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ABSTRACT 

Predicting parameters in industrial processes is significantly complicated by the presence of noise in sequential measurements, 
which reduces the effectiveness of technological process control. The aim of the research is to develop an integrated model that 
combines adaptive noise filtration methods and regression to improve the accuracy of forecasting noisy time series using machine 
learning algorithms. During the research, a comprehensive database of time series with various levels and types of noise was created, 
providing a thorough verification of the effectiveness of the proposed methods. The datasets were developed considering the 
specifics of technological processes and the diversity of noise patterns, which allowed for an accurate evaluation of the developed 
methods under different conditions. As part of the development of adaptive noise filtration methods, the Kalman filter and wavelet 
filtration were implemented and optimized. The relationship between the effectiveness of filtration methods and temporal patterns 

was established: for rapidly changing parameters, wavelet filtration provides higher smoothing efficiency, whereas the Kalman filter 
better preserves signal characteristics for more stable sequences. To solve the time series forecasting problem, two regression 
algorithms were implemented and tested – Support Vector Regression and Multilayer Perceptron. It was proven that Support Vector 
Regression demonstrates better results with low-noise data, while Multilayer Perceptron shows higher stability under significant 
noise conditions, especially after preliminary filtration. To evaluate the effectiveness of the proposed solutions, a comprehensive 
quality assessment system was developed that simultaneously considers forecasting efficiency, temporal aspects, noise 
characteristics, and computational complexity. Experimental confirmation demonstrates that the developed approach improves 
forecasting accuracy compared to machine learning methods without preliminary filtration, while maintaining acceptable 
computational complexity. The developed approach is promising for industrial applications, including modeling iron ore enrichment 

processes, where noise-resistant forecasting is important for process control. The proposed methods can be extended to various 
industrial processes with similar temporal data and noise characteristics, especially in metallurgical, chemical, and food industries. 

Keywords: Kalman filter; wavelet filtration; Support Vector Regression; Multilayer Perceptron; noise-resistant prediction 

For citation: Volovetskyi O. O. “Methods of filtering and regression for forecasting noisy time series based on machine learning”. Herald of 

Advanced Information Technology 2025; Vol. 8 No. 1: 13–27. DOI: https://doi.org/10.15276/hait.08.2025.1 

 

INTRODUCTION 

The modern development of industrial 

technological processes is characterized by 

increasing demands for control accuracy and final 

product quality. The problem of forecasting 
technological parameters under industrial noise 

conditions becomes particularly relevant, as it 

directly affects production efficiency and energy 
consumption. The specifics of continuous 

production processes create unique challenges for 

prediction systems due to multiple sources of 

interference, process nonlinearity, and complex 
relationships between parameters.  

In the context of information technologies, 

“industrial noise” refers to various types of data 
distortions occurring in technological process 

measurements. This includes both physical noise 

from sensors and equipment (measurement errors, 
electromagnetic interference, vibrations) and, 
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information noise arising from data transmission 
processing, and storage systems. The term “data 

noise” encompasses all these distortions in the 

digital representation of process parameters, while 

"information noise" specifically refers to 
uncertainties and variations in the data that affect the 

quality of information extraction and decision-

making. Understanding these different types of noise 
and their interactions is crucial for developing 

effective prediction systems, as they directly impact 

data quality and, consequently, the accuracy of 

machine learning models. 
With continuous improvement in industrial 

technologies, there is a growing need to develop 

adaptive forecasting methods capable of operating 
effectively at various levels of data noise. Current 

research demonstrates that traditional approaches to 

filtering and forecasting do not provide the 
necessary accuracy in real production conditions. 

This necessitates the development of an integrated 

approach that would combine effective filtering 

methods with adaptive prediction algorithms. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0 /deed.uk) 
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Special attention should be paid to developing 

an approach for evaluating prediction quality that 

would consider not only forecast accuracy but also 

computational efficiency and resistance to various 

types of interference. Additionally, with the 

development of Industry 4.0 concepts and 

implementation of modern information technologies, 

there is an increasing need to integrate economic and 

resource aspects into the modeling process, 

providing deeper understanding of internal 

mechanisms of prediction systems' operation. 

Furthermore, the rapid development of digital 

technologies and increasing complexity of 

production processes require implementation of new 

approaches to noise analysis and algorithm 

optimization. Systematic investigation of different 

noise levels' impact allows not only improving 

model stability but also ensures their applicability 

across a wide range of industrial tasks. The 

developed integrated approach demonstrates the 

potential of using combined filtering and regression 

methods to achieve high prediction quality, opening 

new perspectives for automatic control system 

optimization. 

1. ANALYSIS OF LITERARY DATA 

Predicting parameters of complex technological 

processes under noisy data conditions remains a 
relevant challenge for various industrial systems. 

Research shows that different types of noise in data 

can significantly affect the performance of 

prediction systems. Understanding the impact of 
various noise types on model accuracy is crucial for 

developing robust prediction methods. Moreover, 

proper handling of noise in input data can improve 
the overall performance of artificial intelligence 

systems, making prediction models more flexible 

and accurate [1]. 
Significant progress has been achieved in 

developing robust neural networks. Researchers 

propose using data abstraction methods to reduce 

noise impact [2]. In the context of industrial 
systems, special attention is paid to research on 

technological process optimization, where machine 

learning-based sensors are developed to predict key 
quality indicators [3]. For example, in various 

industrial contexts, such systems can predict quality 

indicators and impurity content in final products. 
The characteristics of complex technological 

processes create additional challenges for prediction 

systems. Current research focuses on developing 

machine learning models for predicting critical 
parameters such as temperature, pressure, viscosity, 

chemical composition, and other quality indicators 

in the final product [4]. An important direction is 

also product quality prediction, where machine 
learning algorithms are used to optimize the process 

and provide recommendations to operators [5]. 

