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ABSTRACT

The paper presents a game-theoretic method of decentralized load balancing in microservice architectures, aimed at improving the
efficiency of request distribution among service instances without using centralized controllers. The main idea is to represent the
balancing process as a non-cooperative potential game in which each microservice is considered an autonomous agent seeking to
minimize its own cost function. Unlike traditional algorithms such as Round Robin and Least Connections, the proposed approach is
based on adaptive adjustment of agent strategies depending on the current state of the system, which ensures the achievement of Nash
equilibrium and a stable load distribution.

The mathematical model of game-theoretic method of decentralized load balancing takes into account the intensity of the request
flow, the throughput of each node, and the quadratic component of the cost associated with resource overload. To optimize the decision-
making process, a stochastic Softmax-update dynamics are used, which approximate the gradient descent of the potential function. This
allows the system to gradually balance the load even in the presence of asynchronous updates and communication delays between nodes.
It has been proven that the process converges to a stationary state in polynomial time, ensuring scalability and predictable behavior in
large distributed environments.

An experimental study conducted in the SimPy simulation environment demonstrated that the proposed method significantly
outperforms classical algorithms in key metrics. Under peak load, the Game-Theoretic Load Balancer algorithm reduced the average
system response time compared to the Round Robin and Least Connections algorithms. The standard deviation of processor utilization
decreased, indicating a more balanced workload distribution and the absence of overloaded computing nodes.

The obtained results confirm the analytical stability, convergence, and practical effectiveness of the game-theoretic approach. The
developed method ensures adaptive self-regulation of the system, minimizes the risk of overload, and increases the reliability of
microservice architectures. Future research should focus on integrating game-theoretic method of decentralized load balancing with
cloud orchestrators and extending the model to multi-level games in hybrid computing environments.
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INTRODUCTION

Modern software systems increasingly adopt
microservice architectures (MSA) due to their
scalability, modularity, and deployment flexibility.
In these systems, application logic is decomposed
into a network of loosely coupled services that
interact  over  lightweight  protocols.  This
decomposition enhances system resilience and
development agility but introduces substantial
challenges in runtime orchestration, particularly in
the domain of load balancing.

As user demand fluctuates and service instances
dynamically scale, efficient request distribution
becomes critical to ensure low latency, high
availability, and resource efficiency. However,
classical load balancing strategies, such as Round

without sufficient context and fail to adapt to can
heterogeneous server capacities or temporal load
spikes. These shortcomings motivate the search for
more responsive and theoretically grounded
approaches.

In cloud-native environments, where elasticity
and dynamic scaling are key, the lack of
coordination between service replicas often leads to
inefficiencies or bottlenecks. Additionally, the
decentralized nature of microservices complicates
the task of centralized control, making it difficult to
capture system-wide state in real time. As a result,
balancing algorithms must operate under partial
observability, be robust to delays and asynchronous
updates, and adapt to rapidly changing conditions.

Recent advances in distributed systems suggest
that modeling service instances as rational agents

Robin (RR) or Least Connections (LC) often operate
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engaged in strategic decision-making may offer new
insights. In this paradigm, load balancing is not
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merely a control task but a distributed optimization
problem where each agent seeks to improve its own
performance under limited information. Game
theory provides a powerful mathematical framework
to analyze such interactions and offers convergence
guarantees under various equilibrium dynamics.

This perspective opens the door to novel
approaches that combine theoretical rigor with
practical applicability in dynamic service-oriented
environments.

RELATED WORKS AND PROBLEM
STATEMENT

The simplest approaches to request distribution
in distributed systems are deterministic or heuristic
algorithms such as RR, Weighted RR, LC, and
others. These methods provide basic distribution (for
example, RR sends requests to each server in turn
equally) but do not take into account current changes
in the system state [1]. As a result, in environments
with uneven load, they may perform poorly: static
schemes such as RR do not respond to traffic
fluctuations, while more dynamic algorithms (such
as LC or Least Response Time) remain merely
reactive and can cause short-term oscillations and
instability under sudden load spikes. In particular,
during traffic surges, LC may redirect excessive
requests to a less loaded node with a delay, which
leads to an oscillation effect — alternating overload
of different servers without achieving a stable
balance [2]. In modern microservice architectures
with unpredictable load profiles and strict latency
requirements, such simple heuristics are considered
insufficient.

A systematic approach to selecting architectural
patterns for loT and distributed systems was
proposed to formalize reliability, scalability, and
adaptability criteria using a weighted evaluation
model, which can be effectively applied to
microservice environments [3].

The adequacy of feedback and state estimation
in such distributed systems also depends on the
informational integrity of collected metrics, as
demonstrated in [4], where Shannon entropy—based
evaluation was used to detect data loss and ensure
the stability of decision systems under uncertain
monitoring conditions.

