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ABSTRACT 

The paper presents a game-theoretic method of decentralized load balancing in microservice architectures, aimed at improving the 
efficiency of request distribution among service instances without using centralized controllers. The main idea is to represent the 
balancing process as a non-cooperative potential game in which each microservice is considered an autonomous agent seeking to 
minimize its own cost function. Unlike traditional algorithms such as Round Robin and Least Connections, the proposed approach is 
based on adaptive adjustment of agent strategies depending on the current state of the system, which ensures the achievement of Nash 
equilibrium and a stable load distribution. 

The mathematical model of game-theoretic method of decentralized load balancing takes into account the intensity of the request 
flow, the throughput of each node, and the quadratic component of the cost associated with resource overload. To optimize the decision-

making process, a stochastic Softmax-update dynamics are used, which approximate the gradient descent of the potential function. This 
allows the system to gradually balance the load even in the presence of asynchronous updates and communication delays between nodes. 
It has been proven that the process converges to a stationary state in polynomial time, ensuring scalability and predictable behavior in 
large distributed environments. 

An experimental study conducted in the SimPy simulation environment demonstrated that the proposed method significantly 
outperforms classical algorithms in key metrics. Under peak load, the Game-Theoretic Load Balancer algorithm reduced the average 
system response time compared to the Round Robin and Least Connections algorithms. The standard deviation of processor utilization 
decreased, indicating a more balanced workload distribution and the absence of overloaded computing nodes. 

The obtained results confirm the analytical stability, convergence, and practical effectiveness of the game-theoretic approach. The 
developed method ensures adaptive self-regulation of the system, minimizes the risk of overload, and increases the reliability of 
microservice architectures. Future research should focus on integrating game-theoretic method of decentralized load balancing with 
cloud orchestrators and extending the model to multi-level games in hybrid computing environments. 
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INTRODUCTION 

Modern software systems increasingly adopt 

microservice architectures (MSA) due to their 

scalability, modularity, and deployment flexibility. 
In these systems, application logic is decomposed 

into a network of loosely coupled services that 

interact over lightweight protocols. This 
decomposition enhances system resilience and 

development agility but introduces substantial 

challenges in runtime orchestration, particularly in 
the domain of load balancing. 

As user demand fluctuates and service instances 

dynamically scale, efficient request distribution 

becomes critical to ensure low latency, high 
availability, and resource efficiency. However, 

classical load balancing strategies, such as Round 

Robin (RR) or Least Connections (LC) often operate  
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without sufficient context and fail to adapt to can 
heterogeneous server capacities or temporal load 

spikes. These shortcomings motivate the search for 

more responsive and theoretically grounded 
approaches. 

In cloud-native environments, where elasticity 

and dynamic scaling are key, the lack of 

coordination between service replicas often leads to 
inefficiencies or bottlenecks. Additionally, the 

decentralized nature of microservices complicates 

the task of centralized control, making it difficult to 
capture system-wide state in real time. As a result, 

balancing algorithms must operate under partial 

observability, be robust to delays and asynchronous 
updates, and adapt to rapidly changing conditions. 

Recent advances in distributed systems suggest 

that modeling service instances as rational agents 

engaged in strategic decision-making may offer new 
insights. In this paradigm, load balancing is not  
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merely a control task but a distributed optimization 

problem where each agent seeks to improve its own 

performance under limited information. Game 
theory provides a powerful mathematical framework 

to analyze such interactions and offers convergence 

guarantees under various equilibrium dynamics. 
This perspective opens the door to novel 

approaches that combine theoretical rigor with 

practical applicability in dynamic service-oriented 
environments. 

