNR 

and SSIM. The results of the experiments are shown 

in Table 2. 

Gaussian Filtering produced the lowest quality, 

with a PSNR of 21.45 dB and an SSIM of 0.660. 

This low PSNR indicates that the uniform blur 

introduced by Gaussian filtering is too aggressive, 

leading to the loss of fine details and texture (Fig. 

3b). The SSIM value further confirms that the 

structural information in the image is poorly 

preserved. 

 

Fig. 2. Flowchart of the denoising experiment 
Source: compiled by the authors 

 

a                                                    b                                                     c 
 

 

d                                                     e 

Fig. 3. Comparison of image denoising results:  

a – original noisy image; b – Gaussian-filtered image; c – bilateral-filtered image; 

d – BM3D-filtered image; e – pretrained DnCNN-denoised image 
Source: compiled by the authors 
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Table 2. Experimental comparison of Gaussian, 

Bilateral filtering, BM3D, and DnCNN 

Method PSNR (dB) SSIM 

Gaussian 21.45 0.660 

Bilateral filtering 26.34 0.804 

BM3D 25.03 0.807 

DnCNN (pretrained) 27.96 0.894 
Source: compiled by the authors 

Bilateral filtering improved the quality, 
achieving a PSNR of 26.34 dB and an SSIM of 
0.804. By considering both spatial and intensity 
information, bilateral filtering is able to reduce noise 
while better preserving edges compared to the 
Gaussian filter (Fig. 3c). However, its performance 
is still limited when handling complex textures and 
higher noise levels. 

BM3D, which exploits non-local self-similarity, 
reached a PSNR of 25.03 dB and an SSIM of 0.807. 
Although its PSNR is slightly lower than that of 
bilateral filtering, its SSIM is comparable (Fig. 3d). 
BM3D typically excels in preserving structural 
details through collaborative filtering, but in this 
case, its overall performance is not as high as that of 
the deep learning method. 

The pretrained DnCNN model achieved the 
highest performance, with a PSNR of 27.96 dB and 
an SSIM of 0.894 (Fig. 3e). This indicates that the 
deep learning approach is much more effective in 
removing noise while preserving the image's fine 
details and structural information. DnCNN benefits 
from being trained on large datasets, enabling it to 
learn a non-linear mapping from noisy images to 
clean images, which results in better quantitative and 
perceptual quality. 

In summary, while classical methods such as 
Gaussian, bilateral filtering, and BM3D can reduce 
noise, they tend to sacrifice detail or fail to handle 
complex textures. The deep learning-based DnCNN 
significantly outperforms these methods by 
achieving higher PSNR and SSIM values, making it 
a more robust choice for applications that require 
high-quality image restoration. 

METRICS AND INFERENCE TIME 

While PSNR and SSIM remain the two most 
frequently employed quantitative indicators for 
evaluating denoising effectiveness, they capture 
somewhat different dimensions of image fidelity. 
PSNR, derived from the mean squared error between 
the predicted and ground-truth images, is easy to 
compute and widely recognized but can fail to 
reflect perceptual aspects. SSIM, in contrast, 
accounts for luminance, contrast, and structural 
information, often aligning better with the human 
visual system’s sensitivity to edges and fine details. 

Consequently, an algorithm producing a relatively 
modest gain in PSNR but a marked improvement in 
SSIM can offer superior visual quality. It is, 
therefore, prudent to report both metrics to achieve a 
well-rounded assessment of denoising performance, 
as done in the experiments above. 

In addition to these quality metrics, inference 
time is a crucial consideration, especially for real-
world applications requiring rapid image restoration 
(e.g., mobile photography, surveillance, or industrial 
inspection on resource-constrained hardware). 
Traditional methods like bilateral filtering or BM3D 
can be computationally heavy for large images, yet 
they often remain CPU-friendly for moderate 
resolutions, eliminating the need for specialized 
hardware. Deep neural networks, however, may 
exhibit higher computational requirements: DnCNN, 
FFDNet, and other CNN-based approaches rely on 
GPU acceleration to achieve real-time or near real-
time inference speeds at high resolutions. For 
applications where low-latency processing is 
essential, smaller architectures or optimization 
techniques (e.g., model pruning, quantization, and 
efficient blocks such as depthwise convolutions) can 
be employed to strike a balance between denoising 
accuracy and runtime constraints. 

As a result of the experiment, the inference time 
was also estimated, demonstrating how the 
computational demands of each method vary 
significantly. The experiments were performed on a 
Google Colab Pro instance equipped with an 
NVIDIA A100 GPU, which is known for its high 
computational throughput (Table 3). 

Table 3. Inference time of Gaussian, Bilateral 

filtering, BM3D, and DnCNN denoising methods 

Method Inference Time (ms) 

Gaussian 0.90 

Bilateral filtering 12.13 

BM3D 3122.11 

DnCNN (pretrained) 7.01 
Source: compiled by the authors 

Gaussian Filtering shows an exceptionally low 
inference time (0.90 ms) due to its simplicity – a 
fixed convolution operation that is highly optimized 
in many libraries. However, the lower PSNR and 
SSIM values suggest that while it is fast, its 
denoising capability is limited. 

Bilateral filtering requires a longer inference 
time (12.13 ms) compared to Gaussian filtering. This 
is because bilateral filtering not only considers 
spatial proximity but also pixel intensity similarity, 
which adds computational overhead. The additional 
complexity results in better preservation of edges 
and improved denoising performance, as reflected in 
its PSNR and SSIM values. 
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BM3D demonstrates a significantly higher 
inference time (3122.11 ms). The algorithm involves 
block matching and collaborative filtering in a 3D 
transform domain, which are computationally 
intensive processes. The implementation, likely not 
optimized for GPU acceleration, leads to this 
substantial runtime even on a high-performance 
instance. This method is robust in terms of denoising 
quality but is less feasible for real-time applications. 

