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ABSTRACT

Predicting parameters in industrial processes is significantly complicated by the presence of noise in sequential measurements,
which reduces the effectiveness of technological process control. The aim of the research is to develop an integrated model that
combines adaptive noise filtration methods and regression to improve the accuracy of forecasting noisy time series using machine
learning algorithms. During the research, a comprehensive database of time series with various levels and types of noise was created,
providing a thorough verification of the effectiveness of the proposed methods. The datasets were developed considering the
specifics of technological processes and the diversity of noise patterns, which allowed for an accurate evaluation of the developed
methods under different conditions. As part of the development of adaptive noise filtration methods, the Kalman filter and wavelet
filtration were implemented and optimized. The relationship between the effectiveness of filtration methods and temporal patterns
was established: for rapidly changing parameters, wavelet filtration provides higher smoothing efficiency, whereas the Kalman filter
better preserves signal characteristics for more stable sequences. To solve the time series forecasting problem, two regression
algorithms were implemented and tested — Support Vector Regression and Multilayer Perceptron. It was proven that Support Vector
Regression demonstrates better results with low-noise data, while Multilayer Perceptron shows higher stability under significant
noise conditions, especially after preliminary filtration. To evaluate the effectiveness of the proposed solutions, a comprehensive
quality assessment system was developed that simultaneously considers forecasting efficiency, temporal aspects, noise
characteristics, and computational complexity. Experimental confirmation demonstrates that the developed approach improves
forecasting accuracy compared to machine learning methods without preliminary filtration, while maintaining acceptable
computational complexity. The developed approach is promising for industrial applications, including modeling iron ore enrichment
processes, where noise-resistant forecasting is important for process control. The proposed methods can be extended to various
industrial processes with similar temporal data and noise characteristics, especially in metallurgical, chemical, and food industries.
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INTRODUCTION information noise arising from data transmission
processing, and storage systems. The term “data
noise” encompasses all these distortions in the
digital representation of process parameters, while
"information  noise"  specifically refers to
uncertainties and variations in the data that affect the
guality of information extraction and decision-
making. Understanding these different types of noise
and their interactions is crucial for developing
effective prediction systems, as they directly impact
data quality and, consequently, the accuracy of
machine learning models.

With continuous improvement in industrial
technologies, there is a growing need to develop
adaptive forecasting methods capable of operating
effectively at various levels of data noise. Current
research demonstrates that traditional approaches to
filtering and forecasting do not provide the
necessary accuracy in real production conditions.
This necessitates the development of an integrated

The modern development of industrial
technological processes is characterized by
increasing demands for control accuracy and final
product quality. The problem of forecasting
technological parameters under industrial noise
conditions becomes particularly relevant, as it
directly affects production efficiency and energy
consumption. The specifics of continuous
production processes create unique challenges for
prediction systems due to multiple sources of
interference, process nonlinearity, and complex
relationships between parameters.

In the context of information technologies,
“industrial noise™ refers to various types of data
distortions occurring in technological process
measurements. This includes both physical noise
from sensors and equipment (measurement errors,
electromagnetic interference, vibrations) and,

approach that would combine effective filtering
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Special attention should be paid to developing
an approach for evaluating prediction quality that
would consider not only forecast accuracy but also
computational efficiency and resistance to various
types of interference. Additionally, with the
development of Industry 4.0 concepts and
implementation of modern information technologies,
there is an increasing need to integrate economic and
resource aspects into the modeling process,
providing deeper understanding of internal
mechanisms of prediction systems' operation.

Furthermore, the rapid development of digital
technologies and increasing complexity of
production processes require implementation of new
approaches to noise analysis and algorithm
optimization. Systematic investigation of different
noise levels' impact allows not only improving
model stability but also ensures their applicability
across a wide range of industrial tasks. The
developed integrated approach demonstrates the
potential of using combined filtering and regression
methods to achieve high prediction quality, opening
new perspectives for automatic control system
optimization.

1. ANALYSIS OF LITERARY DATA

Predicting parameters of complex technological
processes under noisy data conditions remains a
relevant challenge for various industrial systems.
Research shows that different types of noise in data
can significantly affect the performance of
prediction systems. Understanding the impact of
various noise types on model accuracy is crucial for
developing robust prediction methods. Moreover,
proper handling of noise in input data can improve
the overall performance of artificial intelligence
systems, making prediction models more flexible
and accurate [1].

Significant progress has been achieved in
developing robust neural networks. Researchers
propose using data abstraction methods to reduce
noise impact [2]. In the context of industrial
systems, special attention is paid to research on
technological process optimization, where machine
learning-based sensors are developed to predict key
quality indicators [3]. For example, in various
industrial contexts, such systems can predict quality
indicators and impurity content in final products.

The characteristics of complex technological
processes create additional challenges for prediction
systems. Current research focuses on developing
machine learning models for predicting critical
parameters such as temperature, pressure, viscosity,

chemical composition, and other quality indicators
in the final product [4]. An important direction is
also product quality prediction, where machine
learning algorithms are used to optimize the process
and provide recommendations to operators [5].

Unlike previous studies that focused separately
on filtration or prediction methods, there is a need
for an integrated approach to solving the problem of
parameter prediction under noisy conditions. Special
attention should be paid to developing a
comprehensive indicator for assessing prediction
quality that would simultaneously consider forecast
accuracy, computational complexity, and resistance
to noise of various natures.