RELATED WORKS AND PROBLEM 

STATEMENT 

The simplest approaches to request distribution 
in distributed systems are deterministic or heuristic 

algorithms such as RR, Weighted RR, LC, and 

others. These methods provide basic distribution (for 
example, RR sends requests to each server in turn 

equally) but do not take into account current changes 

in the system state [1]. As a result, in environments 

with uneven load, they may perform poorly: static 
schemes such as RR do not respond to traffic 

fluctuations, while more dynamic algorithms (such 

as LC or Least Response Time) remain merely 
reactive and can cause short-term oscillations and 

instability under sudden load spikes. In particular, 

during traffic surges, LC may redirect excessive 
requests to a less loaded node with a delay, which 

leads to an oscillation effect – alternating overload 

of different servers without achieving a stable 

balance [2]. In modern microservice architectures 
with unpredictable load profiles and strict latency 

requirements, such simple heuristics are considered 

insufficient. 
A systematic approach to selecting architectural 

patterns for IoT and distributed systems was 

proposed to formalize reliability, scalability, and 
adaptability criteria using a weighted evaluation 

model, which can be effectively applied to 

microservice environments [3]. 

The adequacy of feedback and state estimation 
in such distributed systems also depends on the 

informational integrity of collected metrics, as 

demonstrated in [4], where Shannon entropy–based 
evaluation was used to detect data loss and ensure 

the stability of decision systems under uncertain 

monitoring conditions. 

To overcome the limitations of traditional 
algorithms, researchers have turned to the 

mathematical framework of game theory, which 

allows modeling the interaction of independent 
agents in a distributed system [5]. The application of 

game-theoretic models to resource management 

tasks originated in the field of computer networks: 
as early as the 1990s, traffic routing was formalized 

as a game in which network nodes act either non-

cooperatively, each optimizing its own metrics, or 

cooperatively, negotiating a joint solution [6], [7]. It 
was shown that uncoordinated, selfish behavior 

leads to the loss of global efficiency, which is 

quantitatively characterized by the metric «price of 
anarchy» – the ratio of performance in equilibrium 

to optimal values. In particular, studies [8], [9] 

demonstrated that the Nash equilibrium (NE) in 
network games can significantly differ from the 

centralized optimum. Nash equilibrium, first 

formalized in the classical work [10], is a system 

state in which no player can improve their payoff 
(for example, reduce response time) by unilaterally 

changing their strategy. In the context of load 

balancing, NE corresponds to a self-regulated 
distribution of requests among servers where each 

service has chosen a strategy beneficial to itself. 

However, such a non-cooperative equilibrium may 

not be socially optimal – that is, the response time or 
other metrics at equilibrium may be worse than 

under centralized planning [11]. 

Similar principles of agent interaction and 
shared-resource optimization have been observed in 

software engineering models [12], where client–

resource class coordination is implemented through 
queue-based mechanisms ensuring consistent access 

and minimizing contention. These concepts align 

with the equilibrium perspective in decentralized 

load balancing. Practical studies also confirm that 
the efficiency of processing queues under maximum 

server load can be significantly improved through 

adaptive scheduling and priority control, which 
ensures stable throughput in distributed 

environments [13]. 

In distributed computing systems, game-
theoretic models of load balancing began to appear 

in the early 2000s. For example, in [14], static task 

distribution in a heterogeneous cluster system was 

formulated as a non-cooperative game: each node 
(user) acts independently, seeking to minimize its 

average processing time. The result is a «user-

optimal» equilibrium in which no user can gain by 
unilaterally changing their decision – effectively, a 

balanced state is achieved, though without 

guarantees of global optimality. Thus, early studies 

established two distinct approaches: the non-
cooperative (selfish) one – for scenarios where 

nodes belong to different users interested primarily 

in their own benefit, and the cooperative one – for 
cases where coordinated planning is possible to 

achieve a global optimum. Later works combined 

both paradigms: in [15], non-cooperative interaction 
between service instances was used for load 
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balancing in microservices, but for coordinating 

routing across service chains, a multi-party 

agreement based on the Nash bargaining solution (a 
cooperative element) was introduced. Another recent 

approach was proposed in [16], which considered 

two efficiency metrics simultaneously – 
performance and processing cost. In this model, each 

player (node) minimizes its own utility function 

combining response time and resource cost, 
achieving a «cost-aware» load distribution that 

balances performance and resource price. 