To overcome the limitations of traditional
algorithms, researchers have turned to the
mathematical framework of game theory, which
allows modeling the interaction of independent
agents in a distributed system [5]. The application of
game-theoretic models to resource management

as a game in which network nodes act either non-
cooperatively, each optimizing its own metrics, or
cooperatively, negotiating a joint solution [6], [7]. It
was shown that uncoordinated, selfish behavior
leads to the loss of global efficiency, which is
quantitatively characterized by the metric «price of
anarchy» — the ratio of performance in equilibrium
to optimal values. In particular, studies [8], [9]
demonstrated that the Nash equilibrium (NE) in
network games can significantly differ from the
centralized optimum. Nash equilibrium, first
formalized in the classical work [10], is a system
state in which no player can improve their payoff
(for example, reduce response time) by unilaterally
changing their strategy. In the context of load
balancing, NE corresponds to a self-regulated
distribution of requests among servers where each
service has chosen a strategy beneficial to itself.
However, such a non-cooperative equilibrium may
not be socially optimal — that is, the response time or
other metrics at equilibrium may be worse than
under centralized planning [11].

Similar principles of agent interaction and
shared-resource optimization have been observed in
software engineering models [12], where client—
resource class coordination is implemented through
gueue-based mechanisms ensuring consistent access
and minimizing contention. These concepts align
with the equilibrium perspective in decentralized
load balancing. Practical studies also confirm that
the efficiency of processing queues under maximum
server load can be significantly improved through
adaptive scheduling and priority control, which
ensures  stable  throughput in  distributed
environments [13].

In distributed computing systems, game-
theoretic models of load balancing began to appear
in the early 2000s. For example, in [14], static task
distribution in a heterogeneous cluster system was
formulated as a non-cooperative game: each node
(user) acts independently, seeking to minimize its
average processing time. The result is a «user-
optimal» equilibrium in which no user can gain by
unilaterally changing their decision — effectively, a
balanced state is achieved, though without
guarantees of global optimality. Thus, early studies
established two distinct approaches: the non-
cooperative (selfish) one — for scenarios where
nodes belong to different users interested primarily
in their own benefit, and the cooperative one — for
cases where coordinated planning is possible to
achieve a global optimum. Later works combined
both paradigms: in [15], non-cooperative interaction

tasks originated in the field of computer networks: between service instances was used for load
as early as the 1990s, traffic routing was formalized
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balancing in microservices, but for coordinating
routing across service chains, a multi-party
agreement based on the Nash bargaining solution (a
cooperative element) was introduced. Another recent
approach was proposed in [16], which considered
two efficiency  metrics  simultaneously -
performance and processing cost. In this model, each
player (node) minimizes its own utility function
combining response time and resource cost,
achieving a «cost-aware» load distribution that
balances performance and resource price.

A separate line of research is devoted to
hierarchical and incentive-based game models.
Stackelberg games (leader—follower games) make it
possible to model situations where one participant
acts as a leader and others react to its strategy. This
approach captures multi-level system control and
can improve efficiency if the leader chooses a
strategy considering followers’ responses. A notable
example is [17], where a Stackelberg game is
implemented between a request dispatcher (leader)
and a set of servers (followers) in a cloud data
center. The balancer first evaluates the satisfaction
coefficient of each server and selects the optimal one
for a new task, after which servers process assigned
requests. This two-stage strategy (SGMLB
algorithm) increases average resource utilization to
about 60% and reduces failed (rejected) tasks by
47% compared to random distribution. Another
hierarchical approach is dynamic pricing: load
balancing is formulated as a game between the cloud
provider and consumers, where the provider sets the
price for resources, and users choose which server to
send their requests to based on the price. In model
[18], each host assigns a service rate (cost) for
processing requests, and each user aims to minimize
their expenses by choosing the most advantageous
offer — resulting in an equilibrium that aligns both
parties’ interests. Such pricing mechanisms
effectively implement auction or market-based
regulation and can be used for dynamic load
balancing in cloud platforms. More complex multi-
level games have also been explored: for example,
[19] proposed a three-level game for joint resource
management in cloud and fog nodes. At the top
level, this hierarchical model employs Stackelberg
interaction between the cloud and the edge, while
lower levels include subgames for solving local
optimization tasks, achieving coordination across
system layers.

Since participants in real systems make
decisions asynchronously (lacking a shared
synchronization mechanism), ensuring convergence
of the game-theoretic algorithm under asynchronous

strategy updates becomes a critical requirement. The
theory of potential games states that if the load
balancing problem can be formulated as an exact
potential game, then any sequence of improving
actions by players (even if they update strategies
sequentially or in arbitrary order) will lead the
system to Nash equilibrium. In other words, there
exists a global potential function that monotonically
decreases with selfish player actions, ensuring
convergence to a stationary distribution (not
necessarily globally optimal but stable) [20]. For
practical implementation, stochastic best-response or
reinforcement-learning approaches are often used.
For instance, [21] proposed an adaptive algorithm
where agents (servers) gradually learn to balance
load through trial and error without centralized
control. Each agent observes only local information
about its state and randomly redirects part of the
tasks to other nodes; over time, such multi-agent
learning algorithms converge to more efficient
distributions, even if updates occur asynchronously.