Analysis of current research revealed a lack of
systematic analysis of normally distributed noise of
varying intensity on process parameter prediction
quality, insufficient study of comparative
effectiveness of different prediction methods under
noisy data conditions, and limited research on
optimizing computational efficiency of prediction
methods  considering  physical  patterns  of
technological processes.

Thus, there is a need for comprehensive
research on noise impact on models' predictive
capability and development of methods to increase
their robustness while considering computational
efficiency, which has determined the direction of
this research.

2. RESEARCH GOAL AND OBJECTIVES

The goal of the research is to develop an
integrated model that combines adaptive noise
filtering methods and regression for improving the
accuracy of forecasting noisy time series using
machine learning algorithms.

To achieve this goal, the research addresses the
following objectives: developing a general structure
scheme for the information technology that
describes the research process; creating an
experimental database of noisy time series for
comprehensive validation of the effectiveness of the
developed methods; implementing and optimizing
adaptive noise filtering algorithms to significantly
improve input data quality; deploying regression
algorithms to build forecasting models that account
for preliminary data processing; conducting a
comprehensive analysis of the obtained results to
determine the most optimal approaches considering
computational efficiency and forecasting accuracy.

3. RESEARCH METHODS

The research was conducted in four stages. In
the first stage, basic data sets were formed by
generating control points with variable parameter
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dynamics using USIM PAC software — a specialized
tool for modeling and optimizing mineral
processing. Simulation was used due to the objective
impossibility of obtaining a representative array of
real production data with controlled noise levels,
which is necessary for comprehensive testing of
filtration and regression methods. This software
allowed the generation of realistic technological data
that accurately reproduce real industrial conditions,
avoiding the limitations of real industrial systems:
periodicity of technological cycles, complexity of
simultaneous parameter recording, and ethical and
economic constraints on experiments with active
production. Continuous time series were obtained
using cubic interpolation, and output parameters
were determined by the k-nearest neighbor’s
method. In the second stage, industrial conditions
were simulated by applying normally distributed
noise at three intensity levels. The third stage
included the development and training of models
using adaptive Kalman filtering and wavelet filtering
algorithms, as well as training Support Vector
Regression (SVR) and Multilayer Perceptron (MLP)
models on various data sets. In the final stage, the
results were evaluated through analysis of prediction
accuracy for different noise levels.

The choice of research methods was justified by
their specific properties. Support Vector Regression
provided high accuracy in predicting nonlinear
dependencies [6], while the MLP demonstrated the
ability to detect complex relationships between
parameters [7]. The application of adaptive Kalman
filtering enabled effective suppression of noise at
various intensities [8], while wavelet filtering
ensured preservation of important signal features [9].

The experimental part was implemented
through the generation of ten datasets for each
parameter combination, considering three noise
levels and two parameters change rate variants,
which ensured statistical reliability of the results.

Generation of Basic Signals. The formation of
experimental datasets was implemented in two
stages: generation of input parameters and
determination of corresponding output values. In the
first stage, time series were generated for three input
parameters with different statistical properties:
Parameter A with normal distribution, Parameter B
with uniform distribution, and Parameter C with
quasi-constant values with minor fluctuations. Sets
ranging from 256 to 8192 points were used to study
the effect of sample dimensionality on prediction
quality.

The generation of basic signals was carried out
by defining control points (5 %, 10 %, or 20 % of

the total set size) followed by interpolation. Values
for Parameter A were generated according to normal
distribution (u=37, 6=0.33), Parameter B according
to uniform distribution (25-35), and Parameter C
was maintained close to 100 with minor variations.

For practical interpretation of the results, these
abstract parameters can be mapped to real industrial
processes. For example, in mineral processing
systems, Parameter A might represent material
content in raw material (%), Parameter B -
percentage of solids in slurry (%), and Parameter C
— material flow rate (m3/hr or t/hr).

To obtain continuous time series, cubic
interpolation method was applied, described by
equation (1):

S(x) =a(x—x)’b(x—x)*+c(x—x)+d, (1)

where coefficients were determined from the
conditions of function continuity and its derivatives.

The determination of output parameters (Output
X, Output Y, and output rates Z1 and Z2) was
implemented using the k-nearest neighbors' method
(k=1) with the ball tree algorithm.

The Euclidean distance between the input
parameter vector x and point x; was calculated using
formula (2):

d(x %) = Z(x—%)*. @

The ball tree algorithm optimized the search for
nearest neighbors by partitioning space into nested
hyperspheres [10]. Output parameters were
maintained within predefined ranges typical for the
studied type of processes.

In the context of material enrichment processes,
these output parameters would correspond to content
percentage in concentrate (Output X), content
percentage in tailings (Output Y), and mass flows of
concentrate (Z1) and tailings (Z2).

Modeling of Noise Effects To reproduce real
operating conditions of industrial systems, normally
distributed noise was introduced into the
experimental data as the most characteristic type of
interference in industrial measurement systems. The
noise level was formed proportionally to the current
parameter value, which corresponds to the nature of
errors in industrial measuring instruments.