A separate line of research is devoted to 

hierarchical and incentive-based game models. 
Stackelberg games (leader–follower games) make it 

possible to model situations where one participant 

acts as a leader and others react to its strategy. This 
approach captures multi-level system control and 

can improve efficiency if the leader chooses a 

strategy considering followers’ responses. A notable 

example is [17], where a Stackelberg game is 
implemented between a request dispatcher (leader) 

and a set of servers (followers) in a cloud data 

center. The balancer first evaluates the satisfaction 
coefficient of each server and selects the optimal one 

for a new task, after which servers process assigned 

requests. This two-stage strategy (SGMLB 
algorithm) increases average resource utilization to 

about 60% and reduces failed (rejected) tasks by 

47% compared to random distribution. Another 

hierarchical approach is dynamic pricing: load 
balancing is formulated as a game between the cloud 

provider and consumers, where the provider sets the 

price for resources, and users choose which server to 
send their requests to based on the price. In model 

[18], each host assigns a service rate (cost) for 

processing requests, and each user aims to minimize 
their expenses by choosing the most advantageous 

offer – resulting in an equilibrium that aligns both 

parties’ interests. Such pricing mechanisms 

effectively implement auction or market-based 
regulation and can be used for dynamic load 

balancing in cloud platforms. More complex multi-

level games have also been explored: for example, 
[19] proposed a three-level game for joint resource 

management in cloud and fog nodes. At the top 

level, this hierarchical model employs Stackelberg 

interaction between the cloud and the edge, while 
lower levels include subgames for solving local 

optimization tasks, achieving coordination across 

system layers. 
Since participants in real systems make 

decisions asynchronously (lacking a shared 

synchronization mechanism), ensuring convergence 
of the game-theoretic algorithm under asynchronous 

strategy updates becomes a critical requirement. The 

theory of potential games states that if the load 

balancing problem can be formulated as an exact 
potential game, then any sequence of improving 

actions by players (even if they update strategies 

sequentially or in arbitrary order) will lead the 
system to Nash equilibrium. In other words, there 

exists a global potential function that monotonically 

decreases with selfish player actions, ensuring 
convergence to a stationary distribution (not 

necessarily globally optimal but stable) [20]. For 

practical implementation, stochastic best-response or 

reinforcement-learning approaches are often used. 
For instance, [21] proposed an adaptive algorithm 

where agents (servers) gradually learn to balance 

load through trial and error without centralized 
control. Each agent observes only local information 

about its state and randomly redirects part of the 

tasks to other nodes; over time, such multi-agent 

learning algorithms converge to more efficient 
distributions, even if updates occur asynchronously. 

An additional example of hybrid systems 

operating under uncertainty can be found in [22], 
where ensemble neural classifiers were combined 

with statistical methods for real-time medical 

diagnostics, achieving stability and high accuracy 
despite small and noisy datasets – a principle 

conceptually aligned with decentralized adaptive 

optimization. Recent studies also demonstrate that 

AI-based decision-support modules integrated into 
distributed architectures can enhance scalability and 

improve the adaptability of microservice systems 

[23]. 
The results of [24] showed that, with proper 

parameter selection, a simple local learning rule can 

ensure high utilization of all servers while avoiding 
overload of individual nodes. 

The literature review shows that despite the 

variety of approaches, the problem of dynamic load 

balancing in microservice systems remains far from 
fully solved. Classical heuristics (RR, LC, etc.) are 

too simple and do not guarantee either optimal 

distribution or stability under varying loads [25]. 
Another challenge lies in the practical 

implementation of proposed methods. Some 

algorithms that exhibit good convergence in theory 

may prove sensitive to parameters in real 
deployments. For example, the distributed gradient-

based load balancing algorithm [26] requires careful 

tuning of the optimization step; incorrect parameter 
choices may cause divergence or traffic oscillations 

[27]. However, a universal solution that considers all 

mentioned factors and ensures stable, fair, and 
efficient real-time load balancing in microservice 
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clouds has not yet been proposed. This indicates the 

need for further research: it is necessary to develop 

new approaches that overcome current limitations 
and fill existing scientific gaps in the problem of 

dynamic load balancing. 