Unlike previous studies that focused separately 
on filtration or prediction methods, there is a need 

for an integrated approach to solving the problem of 

parameter prediction under noisy conditions. Special 
attention should be paid to developing a 

comprehensive indicator for assessing prediction 

quality that would simultaneously consider forecast 

accuracy, computational complexity, and resistance 
to noise of various natures. 

Analysis of current research revealed a lack of 

systematic analysis of normally distributed noise of 
varying intensity on process parameter prediction 

quality, insufficient study of comparative 

effectiveness of different prediction methods under 

noisy data conditions, and limited research on 
optimizing computational efficiency of prediction 

methods considering physical patterns of 

technological processes. 
Thus, there is a need for comprehensive 

research on noise impact on models' predictive 

capability and development of methods to increase 
their robustness while considering computational 

efficiency, which has determined the direction of 

this research. 

2. RESEARCH GOAL AND OBJECTIVES 

The goal of the research is to develop an 

integrated model that combines adaptive noise 

filtering methods and regression for improving the 
accuracy of forecasting noisy time series using 

machine learning algorithms. 

To achieve this goal, the research addresses the 
following objectives: developing a general structure 

scheme for the information technology that 

describes the research process; creating an 

experimental database of noisy time series for 
comprehensive validation of the effectiveness of the 

developed methods; implementing and optimizing 

adaptive noise filtering algorithms to significantly 
improve input data quality; deploying regression 

algorithms to build forecasting models that account 

for preliminary data processing; conducting a 

comprehensive analysis of the obtained results to 
determine the most optimal approaches considering 

computational efficiency and forecasting accuracy. 

3. RESEARCH METHODS 

The research was conducted in four stages. In 

the first stage, basic data sets were formed by 

generating control points with variable parameter 
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dynamics using USIM PAC software – a specialized 

tool for modeling and optimizing mineral 

processing. Simulation was used due to the objective 
impossibility of obtaining a representative array of 

real production data with controlled noise levels, 

which is necessary for comprehensive testing of 
filtration and regression methods. This software 

allowed the generation of realistic technological data 

that accurately reproduce real industrial conditions, 
avoiding the limitations of real industrial systems: 

periodicity of technological cycles, complexity of 

simultaneous parameter recording, and ethical and 

economic constraints on experiments with active 
production. Continuous time series were obtained 

using cubic interpolation, and output parameters 

were determined by the k-nearest neighbor’s 
method. In the second stage, industrial conditions 

were simulated by applying normally distributed 

noise at three intensity levels. The third stage 

included the development and training of models 
using adaptive Kalman filtering and wavelet filtering 

algorithms, as well as training Support Vector 

Regression (SVR) and Multilayer Perceptron (MLP) 
models on various data sets. In the final stage, the 

results were evaluated through analysis of prediction 

accuracy for different noise levels. 
The choice of research methods was justified by 

their specific properties. Support Vector Regression 

provided high accuracy in predicting nonlinear 

dependencies [6], while the MLP demonstrated the 
ability to detect complex relationships between 

parameters [7]. The application of adaptive Kalman 

filtering enabled effective suppression of noise at 
various intensities [8], while wavelet filtering 

ensured preservation of important signal features [9]. 

The experimental part was implemented 
through the generation of ten datasets for each 

parameter combination, considering three noise 

levels and two parameters change rate variants, 

which ensured statistical reliability of the results. 
Generation of Basic Signals. The formation of 

experimental datasets was implemented in two 

stages: generation of input parameters and 
determination of corresponding output values. In the 

first stage, time series were generated for three input 

parameters with different statistical properties: 

Parameter A with normal distribution, Parameter B 
with uniform distribution, and Parameter C with 

quasi-constant values with minor fluctuations. Sets 

ranging from 256 to 8192 points were used to study 
the effect of sample dimensionality on prediction 

quality. 

The generation of basic signals was carried out 
by defining control points (5 %, 10 %, or 20 % of 

the total set size) followed by interpolation. Values 

for Parameter A were generated according to normal 

distribution (μ=37, σ=0.33), Parameter B according 
to uniform distribution (25-35), and Parameter C 

was maintained close to 100 with minor variations. 

For practical interpretation of the results, these 
abstract parameters can be mapped to real industrial 

processes. For example, in mineral processing 

systems, Parameter A might represent material 
content in raw material (%), Parameter B – 

percentage of solids in slurry (%), and Parameter C 

– material flow rate (m³/hr or t/hr). 

To obtain continuous time series, cubic 
interpolation method was applied, described by 

equation (1): 

3 2

1 1 1( ) ( ) ( ) ( ) ,S x a x x b x x c x x d       (1) 

where coefficients were determined from the 
conditions of function continuity and its derivatives. 

The determination of output parameters (Output 

X, Output Y, and output rates Z1 and Z2) was 
implemented using the k-nearest neighbors' method 

(k=1) with the ball tree algorithm.  