The noise component was calculated using
formula (3):

noise = N (0, o)sv, (3)

where N(0, o) is a normally distributed random
variable with zero mean and standard deviation o, sv
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represents the signal value, and o is determined as
the relative error coefficient (error_percent/100).
Three characteristic noise ranges were defined:
— minimum (min), optimal operating
conditions;
— average (aver), typical production conditions;
— maximum (max), complicated operating
conditions.
The noise levels for each parameter are shown
in Table 1.

Table 1. Noise levels for parameters
(percent of signal value)

Parameter min aver max
Parameter A 0.5 0.75 1.0
Parameter B 1.0 15 2.0
Parameter C 1.0 2.5 4.0
Output X 0.3 0.5 0.7
Output Y 0.4 0.65 0.9
Z1 Flow 2.0 3.5 5.0
Z2 Flow 2.5 4.0 5.5

Source: compiled by the author

The experimental base was formed considering
six sample sizes (256-8192 points) and three variants
of control point density (5 %, 10 %, 20 %). For each
of the 18 combinations, three noise variants were
created, totaling 54 data groups. Taking into account
nine repetitions for each group, the total number of
experiments reached 486, ensuring statistical
reliability of the results.

Architecture of Predictive Models For time
series forecasting in industrial systems, the selection
of Support Vector Regression (SVR) and Multilayer
Perceptron (MLP) as predictive models was driven
by several fundamental considerations related to the
nature of industrial processes. Industrial data
typically exhibits complex nonlinear relationships
between variables along with significant noise
components that cannot be adequately modeled
using classical linear forecasting approaches. As
demonstrated in previous research [11], traditional
linear methods often fail to capture the intricate
dynamics of complex industrial processes,
particularly under varying operational conditions
and in the presence of measurement noise.

Support Vector Regression was selected due to
its robust mathematical foundation that enables
effective generalization with limited training data.
The method employs a e-insensitive loss function
that disregards errors falling within a specified
threshold, making it particularly suitable for noise-
contaminated  industrial  measurements.  This
characteristic allows SVR to focus on the underlying
patterns rather than attempting to fit noise

fluctuations, resulting in models with enhanced
generalization capability.  Additionally, SVR's
kernel-based approach permits the implicit mapping
of input data into higher-dimensional spaces without
increasing computational complexity, enabling the
capture of complex nonlinear relationships present
in industrial time series.

The MLP architecture complements SVR by
offering different pattern recognition capabilities.
The multilayered structure with nonlinear activation
functions enables the network to approximate
complex functional relationships between inputs and
outputs as noted in [12]. For the specific
requirements of this research, a carefully designed
MLP architecture was implemented with appropriate
hidden layers to balance between model complexity
and generalization ability. The output layer employs
a linear activation function suitable for regression
tasks, while the hidden layers utilize nonlinear
activation functions to capture the complex
relationships in the data. This design choice reflects
the specific need to model the continuous nature of
the target variables while accounting for the inherent
nonlinearities in the process.

The complementary nature of these two
approaches provides significant advantages in
industrial forecasting applications [13]. While SVR
excels at handling outliers and establishing stable
decision boundaries, MLP demonstrates superior
ability in detecting hierarchical patterns and
adapting to evolving process dynamics. By
implementing both methods and comparing their
performance under various noise conditions, the
research provides a comprehensive assessment of
predictive capabilities applicable to industrial
environments with measurement uncertainty.

To ensure optimal performance of both models,
hyperparameter optimization was conducted using
RandomizedSearchCV  with cross-validation as
described in [14]. This approach enabled efficient
exploration of the parameter space without
exhaustive grid search, balancing computational
efficiency with model performance. For SVR,
parameters including kernel type, regularization
parameter C, and epsilon value were systematically
optimized. Similarly, for MLP, the optimization
process determined the optimal number of hidden
layers, neurons per layer, activation functions, and
regularization parameters. This rigorous
optimization procedure ensured that both models
performed optimally under various experimental
conditions and input data noise levels, providing
reliable comparison results.
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Support Vector Regression is based on the
principle of structural risk minimization [15],
providing optimal balance between  model
complexity and generalization ability.

For a training dataset {(x1,y1), ..., (Xn,yn)}, SVR
seeks a function described by equation (4):

f (x) = aw, xfi+b, @)

where w is the weight coefficient vector, b is the
bias.

The optimization
according to equations (5):

minimize{0.5||w|* +C> (e, +&*)},

problem is formulated

st|f(x)-y|<e+¢, (5)
&, &*20,
where &;, &> are slack variables, ¢ is the permissible

error [16].

For solving nonlinear problems, a radial basis
function (RBF) kernel [17] is applied, defined by
formula (6):

K(x,x'):exp(—ny—x'Hz), (6)

where y > 0 is the kernel parameter. The RBF kernel
enables  effective  modeling of  nonlinear
dependencies while maintaining computational
efficiency [17] and demonstrates high resistance to
noise in industrial measurements [18].

Multilayer Perceptron effectively models
complex nonlinear dependencies in time series [7].
The MLP architecture includes an input layer,
hidden layers, and an output layer with full neuron
connections between layers [12].