An additional example of hybrid systems
operating under uncertainty can be found in [22],
where ensemble neural classifiers were combined
with statistical methods for real-time medical
diagnostics, achieving stability and high accuracy
despite small and noisy datasets — a principle
conceptually aligned with decentralized adaptive
optimization. Recent studies also demonstrate that
Al-based decision-support modules integrated into
distributed architectures can enhance scalability and
improve the adaptability of microservice systems
[23].

The results of [24] showed that, with proper
parameter selection, a simple local learning rule can
ensure high utilization of all servers while avoiding
overload of individual nodes.

The literature review shows that despite the
variety of approaches, the problem of dynamic load
balancing in microservice systems remains far from
fully solved. Classical heuristics (RR, LC, etc.) are
too simple and do not guarantee either optimal
distribution or stability under varying loads [25].
Another  challenge lies in the practical
implementation of proposed methods. Some
algorithms that exhibit good convergence in theory
may prove sensitive to parameters in real
deployments. For example, the distributed gradient-
based load balancing algorithm [26] requires careful
tuning of the optimization step; incorrect parameter
choices may cause divergence or traffic oscillations
[27]. However, a universal solution that considers all
mentioned factors and ensures stable, fair, and
efficient real-time load balancing in microservice
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clouds has not yet been proposed. This indicates the
need for further research: it is necessary to develop
new approaches that overcome current limitations
and fill existing scientific gaps in the problem of
dynamic load balancing.

RESEARCH AIM AND OBJECTIVES

The aim of this research is to develop a
decentralized load  balancing  method  for
microservice systems based on the theory of non-
cooperative games, that takes into account
asynchronous  updates, limited information
availability, and resource heterogeneity.

To achieve this aim, the following objectives
were defined:

— to analyze existing approaches to load
balancing in distributed and microservice systems,
particularly those based on game-theoretic models;

— to identify the limitations of existing solutions
related to assumptions of synchrony, centralization,
and complete information;

— to construct a formal model of load balancing
as a non-cooperative game with a set of agents
(services) making independent decisions;

— to develop an adaptive decentralized
algorithm for achieving equilibrium that is resistant
to asynchronous updates and feedback delays;

— to perform simulation of the proposed
approach and compare its efficiency with traditional
heuristic methods (RR, LC, etc.);

— to evaluate convergence, stability, scalability,
and the impact of instance heterogeneity on the
quality of load balancing.

DECENTRALIZED LOAD BALANCING
METHOD BASED ON A GAME-THEORETIC
MODEL

In this study, we developed a mathematically
formalized, decentralized load balancing method
called Game-Theoretic Load Balancer (GTLB)
which is based on the theory of potential games. The
system is considered as a set of rational agents,
where each microservice instance acts as a player
seeking to minimize its own cost of processing
reguests in a dynamic environment.

Let there be a set of service instances E = {1, 2,
....N}.

The total request flow is characterized by an
intensity A, which is distributed among the services
through a strategy vector:

X = (X1, X250 XN), Xi 20, XN 2, =1,

where x; is the fraction of requests directed to the i-
th node. The service throughput is denoted by wi, and
the load on it is defined as follows:

)].x,:

pi-;:

and the system stability condition requires that pi<l
for all i€E.

The average service time is modeled based on
the M/M/1 queue:

1
mi=Ax;

Ti(pi) =

The total cost, reflecting the average response
time and the overload effect, is described by the
following function:

wi iy
i Ax; + al(#i) '

C;(x) = wTi(p) + aip? =

where w;i>0 is the service weight coefficient, and
;>0 determines the degree of nonlinear cost growth
when the optimal utilization is exceeded.

Each player seeks to minimize its own cost:

x; = argxirél[iorlll] C;(x),
given that all players act simultaneously. This
defines a non-cooperative game G=(E,{xi},{Ci}).

To ensure convergence and the existence of
Nash equilibrium, the model is formulated as an
exact potential game with the following potential
function:

?(x) = if% ds =

i=00
N
_Z( Wi | % Azxiz)
e Wi — Ax; .Uiz '

For any two states x and x', the following
relation holds:

Ci(xi,x_i) — Ci(xpx_y) = d(xj,x_;) —
D(x;,x_),

which  guarantees the equivalence
individual and global improvement.