The Euclidean distance between the input 

parameter vector x and point xᵢ was calculated using 
formula (2): 

2

1( , ) ( ) .id x x x x   (2) 

The ball tree algorithm optimized the search for 
nearest neighbors by partitioning space into nested 

hyperspheres [10]. Output parameters were 

maintained within predefined ranges typical for the 
studied type of processes. 

In the context of material enrichment processes, 

these output parameters would correspond to content 

percentage in concentrate (Output X), content 
percentage in tailings (Output Y), and mass flows of 

concentrate (Z1) and tailings (Z2). 

Modeling of Noise Effects To reproduce real 
operating conditions of industrial systems, normally 

distributed noise was introduced into the 

experimental data as the most characteristic type of 

interference in industrial measurement systems. The 
noise level was formed proportionally to the current 

parameter value, which corresponds to the nature of 

errors in industrial measuring instruments.  
The noise component was calculated using 

formula (3): 

(0, ) ,noise N sv  (3) 

where N(0, σ) is a normally distributed random 
variable with zero mean and standard deviation σ, sv 
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represents the signal value, and σ is determined as 

the relative error coefficient (error_percent/100). 

Three characteristic noise ranges were defined: 
– minimum (min), optimal operating 

conditions; 

– average (aver), typical production conditions; 
– maximum (max), complicated operating 

conditions. 

The noise levels for each parameter are shown 
in Table 1. 

Table 1. Noise levels for parameters  

(percent of signal value) 

Parameter  min aver max 

Parameter A  0.5 0.75 1.0 

Parameter B  1.0 1.5 2.0 

Parameter C  1.0 2.5 4.0 

Output X  0.3 0.5 0.7 

Output Y  0.4 0.65 0.9 

Z1 Flow  2.0 3.5 5.0 

Z2 Flow  2.5 4.0 5.5 
Source: сompiled by the author 

The experimental base was formed considering 

six sample sizes (256-8192 points) and three variants 

of control point density (5 %, 10 %, 20 %). For each 
of the 18 combinations, three noise variants were 

created, totaling 54 data groups. Taking into account 

nine repetitions for each group, the total number of 

experiments reached 486, ensuring statistical 
reliability of the results. 

Architecture of Predictive Models For time 

series forecasting in industrial systems, the selection 
of Support Vector Regression (SVR) and Multilayer 

Perceptron (MLP) as predictive models was driven 

by several fundamental considerations related to the 
nature of industrial processes. Industrial data 

typically exhibits complex nonlinear relationships 

between variables along with significant noise 

components that cannot be adequately modeled 
using classical linear forecasting approaches. As 

demonstrated in previous research [11], traditional 

linear methods often fail to capture the intricate 
dynamics of complex industrial processes, 

particularly under varying operational conditions 

and in the presence of measurement noise. 
Support Vector Regression was selected due to 

its robust mathematical foundation that enables 

effective generalization with limited training data. 

The method employs a ε-insensitive loss function 
that disregards errors falling within a specified 

threshold, making it particularly suitable for noise-

contaminated industrial measurements. This 
characteristic allows SVR to focus on the underlying 

patterns rather than attempting to fit noise 

fluctuations, resulting in models with enhanced 

generalization capability. Additionally, SVR's 

kernel-based approach permits the implicit mapping 
of input data into higher-dimensional spaces without 

increasing computational complexity, enabling the 

capture of complex nonlinear relationships present 
in industrial time series. 

The MLP architecture complements SVR by 

offering different pattern recognition capabilities. 
The multilayered structure with nonlinear activation 

functions enables the network to approximate 

complex functional relationships between inputs and 

outputs as noted in [12]. For the specific 
requirements of this research, a carefully designed 

MLP architecture was implemented with appropriate 

hidden layers to balance between model complexity 
and generalization ability. The output layer employs 

a linear activation function suitable for regression 

tasks, while the hidden layers utilize nonlinear 

activation functions to capture the complex 
relationships in the data. This design choice reflects 

the specific need to model the continuous nature of 

the target variables while accounting for the inherent 
nonlinearities in the process. 

The complementary nature of these two 

approaches provides significant advantages in 
industrial forecasting applications [13]. While SVR 

excels at handling outliers and establishing stable 

decision boundaries, MLP demonstrates superior 

ability in detecting hierarchical patterns and 
adapting to evolving process dynamics. By 

implementing both methods and comparing their 

performance under various noise conditions, the 
research provides a comprehensive assessment of 

predictive capabilities applicable to industrial 

environments with measurement uncertainty. 
To ensure optimal performance of both models, 

hyperparameter optimization was conducted using 

RandomizedSearchCV with cross-validation as 

described in [14]. This approach enabled efficient 
exploration of the parameter space without 

exhaustive grid search, balancing computational 

efficiency with model performance. For SVR, 
parameters including kernel type, regularization 

parameter C, and epsilon value were systematically 

optimized. Similarly, for MLP, the optimization 

process determined the optimal number of hidden 
layers, neurons per layer, activation functions, and 

regularization parameters. This rigorous 

optimization procedure ensured that both models 
performed optimally under various experimental 

conditions and input data noise levels, providing 

reliable comparison results. 
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Support Vector Regression is based on the 

principle of structural risk minimization [15], 

providing optimal balance between model 
complexity and generalization ability.  

For a training dataset {(x₁,y₁), ..., (xₙ,yₙ)}, SVR 

seeks a function described by equation (4): 

( ) , ,f x áw xñ b   (4) 

where w is the weight coefficient vector, b is the 

bias.  