Each neuron implements nonlinear
transformation according to equation (7):
y=p(Zwx +b), ()

where ¢ is the activation function, w; are weight
coefficients, x; are input signals, b is bias. ReLU
activation is used in hidden layers, described by
formula (8) [7]:

@(x) = max(0, x). ®)

Network training occurs by minimizing mean
squared error according to formula (9):

Ezllnz(yi_yi)z' ©)

where y; are actual values, y; are predicted values, n
is the training sample size [19].

To prevent overfitting, dropout and L2-
regularization are applied [20], which is particularly
important when working with noisy industrial data.
MLP also supports continued training on new data.

Comparative Analysis of SVR and MLP
methods reveals their complementary characteristics
for industrial time series forecasting [21]. SVR
demonstrates higher efficiency on small datasets and
noise resistance [22], while MLP provides better
adaptability and flexibility in modeling complex
dependencies [23]. The main characteristics of the
methods can be summarized as follows.

Regarding data requirements, Support Vector
Regression demonstrates high effectiveness on small
to medium datasets while maintaining sensitivity to
data scaling [24], whereas Multilayer Perceptron
typically requires larger volumes of data to achieve
comparable accuracy but exhibits less sensitivity to
scaling issues [25].

From a computational complexity perspective,
SVR training operations scale according to O(n?)
[26], making it potentially more resource-intensive
for large datasets, while MLP generally follows
linear complexity O(n), though the actual
computational load varies significantly depending on
the selected network architecture and training
parameters [27].

In terms of data preprocessing requirements,
SVR method necessitates thorough normalization
procedures and careful cleaning of outliers to
maintain prediction quality, in contrast to MLP
which demonstrates greater robustness to various

data formats, though it still benefits from
standardization of input features for optimal
performance.

These fundamental differences inform the

selection of appropriate method based on specific
application conditions and available computational
resources. It has been experimentally confirmed that
SVR is more effective for medium-term horizons
with noisy data [24], while MLP is better for long-
term forecasting and complex pattern detection [25].

Kalman Filtering The choice of adaptive
Kalman filtering is justified by several advantages
for industrial data processing.

1. Optimality and Recursiveness: The Kalman
filter is optimal for linear systems with Gaussian
noise, minimizing the mean square estimation error.
The recursive nature of the algorithm enables
efficient real-time data processing without the need
to store the entire measurement history.

2. Adaptability: The ability to automatically
adjust filter parameters according to changing noise
characteristics makes this method particularly
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valuable for industrial systems where conditions
may vary.

3. Predictive Capability: The filter not only
smooths noisy data but also predicts subsequent
values, which is critical for industrial control
systems.

To reduce noise effects, adaptive Kalman
filtering [28] based on a recursive estimation
algorithm is applied.

The process is described by prediction
equations (10-11) and correction equations (12-14):

%= X, (10)

R =R.+Q, (11)
K.=PR /(R +R), (12)
X =X +K (z, +X), (13)
Pk = (1_ Kk)Pk7' (14)

where x;~ is prediction state, P, is prediction error,
Q is process noise variance, K; is Kalman
coefficient, z, is measurement, R is measurement
noise variance [29].
Filter parameters are determined adaptively [30].
The measurement noise variance is estimated
using formula (15):

o, =std(Az) /2, (15)

where o, is the standard deviation of measurement
noise.

The process noise variance is set proportionally
to the estimated measurement noise variance
according to formula (16):

Q=R/100. (16)

This adaptive approach provides an optimal
balance between filter sensitivity and its noise
suppression capability [31].

Wavelet  Filtering was chosen as a
complementary method to Kalman filtering for the
following reasons.

1. Multi-level Signal Representation: Wavelet
transform provides efficient signal analysis at
different scales, allowing detection and preservation
of significant features even in the presence of
substantial noise.

2. Time and Frequency Domain Localization:
Unlike Fourier transform, wavelet analysis provides
simultaneous localization in time and frequency,
which is critical for preserving characteristic signal
features such as jumps and sharp changes commonly
observed in industrial processes.

3. Data Non-stationarity: The wavelet method is
particularly effective for processing non-stationary

signals characteristic of industrial processes with
transitional modes, stops, and equipment starts.
Discrete wavelet transforms with Daubechies
db4 wavelet [32] is used.
The filtering threshold
formula (17):

A =c2In(N).

where o is the noise level estimate, N is the signal
length [33].

The coefficients are modified according to rule
(18):

is determined by

(17)

W =sign(w)(wl-2). pwf>2 o
w =0, |w|<4.

Filtering efficiency is evaluated using formula
(19):

OFS =w,SE +w,NR +w;, FP, (19)
where SE is smoothing efficiency, NR is noise
reduction, FP is feature preservation, ws is
smoothing weight coefficient, w, is noise
suppression weight coefficient, w: is feature
preservation weight coefficient.

Criteria for Assessing Forecasting Quality A
multi-factor approach has been applied to evaluate
the effectiveness of forecasting methods. The
evaluation is conducted separately for each output
parameter: Output X, Output Y, Z1 Flow, and Z2
Flow.

Main evaluation metrics:

1. Root Mean Square Error is determined
according to formula (20):

RMSE =,/2(y,— ¥:)?/n.

2. Coefficient of Determination is calculated
based on formula (21):

R2:1—Z(yi _9i)2/z(yi _7)2-

(20)

(21)

3. Average Coefficient of Variation is
established in accordance with formula (22):
yan
ov =2 A) 0w @)

n

4. Data processing time (processing_time).

Experimental factors include:

— data noise level;

— training sample size (256-8192 points);

— number of support points (5-20 % of dataset
size);
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— forecasting method (SVR, MLP).