RESEARCH AIM AND OBJECTIVES 

The aim of this research is to develop a 

decentralized load balancing method for 

microservice systems based on the theory of non-
cooperative games, that takes into account 

asynchronous updates, limited information 

availability, and resource heterogeneity. 

To achieve this aim, the following objectives 
were defined: 

– to analyze existing approaches to load 

balancing in distributed and microservice systems, 
particularly those based on game-theoretic models; 

– to identify the limitations of existing solutions 

related to assumptions of synchrony, centralization, 

and complete information; 
– to construct a formal model of load balancing 

as a non-cooperative game with a set of agents 

(services) making independent decisions; 
– to develop an adaptive decentralized 

algorithm for achieving equilibrium that is resistant 

to asynchronous updates and feedback delays; 
– to perform simulation of the proposed 

approach and compare its efficiency with traditional 

heuristic methods (RR, LC, etc.); 

– to evaluate convergence, stability, scalability, 
and the impact of instance heterogeneity on the 

quality of load balancing. 

DECENTRALIZED LOAD BALANCING 

METHOD BASED ON A GAME-THEORETIC 

MODEL 

In this study, we developed a mathematically 
formalized, decentralized load balancing method 

called Game-Theoretic Load Balancer (GTLB) 

which is based on the theory of potential games. The 

system is considered as a set of rational agents, 
where each microservice instance acts as a player 

seeking to minimize its own cost of processing 

requests in a dynamic environment. 
Let there be a set of service instances E = {1, 2, 

…, N}. 

The total request flow is characterized by an 

intensity λ, which is distributed among the services 
through a strategy vector: 

x = (x1, x2,…, xN), xi ≥ 0, ∑ 𝑥𝑖 = 1,𝑁
𝑖=1  

where xi is the fraction of requests directed to the i-
th node. The service throughput is denoted by μi, and 

the load on it is defined as follows: 

ρi = 
𝜆𝑥𝑖

𝜇𝑖
 , 

and the system stability condition requires that ρi<1  

for all i∈E. 
The average service time is modeled based on 

the M/M/1 queue: 

Ti(ρi) = 
1

𝜇𝑖−𝜆𝑥𝑖 
. 

The total cost, reflecting the average response 

time and the overload effect, is described by the 

following function: 

𝐶𝑖(𝑥) =  𝑤𝑖𝑇𝑖(𝜌𝑖) + 𝛼𝑖𝜌𝑖
2 =  

𝑤𝑖

𝜇𝑖− 𝜆𝑥𝑖
+ 𝛼𝑖(

𝜆𝑥𝑖

𝜇𝑖
)2 , 

where wi>0 is the service weight coefficient, and 

αi>0 determines the degree of nonlinear cost growth 

when the optimal utilization is exceeded. 
Each player seeks to minimize its own cost: 

𝑥𝑖
∗ = arg min

𝑥𝑖∈[0,1]
𝐶𝑖 (𝑥), 

given that all players act simultaneously. This 

defines a non-cooperative game G=⟨E,{xi},{Ci}⟩. 

To ensure convergence and the existence of 

Nash equilibrium, the model is formulated as an 

exact potential game with the following potential 
function: 

𝛷(𝑥) =  ∑ ∫
𝜕𝐶𝑖(𝑠, 𝑥−𝑖)

𝜕𝑠

𝑥𝑖

0

𝑁

𝑖=0

 𝑑𝑠 = 

=  ∑(
𝑤𝑖

𝜇𝑖 −  𝜆𝑥𝑖
+ 

𝛼𝑖   𝜆2 𝑥𝑖
2

𝜇𝑖
2 )

𝑁

𝑖=0

. 