The optimization problem is formulated 
according to equations (5): 

2{0.5 || || ( *)},i iminimize w C e e   

  - ,. .s f x yt e    

,  * 0,i i    

(5) 

where ξᵢ, ξᵢ* are slack variables, ε is the permissible 

error [16]. 

For solving nonlinear problems, a radial basis 
function (RBF) kernel [17] is applied, defined by 

formula (6): 

    ,, ' ' ²K x x exp x x    (6) 

where γ > 0 is the kernel parameter. The RBF kernel 
enables effective modeling of nonlinear 

dependencies while maintaining computational 

efficiency [17] and demonstrates high resistance to 

noise in industrial measurements [18]. 
Multilayer Perceptron effectively models 

complex nonlinear dependencies in time series [7]. 

The MLP architecture includes an input layer, 
hidden layers, and an output layer with full neuron 

connections between layers [12].  

Each neuron implements nonlinear 
transformation according to equation (7): 

 ,i iy w x b    (7) 

where φ is the activation function, wᵢ are weight 

coefficients, xᵢ are input signals, b is bias. ReLU 

activation is used in hidden layers, described by 
formula (8) [7]: 

( ) max(0, ).x x   (8) 

Network training occurs by minimizing mean 
squared error according to formula (9): 

 ˆ1/ ²,i iE n y y    (9) 

where yᵢ are actual values, ŷᵢ are predicted values, n 

is the training sample size [19]. 

To prevent overfitting, dropout and L2-

regularization are applied [20], which is particularly 

important when working with noisy industrial data. 
MLP also supports continued training on new data. 

Comparative Analysis of SVR and MLP 

methods reveals their complementary characteristics 

for industrial time series forecasting [21]. SVR 

demonstrates higher efficiency on small datasets and 

noise resistance [22], while MLP provides better 

adaptability and flexibility in modeling complex 

dependencies [23]. The main characteristics of the 

methods can be summarized as follows. 

Regarding data requirements, Support Vector 

Regression demonstrates high effectiveness on small 

to medium datasets while maintaining sensitivity to 

data scaling [24], whereas Multilayer Perceptron 

typically requires larger volumes of data to achieve 

comparable accuracy but exhibits less sensitivity to 

scaling issues [25]. 

From a computational complexity perspective, 

SVR training operations scale according to O(n²) 

[26], making it potentially more resource-intensive 

for large datasets, while MLP generally follows 

linear complexity O(n), though the actual 

computational load varies significantly depending on 

the selected network architecture and training 

parameters [27]. 

In terms of data preprocessing requirements, 

SVR method necessitates thorough normalization 

procedures and careful cleaning of outliers to 

maintain prediction quality, in contrast to MLP 

which demonstrates greater robustness to various 

data formats, though it still benefits from 

standardization of input features for optimal 

performance. 

These fundamental differences inform the 

selection of appropriate method based on specific 

application conditions and available computational 

resources. It has been experimentally confirmed that 

SVR is more effective for medium-term horizons 

with noisy data [24], while MLP is better for long-

term forecasting and complex pattern detection [25]. 

Kalman Filtering The choice of adaptive 

Kalman filtering is justified by several advantages 

for industrial data processing. 

1. Optimality and Recursiveness: The Kalman 

filter is optimal for linear systems with Gaussian 

noise, minimizing the mean square estimation error. 

The recursive nature of the algorithm enables 

efficient real-time data processing without the need 

to store the entire measurement history. 

2. Adaptability: The ability to automatically 

adjust filter parameters according to changing noise 

characteristics makes this method particularly 
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valuable for industrial systems where conditions 

may vary. 
3. Predictive Capability: The filter not only 

smooths noisy data but also predicts subsequent 

values, which is critical for industrial control 

systems. 
To reduce noise effects, adaptive Kalman 

filtering [28] based on a recursive estimation 

algorithm is applied.  
The process is described by prediction 

equations (10-11) and correction equations (12-14): 

ˆ ˆ ,ix x   (10) 

1 ,k kP P Q

   (11) 

/ ( ),k k kK P P R    (12) 

ˆ ˆ ˆ( ),k k k k kx x K z x     (13) 

(1 ) ,k k kP K P   (14) 

where x̂ₖ⁻ is prediction state, Pₖ⁻ is prediction error, 

Q is process noise variance, Kₖ is Kalman 

coefficient, zₖ is measurement, R is measurement 
noise variance [29]. 

Filter parameters are determined adaptively [30].  

The measurement noise variance is estimated 

using formula (15): 

( ) / 2,m std z    (15) 

where σₘ is the standard deviation of measurement 
noise.  

The process noise variance is set proportionally 

to the estimated measurement noise variance 
according to formula (16): 

/100.Q R  (16) 

This adaptive approach provides an optimal 

balance between filter sensitivity and its noise 

suppression capability [31]. 

Wavelet Filtering was chosen as a 
complementary method to Kalman filtering for the 

following reasons. 

1. Multi-level Signal Representation: Wavelet 
transform provides efficient signal analysis at 

different scales, allowing detection and preservation 

of significant features even in the presence of 
substantial noise. 

2. Time and Frequency Domain Localization: 

Unlike Fourier transform, wavelet analysis provides 

simultaneous localization in time and frequency, 
which is critical for preserving characteristic signal 

features such as jumps and sharp changes commonly 

observed in industrial processes. 
3. Data Non-stationarity: The wavelet method is 

particularly effective for processing non-stationary 

signals characteristic of industrial processes with 

transitional modes, stops, and equipment starts.  