Noise resistance assessment [34] is determined
through the relative change in metrics, defined by
formula (23):

(RMSE, ., —RMSE )

RMSE, -

ARMSE = x100%, (23)

where RMSEmax and RMSEmi, are error values at
maximum and minimum noise levels.
Statistical processing of results [35] includes:
—using interquartile range (IQR) for outlier
detection;
—calculation of basic statistics
minimum, maximum, standard deviation);
—assessment of statistical significance at
0=0.05.

(mean,

4. EXPERIMENT RESULTS

As a result of the conducted research, a general
structure of information technology for predicting
noisy time series was developed, as shown in Fig. 1.
The developed structure reflects the key stages of
data processing and construction of predictive
models. The process begins with the generation of
control points and cubic interpolation to form basic
data sets. Next, noise effects are modeled to create
realistic noisy signals, after which parallel filtering
methods—Kalman filter and wavelet filtering—are
applied. The filtering results are evaluated by
calculating the optimal signal function (OSF), which
allows obtaining a cleaned signal for further training
of machine learning models (SVR and MLP). The
final stages of the technology are the evaluation of
results and determination of the boundaries for
applying the developed methods.

As a result of experimental research, noise
characteristics were obtained for seven key
parameters of the studied industrial process: three
input parameters (Parameter A, Parameter B,
Parameter C) and four output parameters (Output X,
Output Y, Z1 Flow, Z2 Flow).

Quality indicator parameters demonstrated the
highest resistance to noise effects. For Output X,
SNR values ranged from 50.46 to 43.08 dB with
correlations between clean and noisy signals of 0.93-
0.75. The Parameter A is characterized by SNR of
46.01-39.99 dB and correlation of 0.91-0.77, while
Parameter B showed SNR of 39.99-34.00 dB with
correlation of 0.99-0.96.

Flow rate parameters proved to be more
sensitive to noise effects. For Z2 Flow, SNR values
were 32.02-25.19 dB with correlation of 0.58-0.32,

for Z1 Flow — SNR of 34.01-26.03 dB with
correlation of 0.28-0.57.

Detailed analysis of the Output X parameter at
maximum noise level showed: RMSE=0.3464,
SNR=43.9 dB, correlation coefficient = 0.7345,
standard deviation = 0.3458, outlier percentage =
0.8%. For all studied parameters, the relative
deviation of mean values did not exceed +0.0188,
and the percentage of outliers varied from 24.53 %
to 31.87 %.

Generation of control
points

l

Cubic interpolation

l

Formation of basic
sets

l

Modeling of noise
effects

l

/ Noised signal /

l

v ¥

Kalman filter Wavelet filtration

Calculate OFS

l

/ Denoised signal /

]

v v

SVR Training MLP Training

Evaluation of results

l

Determination of
application boundaries

Fig. 1. General structure of the information
technology

Source: compiled by the author

Comprehensive visualization of analysis results
for the Output X parameter at maximum noise level
is presented in Fig. 2, which includes comparison of
clean and noisy signals, noise distribution histogram,
signal power spectrum, and correlation relationship
between signals.
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Fig. 2. Comprehensive analysis of time series quality for prediction system development:
a — comparison of original and noise-affected signals; b — noise distribution characteristics;

¢ — frequency domain analysis; d — signal correlation assessment
Source: compiled by the author

Comparative Analysis of Filtering Methods The
experimental comparison of Kalman and wavelet
filtering methods demonstrated distinct performance
characteristics when applied to process parameters
in the industrial time series system. The analysis was
performed on Output X measurements with
moderate noise levels.

The temporal analysis (Fig. 3a) shows the
filtering results for a signal with amplitude
variations between approximately 52.5 and 54.25
units. It compares the clean signal (solid black line),
the noisy signal (dotted gray line), and the results of
wavelet filtering (dashed green line) and Kalman
filtering (dashed red line). Both filtering methods
effectively reduced noise while tracking the
underlying signal trends. The wavelet filtering
demonstrated slightly better adherence to the clean
signal pattern, particularly during rapid transitions,
while the Kalman filter showed minor lag in
tracking sharp changes.

The spectral analysis (Fig. 3b) illustrates the
noise suppression capabilities of both methods. The
power spectrum, plotted on a logarithmic scale,
reveals that both filters effectively attenuate high-
frequency noise components while preserving the
fundamental signal frequencies. The noisy signal
spectrum (dotted gray line) shows consistently
higher power across all frequencies compared to the
filtered results and the clean signal (solid black line).

Quantitative performance metrics (Fig. 3c) are
presented as a bar chart, comparing wavelet and
Kalman filtering across three categories: Smoothing,
Noise Reduction, and Feature Preservation. While
precise numerical values are not directly displayed
on the chart, it's visually evident that wavelet

filtering outperforms Kalman filtering in all three
categories. The bars for Wavelet filtering are
consistently higher than those for Kalman filtering.
Recommended method: wavelet

System Parameter Prediction in the Presence of
Noise The study of noise influence on the
predictability of system parameters was conducted
using Support Vector Regression and Multilayer
Perceptron.