DnCNN achieves a competitive balance between 
quality and speed. With an inference time of 7.01 ms, 
it benefits from GPU acceleration provided by the 
A100. The network’s architecture, which comprises a 
series of convolutional layers, is efficiently executed 
on GPUs. This method attains the highest PSNR and 
SSIM, indicating superior denoising performance 
while maintaining low inference times. 

Thus, while classical methods like Gaussian 
and bilateral filtering offer rapid inference, they 
compromise on denoising quality. BM3D, despite its 
effective noise reduction, suffers from a prohibitive 
inference time due to its complex processing steps. 
Conversely, the DnCNN model, optimized for GPU 
execution, delivers both high denoising quality and 
low inference latency, making it well-suited for real-
time applications in high-performance computing 
environments like a Colab Pro instance with an 
NVIDIA A100 GPU. 

CONCLUSIONS 

The results of this study underscore the 
transformative impact of deep learning on image 
denoising. Modern neural network architectures – 
particularly CNN-based models such as DnCNN – 
consistently demonstrate superiority over classical 
methods. These networks achieve higher PSNR and 
SSIM values while maintaining competitive inference 
speeds through efficient GPU utilization. Their 
capability to learn complex, non-linear mappings 
from noisy inputs to clean outputs, facilitated by 
mechanisms like residual learning and batch 
normalization, sets a new benchmark in the field. 

Classical denoising techniques, including 
Gaussian, bilateral filtering, and BM3D, remain 
relevant in scenarios where computational resources 
are severely limited. However, these methods 
generally fall short in preserving fine details and 
structural information. For example, while Gaussian 
filtering offers extremely fast processing, its uniform 

smoothing often results in significant loss of essential 
details. BM3D, although effective at reducing noise 
by leveraging non-local self-similarity, incurs 
prohibitive inference times that hinder its applicability 
in real-time applications. The comparative 
experiments clearly illustrate that deep learning-based 
approaches offer a more balanced trade-off between 
denoising quality and runtime efficiency. 

Transformer-based models, introduced around 
2021, represent the frontier of denoising technology 
by capturing global contextual information through 
self-attention mechanisms. Despite their state-of-the-
art performance in modeling long-range 
dependencies, these models demand substantial 
computational resources and large-scale training 
data. Their increased memory consumption and 
longer inference times make them less practical for 
resource-constrained environments, highlighting an 
important trade-off between performance gains and 
computational efficiency. 

Looking ahead, further research is essential to 
bridge the gap between high-performance denoising 
and practical deployment. Hybrid architectures that 
combine the efficiency of CNNs with the global 
context modeling of transformers offer a promising 
avenue for future development. Additionally, 
techniques such as model pruning, quantization, and 
knowledge distillation may help to reduce the 
computational overhead of deep models without 
sacrificing denoising quality. Moreover, self-
supervised and unsupervised learning methods 
present an exciting opportunity to further enhance 
the robustness of denoising models, particularly in 
scenarios where clean training data are scarce. 

In conclusion, while modern deep learning 
methods have significantly advanced the state-of-
the-art in image denoising, ongoing innovation is 
necessary to optimize these techniques for real-
world applications. Achieving an optimal balance 
between denoising performance and computational 
efficiency will be crucial for the integration of these 
methods into practical imaging systems, ranging 
from mobile photography to high-throughput 
industrial inspection. The continued evolution of 
deep neural networks, combined with advancements 
in hardware and training strategies, is poised to 
further revolutionize the field of image restoration in 
the coming years [32, 33]. 
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АНОТАЦІЯ 

Усунення шуму на зображеннях залишається важливою темою в цифровій обробці зображень, адже має на меті 
відновлення чіткого візуального вмісту з даних, пошкоджених випадковими коливаннями. У цій статті представлено огляд 
сучасних методів усунення шуму на основі глибоких нейронних мереж та порівняння їх ефективності з класичними 

техніками. Особливий акцент зроблено на здатності сучасних глибоких архітектур вивчати залежності в даних, що дозволяє 
більш ефективно зберігати структурні деталі, ніж традиційні методи. Реалізацію проведено в програмному середовищі з 
використанням бібліотек відкритого коду, а дослідження виконано на платформі Google Colab, що забезпечує 
відтворюваність і масштабованість експериментів. Класичні та нейромережеві методи оцінюються кількісно та візуально за 
допомогою стандартизованих показників якості, таких як співвідношення сигнал/шум і показник структурної подібності, а 
також аналізу швидкості обробки. Результати демонструють, що нейромережеві підходи забезпечують вищу точність 
відновлення і краще зберігають деталі, хоча зазвичай потребують більших обчислювальних ресурсів. Класичні методи, хоч і 
простіші в реалізації та доступні для обладнання з мінімальними можливостями, часто не справляються за високого рівня 

шуму або його складного характеру. Методи на основі зіставлення блоків та тривимірної фільтрації демонструють 
конкурентні результати, проте вимагають значних обчислювальних витрат, що обмежує їх застосування для завдань, 
чутливих до часу. Перспективні напрямки розвитку включають гібридні підходи, що поєднують переваги згорткових і 
трансформерних архітектур, а також удосконалення стратегій навчання, які дозволять використовувати методи за 
відсутності великих обсягів чистих еталонних даних. Вирішення цих викликів забезпечить розвиток методів усунення шуму 
на зображеннях, що дозволить отримати більш ефективні та надійні рішення для широкого спектру практичних задач. 

Ключові слова: усунення шумів із зображення; глибокі нейронні мережі; залишкове навчання; моделі на основі 
трансформерів; якість шумозаглушення; час висновку 
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