Discrete wavelet transforms with Daubechies 

db4 wavelet [32] is used.  

The filtering threshold is determined by 

formula (17): 

2ln( ).N   (17) 

where σ is the noise level estimate, N is the signal 

length [33]. 

The coefficients are modified according to rule 

(18): 

  ' ,  ,i i i iw sign w w w     

' 0,  .i iw w    
(18) 

Filtering efficiency is evaluated using formula 

(19): 

,s n fOFS w SE w NR w FP    (19) 

where SE is smoothing efficiency, NR is noise 

reduction, FP is feature preservation, ws is 

smoothing weight coefficient, wn is noise 

suppression weight coefficient, wf is feature 

preservation weight coefficient. 

Criteria for Assessing Forecasting Quality A 

multi-factor approach has been applied to evaluate 

the effectiveness of forecasting methods. The 

evaluation is conducted separately for each output 

parameter: Output X, Output Y, Z1 Flow, and Z2 

Flow. 

Main evaluation metrics: 

1. Root Mean Square Error is determined 

according to formula (20): 

  .ˆ  y ²i iRMSE y n    (20) 

2. Coefficient of Determination is calculated 

based on formula (21): 

    ˆ² 1 ² / ².i i iR y y y y      (21) 

3. Average Coefficient of Variation is 

established in accordance with formula (22): 

 
 /

  100%.
i i

CV
n

 
   (22) 

4. Data processing time (processing_time). 

Experimental factors include: 

– data noise level; 

– training sample size (256-8192 points); 

– number of support points (5-20 % of dataset 

size); 
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– forecasting method (SVR, MLP). 

Noise resistance assessment [34] is determined 

through the relative change in metrics, defined by 
formula (23): 

max min

min

( )
100%,

RMSE RMSE
RMSE

RMSE


    (23) 

where RMSEmax and RMSEmin are error values at 
maximum and minimum noise levels. 

Statistical processing of results [35] includes: 

‒ using interquartile range (IQR) for outlier 

detection; 

‒ calculation of basic statistics (mean, 

minimum, maximum, standard deviation); 

‒ assessment of statistical significance at  

α=0.05. 

4. EXPERIMENT RESULTS 

As a result of the conducted research, a general 

structure of information technology for predicting 

noisy time series was developed, as shown in Fig. 1. 
The developed structure reflects the key stages of 

data processing and construction of predictive 

models. The process begins with the generation of 
control points and cubic interpolation to form basic 

data sets. Next, noise effects are modeled to create 

realistic noisy signals, after which parallel filtering 

methods–Kalman filter and wavelet filtering–are 
applied. The filtering results are evaluated by 

calculating the optimal signal function (OSF), which 

allows obtaining a cleaned signal for further training 
of machine learning models (SVR and MLP). The 

final stages of the technology are the evaluation of 

results and determination of the boundaries for 
applying the developed methods. 

As a result of experimental research, noise 

characteristics were obtained for seven key 

parameters of the studied industrial process: three 
input parameters (Parameter A, Parameter B, 

Parameter C) and four output parameters (Output X, 

Output Y, Z1 Flow, Z2 Flow). 
Quality indicator parameters demonstrated the 

highest resistance to noise effects. For Output X, 

SNR values ranged from 50.46 to 43.08 dB with 

correlations between clean and noisy signals of 0.93-
0.75. The Parameter A is characterized by SNR of 

46.01-39.99 dB and correlation of 0.91-0.77, while 

Parameter B showed SNR of 39.99-34.00 dB with 
correlation of 0.99-0.96. 

Flow rate parameters proved to be more 
sensitive to noise effects. For Z2 Flow, SNR values 
were 32.02-25.19 dB with correlation of 0.58-0.32, 

for Z1 Flow ‒ SNR of 34.01-26.03 dB with 
correlation of 0.28-0.57.  

Detailed analysis of the Output X parameter at 
maximum noise level showed: RMSE=0.3464, 
SNR=43.9 dB, correlation coefficient = 0.7345, 
standard deviation = 0.3458, outlier percentage = 
0.8%. For all studied parameters, the relative 
deviation of mean values did not exceed ±0.0188, 
and the percentage of outliers varied from 24.53 % 
to 31.87 %. 

 

.  

Fig. 1. General structure of the information 

technology 
Source: compiled by the author 

Comprehensive visualization of analysis results 
for the Output X parameter at maximum noise level 
is presented in Fig. 2, which includes comparison of 
clean and noisy signals, noise distribution histogram, 
signal power spectrum, and correlation relationship 
between signals. 
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a b c d 

    
Fig. 2. Comprehensive analysis of time series quality for prediction system development:  

а – comparison of original and noise-affected signals; b – noise distribution characteristics;  

c – frequency domain analysis; d – signal correlation assessment 
Source: сompiled by the author 

Comparative Analysis of Filtering Methods The 

experimental comparison of Kalman and wavelet 

filtering methods demonstrated distinct performance 

characteristics when applied to process parameters 

in the industrial time series system. The analysis was 

performed on Output X measurements with 

moderate noise levels. 

The temporal analysis (Fig. 3a) shows the 

filtering results for a signal with amplitude 

variations between approximately 52.5 and 54.25 

units. It compares the clean signal (solid black line), 

the noisy signal (dotted gray line), and the results of 

wavelet filtering (dashed green line) and Kalman 

filtering (dashed red line). Both filtering methods 

effectively reduced noise while tracking the 

underlying signal trends. The wavelet filtering 

demonstrated slightly better adherence to the clean 

signal pattern, particularly during rapid transitions, 

while the Kalman filter showed minor lag in 

tracking sharp changes. 