The comprehensive analysis of prediction
methods' effectiveness covered three key aspects:

— temporal efficiency of methods with different
training sample sizes;

—impact of control
prediction quality;

— methods' resistance to various noise levels.

Analysis of prediction methods' time efficiency
Fig. 4 shows a comparative analysis of the
computational efficiency of SVR and MLP methods
with different training sample sizes, including 95%
confidence intervals (Cl). The figure reveals a
significant advantage of SVR in average processing
time (85.044 s versus 160.186 s for MLP). At
minimum  sample size, SVR  demonstrates
significantly better performance (0.465 s) compared
to MLP (15.305 s), although at maximum load, the
methods show comparable results (425.628 s and
436.920 s respectively).

The processing time dependency on training
sample size shows strong correlation for both
methods, with MLP demonstrating practically linear
dependence (correlation coefficient 0.995) compared
to slightly weaker for SVR (0.943). The relative
processing speed of SVR is 0.53 of MLP time,
confirming its higher computational efficiency.

points quantity on
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SVR and MLP with confidence intervals
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A characteristic feature of both methods is the
widening of confidence intervals when sample size
exceeds 4096 points, indicating increased variability
in processing time for large datasets.

Impact of Control Points on Prediction Quality
The study of control points' influence on prediction
quality encompassed the comprehensive analysis of
both their absolute quantity and relative proportion
in the overall training sample.

With insufficient data volume, both advanced
predictive methods demonstrate notably destructive
values of the determination coefficient (R2): for
SVR, the minimum value reaches -3.971, and for
MLP, it is approximately -1.318. Significantly
increasing the training sample size substantially
improves prediction quality across all metrics, which
is convincingly confirmed by strong positive
correlation coefficients (0.654 for SVR and 0.740
for MLP). The optimal number of control points for
both sophisticated methods was determined to be
1638, providing maximum R2 values of 0.808 for
SVR and 0.796 for MLP. As clearly illustrated in
Fig. 5, the overall prediction quality effectively
stabilizes after reaching approximately 800 control
points.

The detailed analysis of the relative number of
control points' impact (Fig. 6) revealed several
significant differences between the approaches when
working with limited data quantities:
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—at 5 % control points: MLP maintains partial
predictive ability (R?=0.126+0.195), while SVR
shows complete loss of prediction capability with
negative results (R2=-0.063+0.339);

—at 10 % points: MLP shows noticeable
improvement in performance (R?=0.246+0.159),
while SVR continues to consistently yield negative
prediction results (R2=-0.133+0.320);

—using 20 % control points proved particularly
optimal in this experimental context, where SVR
demonstrates slightly better overall efficiency
(R2=0.547+0.124) compared to MLP
(R?=0.523+0.134).
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Thus, the MLP approach consistently
demonstrates greater algorithmic stability with
limited data availability, although  both

computational methods generally require sufficient
training sample size to achieve acceptable prediction
quality for practical applications

Analysis of Forecasting Methods Effectiveness
The final comprehensive gquantitative comparison of
Support Vector Regression (SVR) and Multi-Layer
Perceptron (MLP) methods was meticulously
conducted on an optimized dataset consisting of
8192 training points and 1638 control points. The
statistical significance of all observed differences
between the methods was rigorously evaluated using

Student's t-test with a conventional statistical
significance level of 0.05.

When predicting Output X parameter (Fig. 7a),
both advanced methods demonstrate remarkably
robust noise resistance  characteristics:  the
determination coefficient (R?) decreases surprisingly
insignificantly — from 0.99 to 0.966-0.967 even at
maximum experimental noise level, indicating
exceptionally robust performance under challenging
conditions. The Root Mean Square Error (RMSE)
shows a moderate but controlled increase from 0.050
to 0.105-0.106, however, the difference between
both methods remains statistically insignificant
(p=0.808), suggesting highly comparable prediction
capabilities in real-world scenarios.

Predicting Output Y parameter proved to be
consistently the most challenging aspect of the entire
analytical process (Fig. 7b). Under maximum noise
conditions, the determination coefficient experiences
a substantial decrease to approximately 0.350 for
SVR and 0.263 for MLP, while RMSE demonstrates
a significant increase of more than twofold - from
0.012 to 0.026-0.027, clearly highlighting the
inherent complexity of this particular prediction task
within the experimental framework.

For Z1 Flow prediction parameter analysis (Fig.
7¢), the initial prediction accuracy is notably high
(R? =~ 0909 for SVR, 0.901 for MLP), but
experiences considerable performance degradation
at maximum noise level, systematically decreasing
to 0.685 and 0.648 respectively. The RMSE metric
shows a substantial increase from 0.285 to 0.675-
0.705, though the differences between methods
remain statistically insignificant (p = 0.717),
effectively  maintaining  their  performance
equivalence across the noise spectrum.

The detailed prediction of Z2 Flow parameter
(Fig. 7d) is characteristically defined by consistently
high accuracy under minimal noise conditions
(Rz>0.917) and displays moderate gradual
degradation at maximum noise levels (R>~0.721 and
0.702). The Root Mean Square Error demonstrates
an approximate doubling in magnitude — from
0.265-0.267 to  0.549-0.568, while  both
computational  methods  maintain  statistical
equivalence in their overall performance metrics
(p=0.433).