For any two states x and x′, the following 

relation holds: 

𝐶𝑖(𝑥𝑖
′ , 𝑥−𝑖) −  𝐶𝑖(𝑥𝑖 , 𝑥−𝑖) =  𝛷(𝑥𝑖

′, 𝑥−𝑖) −
 Φ(𝑥𝑖 , 𝑥−𝑖), 

which guarantees the equivalence between 

individual and global improvement.  

       The Nash equilibrium x∗ corresponds to the 
minimum of the potential function: 

𝑥𝑖
∗ = arg min

𝑥𝑖∈Δ𝑁

𝛷(𝑥), 

where ΔN is the simplex of strategies. The existence 

of a minimum follows from the continuity of 𝛷 on 

the compact set ΔN. 

For practical implementation, a stochastic best-
response dynamic in the form of Softmax decoding 

is applied. At the t-th step, each player evaluates its 

current cost 𝐶𝑖
(𝑡)

, after which the probability of 

selecting a strategy is defined as: 
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𝑝𝑖
(𝑡+1)

=  
exp (−𝛽𝐶𝑖

(𝑡)
)

∑ exp (−𝛽𝐶𝑖
(𝑡)

)𝑁
𝑗=1  

, 

where β=1/T is the “temperature” parameter that 

controls the level of stochasticity: as T→0, the 

strategy becomes deterministic, while for large T, it 
approaches a uniform distribution. 

The current strategy is updated according to the 

exponential rule: 

𝑥𝑖
(𝑡+1)

= (1 − 𝜂)𝑥𝑖
(𝑡)

+ 𝜂𝑝𝑖
(𝑡+1)

, 

where η∈(0,1] is the update step. Such a stochastic 

process approximates the gradient descent of the 

potential function: 

∇𝑥𝑖
𝛷(𝑥) =  

𝜆𝑤𝑖

(𝜇𝑖− 𝜆𝑥𝑖)2 +  2𝛼𝑖
𝜆2𝑥𝑖

𝜇𝑖
2 , 

where ∇xiΦ(x) is the partial derivative (gradient) of 

the potential function Φ with respect to the variable 

xi; λ is the total request flow intensity, i.e., the 

number of requests arriving in the system per unit of 
time; wi is the weight coefficient of the i-th service, 

representing its priority or criticality (larger values 

indicate higher “cost” of response time for this 
node); μi is the performance or throughput of the i-th 

service (the average processing rate of requests); xi 

is the fraction of requests directed to the i-th node; αi 

is the nonlinear penalty coefficient for overload. 
In each iteration, the expected change in the 

potential function is non-positive, which guarantees 

a monotonic decrease of 𝛷 and the convergence of 
the system to the stationary distribution x*. 

In real time, the GTLB method operates as follows: 

for each node i, the current CPU utilization ui(t) is 
observed, based on which the actual cost function is 

determined as follows: 

𝐶𝑖(𝑡) =  
𝑤𝑖

𝜇𝑖− 𝜆𝑖(𝑡)
+ 𝛼𝑖𝑢𝑖

2(𝑡). 

According to the Softmax rule, the probability 

of routing a request to node i is calculated as 

follows: 

𝑝𝑖(𝑡) =  
𝑒−𝛽𝐶𝑖(𝑡)

∑ 𝑒
−𝛽𝐶𝑗(𝑡)

𝑗

. 

Upon each incoming request, the API gateway 

selects a node with probability pi(t). Updates occur 

asynchronously, taking into account a delay τ that 
models real network conditions. 