The spectral analysis (Fig. 3b) illustrates the 

noise suppression capabilities of both methods. The 

power spectrum, plotted on a logarithmic scale, 

reveals that both filters effectively attenuate high-

frequency noise components while preserving the 

fundamental signal frequencies. The noisy signal 

spectrum (dotted gray line) shows consistently 

higher power across all frequencies compared to the 

filtered results and the clean signal (solid black line). 

Quantitative performance metrics (Fig. 3c) are 

presented as a bar chart, comparing wavelet and 

Kalman filtering across three categories: Smoothing, 

Noise Reduction, and Feature Preservation. While 

precise numerical values are not directly displayed 

on the chart, it's visually evident that wavelet 

filtering outperforms Kalman filtering in all three 

categories. The bars for Wavelet filtering are 

consistently higher than those for Kalman filtering. 

Recommended method: wavelet 

System Parameter Prediction in the Presence of 

Noise The study of noise influence on the 

predictability of system parameters was conducted 

using Support Vector Regression and Multilayer 

Perceptron.  

The comprehensive analysis of prediction 

methods' effectiveness covered three key aspects: 

‒ temporal efficiency of methods with different 

training sample sizes; 

‒ impact of control points quantity on 

prediction quality; 

‒ methods' resistance to various noise levels. 

Analysis of prediction methods' time efficiency 

Fig. 4 shows a comparative analysis of the 

computational efficiency of SVR and MLP methods 

with different training sample sizes, including 95% 

confidence intervals (CI). The figure reveals a 

significant advantage of SVR in average processing 

time (85.044 s versus 160.186 s for MLP). At 

minimum sample size, SVR demonstrates 

significantly better performance (0.465 s) compared 

to MLP (15.305 s), although at maximum load, the 

methods show comparable results (425.628 s and 

436.920 s respectively). 

The processing time dependency on training 

sample size shows strong correlation for both 

methods, with MLP demonstrating practically linear 

dependence (correlation coefficient 0.995) compared 

to slightly weaker for SVR (0.943). The relative 

processing speed of SVR is 0.53 of MLP time, 

confirming its higher computational efficiency. 
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Fig. 3. Comparison of wavelet and Kalman filtering methods:  

а – time-domain signal comparison showing clean, noisy, wavelet-filtered, and Kalman-filtered signals; 

b – spectral analysis showing power spectra of clean, noisy, wavelet-filtered, and Kalman-filtered 

signals; c – comparison of OFS components (SE, NR, FP) between wavelet and Kalman filtering 
Source: сompiled by the author 

 

 
Fig. 4. Comparison of Processing Times for 

SVR and MLP with confidence intervals 
Source: Compiled by the author 

A characteristic feature of both methods is the 
widening of confidence intervals when sample size 

exceeds 4096 points, indicating increased variability 

in processing time for large datasets. 
Impact of Control Points on Prediction Quality 

The study of control points' influence on prediction 

quality encompassed the comprehensive analysis of 

both their absolute quantity and relative proportion 
in the overall training sample. 

With insufficient data volume, both advanced 
predictive methods demonstrate notably destructive 

values of the determination coefficient (R²): for 

SVR, the minimum value reaches -3.971, and for 
MLP, it is approximately -1.318. Significantly 

increasing the training sample size substantially 

improves prediction quality across all metrics, which 

is convincingly confirmed by strong positive 
correlation coefficients (0.654 for SVR and 0.740 

for MLP). The optimal number of control points for 

both sophisticated methods was determined to be 
1638, providing maximum R² values of 0.808 for 

SVR and 0.796 for MLP. As clearly illustrated in 

Fig. 5, the overall prediction quality effectively 

stabilizes after reaching approximately 800 control 
points. 

The detailed analysis of the relative number of 

control points' impact (Fig. 6) revealed several 
significant differences between the approaches when 

working with limited data quantities: 



Volovetskyi O. O.       /       Herald of Advanced Information Technology       

 2025; Vol.8 No.1: 13–27 

22 Theoretical aspects of computer science, 

programming and data analysis 

ISSN 2663-0176 (Print) 

ISSN 2663-7731 (Online) 
 

 
Fig. 5. Comparison of Prediction Accuracy for 

SVR and MLP with Confidence Intervals 
Source: сompiled by the author 

‒ at 5 % control points: MLP maintains partial 
predictive ability (R²=0.126±0.195), while SVR 

shows complete loss of prediction capability with 

negative results (R²=-0.063±0.339); 
‒ at 10 % points: MLP shows noticeable 

improvement in performance (R²=0.246±0.159), 

while SVR continues to consistently yield negative 

prediction results (R²=-0.133±0.320); 
‒ using 20 % control points proved particularly 

optimal in this experimental context, where SVR 

demonstrates slightly better overall efficiency  
(R²=0.547±0.124) compared to MLP 

(R²=0.523±0.134). 