The comprehensive analysis of methods' noise
resistance capabilities using the ARMSE indicator
systematically revealed varying levels of model
sensitivity when predicting different  output
parameters: ranging from 147 % for Z1 Flow to
114% for Z2 Flow across test conditions.
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Both  prediction  methods  consistently
demonstrate statistically identical noise resistance
characteristics throughout the experimental range,
indicating  fundamentally  similar  algorithmic
response patterns to increasing levels of input data
noise.

Summarizing the comprehensive research
results and  experimental  findings,  both
computational methods demonstrate particularly
impressive high noise resistance capabilities when
accurately predicting Output X parameter, while
showing highest sensitivity and vulnerability when
predicting the more complex Output Y parameter.
The SVR method consistently demonstrates slightly
superior numerical results across most evaluated
parameters, although this marginal advantage does
not reach statistical significance threshold in any
experimental case. It's importantly noteworthy that
the practical SVR implementation requires notably
longer processing time in all test scenarios,
averaging 20-30 % more computational resources
compared to the more efficient MLP approach. A
significant additional observation from this study is
that the number of statistical outliers in prediction
quality metrics shows a natural and consistently
expected increase with rising noise levels for both
computational methods. These collective findings
strongly reinforce the critical importance of utilizing

carefully maintaining an optimal number of control
points to reliably achieve and consistently maintain
acceptable prediction quality standards in diverse
practical applications.

5. DISCUSSION OF OBTAINED RESULTS

Technical Characteristics: Input parameters
obtained by cubic interpolation have a smoothed
form, whereas output signals generated by the k-NN
method only approximate such a form. To ensure
consistency, it is advisable to apply k-NN to the
interpolated input signals.

Noise Impact: Experiments have shown varying
sensitivity of parameters to noise. The high stability
of quality indicators is explained by the inertia of the
process, while the higher sensitivity of flow
parameters is due to equipment vibrations and
pressure fluctuations.

Filtration Efficiency: The Kalman filter is
suitable for parameters with slow dynamics, while
wavelet filtration is appropriate for parameters with
rapid changes. With limited computational
resources, preference should be given to wavelet
filtration due to its lower computational complexity.

Sample Size: The optimal size of the training
sample is 8192 records, with 1638 (20 %) control
points, providing a balance between training quality
and generalization ability.

sufficiently large comprehensive datasets and Computational Efficiency: SVR demonstrates
20-30% longer processing time compared to MLP.
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As data volume increases, processing time for MLP
grows linearly, while for SVR it grows non-linearly
(O(n?)). To optimize the computational process, it is
proposed to use physical laws, particularly mass
conservation principles.

Practical Recommendations: For parameters
with high dynamics, it is recommended to increase
measurement frequency and apply wavelet filtration.
For more stable parameters, standard measurement
frequency, Kalman filtering, and possible sample
size reduction are sufficient. From a computational
perspective, MLP is recommended for environments
with limited resources, while SVR requires more
computational power.

CONCLUSIONS

The research experimentally proves the
effectiveness of combining filtration and regression
methods for predicting noisy time series in industrial
processes. The main results correspond to the
assigned tasks and align with the goal of developing
an integrated model.

A structural scheme of information technology
has been developed, combining adaptive filtration
and regression processes for effective time series
prediction. An experimental database of noisy time
series with various levels of normally distributed
noise was created, which allowed establishing the
optimal size of the training sample (8192 records)
and the number of control points (1638).

A filtration quality assessment system is
proposed through a comprehensive OFS indicator
that integrates smoothing efficiency, noise reduction,
and signal characteristic preservation. The system
provides adaptability through automatic selection of
the optimal filtration method depending on input
signal characteristics, which meets the task of
implementing and optimizing filtration algorithms.

Quantitative characteristics of noise impact on
the predictive capability of regression models (SVR
and MLP) have been established. SVR provides
higher prediction accuracy at low noise levels, while
MLP demonstrates greater stability at high noise

levels. Computational efficiency analysis of the
methods confirms a linear dependence of processing
time on data volume for MLP and nonlinear growth
for SVR.

The proposed approach provides a 15-20%
increase in prediction accuracy compared to
machine learning methods without preliminary
filtration. The practical value of the results lies in
their applicability to industrial process control
systems where data noise problems exist. The
developed method can be applied not only to the
studied system but also to other similar
technological processes. A promising direction for
optimizing learning models through the use of
physical process patterns has been identified, which
allows improving the metrological characteristics of
prediction.

FUTURE WORK

Future research stems from an analysis of

limitations  identified  experimentally.  They
encompass technical improvements, parameter
optimization, analysis of noise impact, and

enhancement of data preprocessing.

From a technical perspective, it is necessary to
develop adaptive filtering methods for various
parameters and investigate hybrid forecasting
methods. It is important to study the influence of
process non-stationarity on forecasting quality.

Parameter optimization should focus on
automatic methods to reduce manual configuration,
including optimization of SVR kernel parameters
and MLP architecture.