To prove the stability of the process, a 

constraint on the update step is introduced: 

𝜂 <  
2

𝐿+ 𝜏
, 

where L is the Lipschitz constant of the gradient of 

the potential function; τ is the update or feedback 

delay in the system. 
This condition ensures that even under 

asynchronous updates, the system remains stable and 

deviations from equilibrium decrease exponentially. 
Thus, the GTLB method mathematically 

describes a self-regulating decentralized load 

balancing process as a stochastic dynamic system 
that minimizes the potential in the strategy space. It 

combines the guarantee of the existence of a Nash 

equilibrium with practical convergence to a 

stationary state within polynomial time: 

tconv = O (N2 log(1 / ε)), 

where ε is the predefined precision of achieving 

equilibrium. 
Thus, the decentralized GTLB approach 

ensures analytical stability, proven convergence, and 

applicability in real-world asynchronous 

microservice architectures. 

EXPERIMENTAL RESEARCH RESULTS 

The experimental part was conducted to 

compare the efficiency of the proposed GTLB 
algorithm with classical load balancing mechanisms 

such as RR and LC. For this purpose, a simulation 

environment was created using the SimPy library, 
which provides event-based modeling of 

computational processes and queues. 

During the experiments, the number of service 

instances varied from 5 to 20. The maximum 

throughput of each instance was μi = 100 requests 

per second. To compute the cost function, the 
coefficient αi = 2.0 was used, and for Softmax 

decoding, the temperature parameter β = 1.5.  

The testing was conducted under two load 

scenarios: 
1) stationary load, corresponding to a stable 

flow of requests; 

2) bursty load, characterized by peak spikes up 
to 80 % overload. 

The efficiency evaluation was carried out using 

three groups of metrics: 

– average system response time (Tavg); 
– standard deviation of CPU utilization (σCPU), 

reflecting the uniformity of request distribution 

among instances; 
– system stabilization time (tstab), defined as the 

moment when σCPU decreased below 3 %.  

The results showed that under loads exceeding 
60 % of the system’s maximum capacity, GTLB 

significantly outperforms the RR and LC algorithms 

(Fig. 1). Due to its game-theoretic request 



Hryshchenko A. I., Komleva N. O.         /         Herald of Advanced Information Technology 

                                                                                       2025; Vol.8 No.4: 488–496 

ISSN 2663-0176 (Print) 

ISSN 2663-7731 (Online) 

Information technologies and 

computer systems 

493 

 

distribution model, GTLB limits tail latency and 

prevents sharp fluctuations in response time. 

During sudden traffic surges, GTLB equalizes 
the load among instances. Its CPU utilization 

variation is noticeably lower than that of LC, 

indicating better performance and showing that the 
system operates near the Nash equilibrium (Fig. 2). 

 

Fig. 1. Average Response Time vs. Total Load 
Source: compiled by the authors 

 

 
Fig. 2. CPU Utilization Standard Deviation under 

Bursty Load 
Source: compiled by the authors 

 

The comparative analysis presented in Table 1 
demonstrates the effectiveness of the proposed 

GTLB method under peak load conditions of 400 

requests per second. 

Table 1. Metric Comparison under Peak Load 

Algorithm Average 

Response 
Time 

(ms) 

CPU 

Standard 
Deviation 

(%) 

Round Robin (RR) 185.4 15.8 

Least Connections (LC) 110.2 8.3 

GTLB (proposed) 75.6 2.1 
Source: compiled by the authors 

The graph below shows how the stabilization 

time changes with an increasing number of instances 

(Fig. 3). 

 
Fig. 3. Stabilization Time vs. Number of 

Instances 
Source: compiled by the authors 

The experiment also confirmed that the 
system’s stabilization time increases polynomially 

with the number of instances, remaining several 

times lower than that of LC (Table 2). 

Table 2. Stabilization time versus system scale 

Number of 
instances 

Stabilization 
time of LC (ms) 

Stabilization 
time of GTLB 

(ms) 

5 250 120 

10 580 210 

20 1400 380 
Source: compiled by the authors 

Thus, GTLB demonstrates stable convergence 
and lower load variance, ensuring that the system 

operates near the Nash equilibrium. 