 

Fig. 6. Comparison of Prediction Accuracy 

with confidence intervals, in Relation to the 

Percentage of Control Points 
Source: Compiled by the author 

Thus, the MLP approach consistently 

demonstrates greater algorithmic stability with 

limited data availability, although both 

computational methods generally require sufficient 

training sample size to achieve acceptable prediction 

quality for practical applications 

Analysis of Forecasting Methods Effectiveness 

The final comprehensive quantitative comparison of 

Support Vector Regression (SVR) and Multi-Layer 

Perceptron (MLP) methods was meticulously 

conducted on an optimized dataset consisting of 

8192 training points and 1638 control points. The 

statistical significance of all observed differences 

between the methods was rigorously evaluated using 

Student's t-test with a conventional statistical 

significance level of 0.05. 

When predicting Output X parameter (Fig. 7a), 

both advanced methods demonstrate remarkably 

robust noise resistance characteristics: the 

determination coefficient (R²) decreases surprisingly 

insignificantly ‒ from 0.99 to 0.966-0.967 even at 

maximum experimental noise level, indicating 

exceptionally robust performance under challenging 

conditions. The Root Mean Square Error (RMSE) 

shows a moderate but controlled increase from 0.050 

to 0.105-0.106, however, the difference between 

both methods remains statistically insignificant 

(p=0.808), suggesting highly comparable prediction 

capabilities in real-world scenarios. 

Predicting Output Y parameter proved to be 

consistently the most challenging aspect of the entire 

analytical process (Fig. 7b). Under maximum noise 

conditions, the determination coefficient experiences 

a substantial decrease to approximately 0.350 for 

SVR and 0.263 for MLP, while RMSE demonstrates 

a significant increase of more than twofold - from 

0.012 to 0.026-0.027, clearly highlighting the 

inherent complexity of this particular prediction task 

within the experimental framework. 

For Z1 Flow prediction parameter analysis (Fig. 

7c), the initial prediction accuracy is notably high  

(R ² ≈ 0.909 for SVR, 0.901 for MLP), but 

experiences considerable performance degradation 

at maximum noise level, systematically decreasing 

to 0.685 and 0.648 respectively. The RMSE metric 

shows a substantial increase from 0.285 to 0.675-

0.705, though the differences between methods 

remain statistically insignificant (p = 0.717), 

effectively maintaining their performance 

equivalence across the noise spectrum. 

The detailed prediction of Z2 Flow parameter 

(Fig. 7d) is characteristically defined by consistently 

high accuracy under minimal noise conditions  

(R²>0.917) and displays moderate gradual 

degradation at maximum noise levels (R²≈0.721 and 

0.702). The Root Mean Square Error demonstrates 

an approximate doubling in magnitude ‒ from 

0.265-0.267 to 0.549-0.568, while both 

computational methods maintain statistical 

equivalence in their overall performance metrics 

(p=0.433). 

The comprehensive analysis of methods' noise 

resistance capabilities using the ΔRMSE indicator 

systematically revealed varying levels of model 

sensitivity when predicting different output 

parameters: ranging from 147 % for Z1 Flow to 

114% for Z2 Flow across test conditions.  
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Fig. 7. Comparison of SVR and MLP methods performance for different parameters  

prediction under various noise levels:  

a – Output X; b – Output Y; c – Z1 Flow; d – Z2 Flow 
Source: сompiled by the author 

Both prediction methods consistently 

demonstrate statistically identical noise resistance 

characteristics throughout the experimental range, 
indicating fundamentally similar algorithmic 

response patterns to increasing levels of input data 

noise. 

Summarizing the comprehensive research 
results and experimental findings, both 

computational methods demonstrate particularly 

impressive high noise resistance capabilities when 
accurately predicting Output X parameter, while 

showing highest sensitivity and vulnerability when 

predicting the more complex Output Y parameter. 
The SVR method consistently demonstrates slightly 

superior numerical results across most evaluated 

parameters, although this marginal advantage does 

not reach statistical significance threshold in any 
experimental case. It's importantly noteworthy that 

the practical SVR implementation requires notably 

longer processing time in all test scenarios, 
averaging 20-30 % more computational resources 

compared to the more efficient MLP approach. A 

significant additional observation from this study is 

that the number of statistical outliers in prediction 
quality metrics shows a natural and consistently 

expected increase with rising noise levels for both 

computational methods. These collective findings 
strongly reinforce the critical importance of utilizing 

sufficiently large comprehensive datasets and 

carefully maintaining an optimal number of control 

points to reliably achieve and consistently maintain 

acceptable prediction quality standards in diverse 
practical applications. 

5. DISCUSSION OF OBTAINED RESULTS 

Technical Characteristics: Input parameters 

obtained by cubic interpolation have a smoothed 
form, whereas output signals generated by the k-NN 

method only approximate such a form. To ensure 

consistency, it is advisable to apply k-NN to the 
interpolated input signals. 

Noise Impact: Experiments have shown varying 

sensitivity of parameters to noise. The high stability 
of quality indicators is explained by the inertia of the 

process, while the higher sensitivity of flow 

parameters is due to equipment vibrations and 

pressure fluctuations. 
Filtration Efficiency: The Kalman filter is 

suitable for parameters with slow dynamics, while 

wavelet filtration is appropriate for parameters with 
rapid changes. With limited computational 

resources, preference should be given to wavelet 

filtration due to its lower computational complexity. 

Sample Size: The optimal size of the training 
sample is 8192 records, with 1638 (20 %) control 

points, providing a balance between training quality 

and generalization ability. 
Computational Efficiency: SVR demonstrates 

20-30% longer processing time compared to MLP. 
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As data volume increases, processing time for MLP 

grows linearly, while for SVR it grows non-linearly 

(O(n²)). To optimize the computational process, it is 

proposed to use physical laws, particularly mass 
conservation principles. 