Research on noise with different distribution
laws will expand understanding of system behavior.
Studying noise effects characteristic of real
measurement conditions will allow the development
of methods adapted to various technological

parameters.
Improvement of data preprocessing should
focus on reducing data volume  without

compromising forecasting quality and utilizing
additional information from adjacent systems.
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AHOTALIA

ITporHo3yBaHHsI MapaMeTpiB y MPOMHCIOBHX TMpPOIECaX 3HAYHO YCKIAJHIOEThCS HASBHICTIO [IyMy B MOCHITOBHHX
BHMIPIOBAHHSX, 110 3MEHIIye e()EeKTHBHICTh KOHTPOJIIO TEXHOJOTIYHOro mpouecy. MeToro JOCHiKeHHs € po3poOKa iHTerpoBaHOl
MoJen, sIKa MOEAHYE METOAN afanTUBHOI GUIbTpaLil IyMy Ta perpecito Ay HOKpPALIeHHsS TOYHOCTI MPOTHO3YBAaHHS 3alyMIICHHUX
JacOBHX PsIiB i3 BUKOPHCTAHHSIM aIrOPUTMIB MAIlIMHHOrO HaB4aHH:. I1ix yac mocnmimkeHHs Oy/a cTBOpeHa KOMIUIEKCHa 6a3a TaHuX
YacOBUX PSOIB i3 pI3HUMH PIBHAMH Ta TUIAMU LIyMY, L0 3a0e3MEeYMIO PETebHY IMepeBipKy e(pEeKTUBHOCTI 3alpONOHOBAHMX
metoniB. Habopu manux Oymu po3poOneHi 3 ypaxyBaHHSAM CHELM(]IKM TEXHOJOTIYHUX TPOLECIB Ta Pi3HOMAHITHOCTI LIYMOBHUX
MaTepHiB, 110 JO3BOJHJIO TOYHO OLIHUTH PO3POOJICHI METOIU B Pi3HUX YMOBaX. Y paMKax po3poOKH METOAIB afanTHBHOI (inbTpamnii
mymy Oynau BIpOBajpKeHi Ta onTuMizoBaHi ¢insTp Kanmana ta BeliBner-¢inpTpauis. BeraHoBieHO 3BSI30K MiK e(eKTHBHICTIO
MeTONiB (inbTpamii Ta YaCOBMMH HaTepHAMU: JUIS MapaMeTpiB, IO MIBHIKO 3MIHIOIOThCS, BeWBIeT-(inbTpamis 3a0e3mnedye BHILY
e(eKTUBHICTDh 3riaDKyBaHHs, Toai sK Qinbrp Kammana kpamie 30epirae XapakTepUCTHUKH CHTHalMy sl OUTbIn cTabinbHHX
nociioBHocTed. J{ns BupilleHHs 3ajadi MPOTHO3YBAaHHS YaCOBHX psAiB Oy/M BIPOBa/KEHI Ta IPOTECTOBaHI JBa alrOpHUTMH
perpecii — perpecis ONOPHHX BEKTOpIB Ta OararoliapoBuil mepHenTpoH. Byno moBeneHo, IO perpecis OMOPHUX BEKTOPIB
JEMOHCTPYE Kpalli pe3ylbTaTd 3 JaHAMH 3 HH3bKAM pIBHEM IIyMy, TOHl K 0araToIIapOBHi MEpUENTPOH MOKa3ye BHIILY
CTa0lIBHICTh B YMOBAaX 3HAYHOrO IIyMY, OCOOJMBO Micisi morepenHboi ¢inbrpamii. s omiHkd eeKTHBHOCTI 3alpOHOHOBAaHHX
piwesp Oyna po3pobiieHa KOMIUIEKCHA CHCTEMa OL[HKU SIKOCTi, sIKa OJIHOYACHO BPaxoBY€ €()EKTUBHICTh IPOTHO3YBAaHHS, YacOBi
aCIIeKTH, XapaKTepPUCTHKH LIyMy Ta OOYMCIIOBAJbHY CKIAAHICTh. EKCHEpHUMEHTadbHE INATBEPMKCHHS [IEMOHCTPYE, LIO
po3pobiieHnil MiAXiA MOKpallye TOYHICTh MPOrHO3YBaHHS MOPIBHSHO 3 METOAaMH MAIIMHHOIO HaBYaHHsS O3 MomepeaHbol
¢inpTpanii, 30epiratoud NPUAHATHY OOYUCIIOBANBHY CKIAMHICTh. P0o3pobiieHHi MiAXiA € MEepCHeKTUBHUM Ul MPOMHCIOBUX
3aCTOCYBaHb, BKJIFOYAIOYH MOICIIOBAHHS MPOLECIB 30aradeHHs 3ali3HOI PyAH, A€ IIYMOCTiKEe NPOrHO3YBaHHS BaXKIHBE IS
KOHTPOJIO TPOLeCy. 3alporoHOBaHi METOAXM MOXYTh OYTH MOMIMPEHI Ha Pi3HI MPOMUCIOBI MPOLECH 3 MOAIOHMMH YaCOBUMH
JAHUMU Ta XapaKTePUCTUKAMHU LIyMY, OCOOJIIMBO B METAIYpPriiHii, XIMiYHil Ta Xap4OBiil TPOMHUCIOBOCTI

Kuwouosi caoBa: ®inerp Kanmana; BeliBierT-QinbTpallis; perpecis OMOPHHX BEKTOPiB; 0araTOIIApOBHiA IEPIEHITPOH;
LIYMOCTi#Ke IPOrHO3yBaHHS
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