CONCLUSIONS 

As a result of the conducted research, a game-

theoretic method for decentralized load balancing, 

GTLB, was developed, providing coordinated 

request distribution in microservice architectures 

without the need for centralized control. The method 

formalizes the load balancing problem as an exact 

potential game, where each service instance acts as a 

rational agent minimizing its own cost. This enables 

the achievement of Nash equilibrium, corresponding 

to a stable system state in which no node has an 

incentive to unilaterally change its strategy. 

The developed stochastic Softmax-update 

algorithm implements gradient descent of the 

potential function, taking into account asynchrony 

and communication delays between agents. It has 

been proven that the process converges to a 

stationary state in polynomial time, ensuring 

scalability in systems with a large number of service 

instances. 

Experimental modeling in the SimPy 

environment demonstrated a significant advantage of 

GTLB over classical algorithms such as Round 
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Robin and Least Connections. The proposed method 

reduced the average system response time under 

peak load, decreased CPU utilization variance, and 

achieved faster stabilization of the operating state. 

The obtained results confirm that the proposed 

method demonstrates analytical stability, proven 

convergence, and high efficiency in dynamic 

microservice environments. Its application improves 

load distribution and enhances system reliability 

even under sharp fluctuations in request intensity. 
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АНОТАЦІЯ 

У статті представлено теоретико-ігровий метод децентралізованого балансування навантаження в мікросервісних 
архітектурах, спрямований на підвищення ефективності розподілу запитів між екземплярами сервісів без використання 
централізованих контролерів. Основна ідея полягає в представленні процесу балансування як некооперативної потенційної гри, в 

якій кожен мікросервіс розглядається як автономний агент, який прагне мінімізувати власну функцію витрат. На відміну від 
традиційних алгоритмів, таких як Round Robin та Least Connections, запропонований підхід базується на адаптивному коригуванні 
стратегій агентів залежно від поточного стану системи, що забезпечує досягнення рівноваги Неша та стабільний розподіл 
навантаження. 

Математична модель теоретико-ігрового методу децентралізованого балансування навантаження враховує інтенсивність 
потоку запитів, пропускну здатність кожного вузла та квадратичну складову витрат, пов'язаних з перевантаженням ресурсів. Для 
оптимізації процесу прийняття рішень використовується стохастична динаміка Softmax-update, яка апроксимує градієнтний спуск 
потенційної функції. Це дозволяє системі поступово балансувати навантаження навіть за наявності асинхронних оновлень та 

затримок зв'язку між вузлами. Було доведено, що процес сходиться до стаціонарного стану за поліноміальний час, що забезпечує 
масштабованість та передбачувану поведінку у великих розподілених середовищах. 

Експериментальне дослідження, проведене в середовищі моделювання SimPy, продемонструвало, що запропонований метод 
значно перевершує класичні алгоритми за ключовими показниками. Під час пікового навантаження алгоритм балансування 
навантаження на основі теорії ігор зменшив середній час відгуку системи порівняно з алгоритмами Round Robin та Least 
Connections. Стандартне відхилення використання процесора зменшилося, що свідчить про більш збалансований розподіл 
робочого навантаження та відсутність перевантажених обчислювальних вузлів. 

Отримані результати підтверджують аналітичну стійкість, збіжність та практичну ефективність ігрового підходу. 

Розроблений метод забезпечує адаптивне саморегулювання системи, мінімізує ризик перевантаження та підвищує надійність 
мікросервісних архітектур. Подальші дослідження повинні бути зосереджені на інтеграції ігрового методу децентралізованого 
балансування навантаження з хмарними оркестраторами та поширенні моделі на багаторівневі ігри в гібридних обчислювальних 
середовищах. 

Ключові слова: балансування навантаження; мікросервісна архітектура; теорія ігор; рівновага Неша; розподілені системи; 
програмна інженерія; оптимізація ресурсів 
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