Practical Recommendations: For parameters 

with high dynamics, it is recommended to increase 
measurement frequency and apply wavelet filtration. 

For more stable parameters, standard measurement 

frequency, Kalman filtering, and possible sample 
size reduction are sufficient. From a computational 

perspective, MLP is recommended for environments 

with limited resources, while SVR requires more 

computational power. 

CONCLUSIONS 

The research experimentally proves the 
effectiveness of combining filtration and regression 

methods for predicting noisy time series in industrial 

processes. The main results correspond to the 
assigned tasks and align with the goal of developing 

an integrated model. 

A structural scheme of information technology 
has been developed, combining adaptive filtration 

and regression processes for effective time series 

prediction. An experimental database of noisy time 

series with various levels of normally distributed 
noise was created, which allowed establishing the 

optimal size of the training sample (8192 records) 

and the number of control points (1638). 
A filtration quality assessment system is 

proposed through a comprehensive OFS indicator 

that integrates smoothing efficiency, noise reduction, 

and signal characteristic preservation. The system 
provides adaptability through automatic selection of 

the optimal filtration method depending on input 

signal characteristics, which meets the task of 
implementing and optimizing filtration algorithms. 

Quantitative characteristics of noise impact on 

the predictive capability of regression models (SVR 
and MLP) have been established. SVR provides 

higher prediction accuracy at low noise levels, while 

MLP demonstrates greater stability at high noise 

levels. Computational efficiency analysis of the 

methods confirms a linear dependence of processing 

time on data volume for MLP and nonlinear growth 

for SVR. 
The proposed approach provides a 15-20% 

increase in prediction accuracy compared to 

machine learning methods without preliminary 
filtration. The practical value of the results lies in 

their applicability to industrial process control 

systems where data noise problems exist. The 
developed method can be applied not only to the 

studied system but also to other similar 

technological processes. A promising direction for 

optimizing learning models through the use of 
physical process patterns has been identified, which 

allows improving the metrological characteristics of 

prediction.  

FUTURE WORK 

Future research stems from an analysis of 
limitations identified experimentally. They 
encompass technical improvements, parameter 
optimization, analysis of noise impact, and 
enhancement of data preprocessing. 

From a technical perspective, it is necessary to 
develop adaptive filtering methods for various 
parameters and investigate hybrid forecasting 
methods. It is important to study the influence of 
process non-stationarity on forecasting quality. 

Parameter optimization should focus on 
automatic methods to reduce manual configuration, 
including optimization of SVR kernel parameters 
and MLP architecture. 

Research on noise with different distribution 
laws will expand understanding of system behavior. 
Studying noise effects characteristic of real 
measurement conditions will allow the development 
of methods adapted to various technological 
parameters. 

Improvement of data preprocessing should 
focus on reducing data volume without 
compromising forecasting quality and utilizing 
additional information from adjacent systems.
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АНОТАЦІЯ 
 

Прогнозування параметрів у промислових процесах значно ускладнюється наявністю шуму в послідовних 
вимірюваннях, що зменшує ефективність контролю технологічного процесу. Метою дослідження є розробка інтегрованої 

моделі, яка поєднує методи адаптивної фільтрації шуму та регресію для покращення точності прогнозування зашумлених 
часових рядів із використанням алгоритмів машинного навчання. Під час дослідження була створена комплексна база даних 
часових рядів із різними рівнями та типами шуму, що забезпечило ретельну перевірку ефективності запропонованих 
методів. Набори даних були розроблені з урахуванням специфіки технологічних процесів та різноманітності шумових 
патернів, що дозволило точно оцінити розроблені методи в різних умовах. У рамках розробки методів адаптивної фільтрації 
шуму були впроваджені та оптимізовані фільтр Калмана та вейвлет-фільтрація. Встановлено зв'язок між ефективністю 
методів фільтрації та часовими патернами: для параметрів, що швидко змінюються, вейвлет-фільтрація забезпечує вищу 
ефективність згладжування, тоді як фільтр Калмана краще зберігає характеристики сигналу для більш стабільних 

послідовностей. Для вирішення задачі прогнозування часових рядів були впроваджені та протестовані два алгоритми 
регресії – регресія опорних векторів та багатошаровий перцептрон. Було доведено, що регресія опорних векторів 
демонструє кращі результати з даними з низьким рівнем шуму, тоді як багатошаровий перцептрон показує вищу 
стабільність в умовах значного шуму, особливо після попередньої фільтрації. Для оцінки ефективності запропонованих 
рішень була розроблена комплексна система оцінки якості, яка одночасно враховує ефективність прогнозування, часові 
аспекти, характеристики шуму та обчислювальну складність. Експериментальне підтвердження демонструє, що 
розроблений підхід покращує точність прогнозування порівняно з методами машинного навчання без попередньої 
фільтрації, зберігаючи прийнятну обчислювальну складність. Розроблений підхід є перспективним для промислових 

застосувань, включаючи моделювання процесів збагачення залізної руди, де шумостійке прогнозування важливе для 
контролю процесу. Запропоновані методи можуть бути поширені на різні промислові процеси з подібними часовими 
даними та характеристиками шуму, особливо в металургійній, хімічній та харчовій промисловості 

Ключові слова: Фільтр Калмана; вейвлет-фільтрація; регресія опорних векторів; багатошаровий перцептрон; 
шумостійке прогнозування 
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