The Nash equilibrium x* corresponds to the
minimum of the potential function:

x; = argxrl_%iArIlv ®(x),

where Ay is the simplex of strategies. The existence
of a minimum follows from the continuity of @ on
the compact set An.

For practical implementation, a stochastic best-
response dynamic in the form of Softmax decoding
is applied. At the t-th step, each player evaluates its

current cost Ci(t), after which the probability of
selecting a strategy is defined as:

between
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exp(-B¢)

(t+1) _
SN exp(-pc?)’

p;

where f=1/T is the “temperature” parameter that
controls the level of stochasticity: as T—0, the
strategy becomes deterministic, while for large T, it
approaches a uniform distribution.

The current strategy is updated according to the
exponential rule:

®

1— n)xl (t+1)

+ 1p; )

where 7€(0,1] is the update step. Such a stochastic
process approximates the gradient descent of the
potential function:

CE (

4

Aw; A%x;
: + 20.’i L

in<D(X) = =22 “_iza

where Vx;i@(x) is the partial derivative (gradient) of
the potential function @ with respect to the variable
Xi; A is the total request flow intensity, i.e., the
number of requests arriving in the system per unit of
time; w; is the weight coefficient of the i-th service,
representing its priority or criticality (larger values
indicate higher “cost” of response time for this
node); wi is the performance or throughput of the i-th
service (the average processing rate of requests); Xi
is the fraction of requests directed to the i-th node; o
is the nonlinear penalty coefficient for overload.

In each iteration, the expected change in the
potential function is non-positive, which guarantees
a monotonic decrease of @ and the convergence of
the system to the stationary distribution x*.
In real time, the GTLB method operates as follows:
for each node i, the current CPU utilization ui(t) is
observed, based on which the actual cost function is
determined as follows:

wi

Gi(t) = pi— Ai(t)

According to the Softmax rule, the probability
of routing a request to node i is calculated as
follows:

+ aiuiz(t).

-BC;i(®)

e i

pi(t) = — —BC ("
xje ©J )

Upon each incoming request, the APl gateway
selects a node with probability pi(t). Updates occur
asynchronously, taking into account a delay 7 that
models real network conditions.

To prove the stability of the process, a
constraint on the update step is introduced:

n <

L+’

where L is the Lipschitz constant of the gradient of
the potential function; 7 is the update or feedback
delay in the system.

This condition ensures that even under
asynchronous updates, the system remains stable and
deviations from equilibrium decrease exponentially.

Thus, the GTLB method mathematically
describes a self-regulating decentralized load
balancing process as a stochastic dynamic system
that minimizes the potential in the strategy space. It
combines the guarantee of the existence of a Nash
equilibrium with practical convergence to a
stationary state within polynomial time:

tconv = O (N2 |Og(1 / 8)),

where ¢ is the predefined precision of achieving
equilibrium.

Thus, the decentralized GTLB approach
ensures analytical stability, proven convergence, and
applicability in real-world asynchronous
microservice architectures.

EXPERIMENTAL RESEARCH RESULTS

The experimental part was conducted to
compare the efficiency of the proposed GTLB
algorithm with classical load balancing mechanisms
such as RR and LC. For this purpose, a simulation
environment was created using the SimPy library,
which  provides event-based modeling  of
computational processes and queues.
During the experiments, the number of service
instances varied from 5 to 20. The maximum
throughput of each instance was ui = 100 requests
per second. To compute the cost function, the
coefficient a;j = 2.0 was used, and for Softmax
decoding, the temperature parameter 8 = 1.5.

The testing was conducted under two load
scenarios:

1) stationary load, corresponding to a stable
flow of requests;

2) bursty load, characterized by peak spikes up
to 80 % overload.

The efficiency evaluation was carried out using
three groups of metrics:

— average system response time (Tawy);

— standard deviation of CPU utilization (ocpu),
reflecting the uniformity of request distribution
among instances;

— system stabilization time (tstan), defined as the
moment when ocpy decreased below 3 %.

The results showed that under loads exceeding
60 % of the system’s maximum capacity, GTLB
significantly outperforms the RR and LC algorithms
(Fig. 1). Due to its game-theoretic request
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distribution model, GTLB limits tail latency and
prevents sharp fluctuations in response time.

During sudden traffic surges, GTLB equalizes
the load among instances. Its CPU utilization
variation is noticeably lower than that of LC,
indicating better performance and showing that the
system operates near the Nash equilibrium (Fig. 2).

300 F Round Robin (RR)
Least Connections (LC)
—a— GTLB (Our Approach)

250+

200}
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100t
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Fig. 1. Average Response Time vs. Total Load
Source: compiled by the authors
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Fig. 2. CPU Utilization Standard Deviation under
Bursty Load

Source: compiled by the authors

The comparative analysis presented in Table 1
demonstrates the effectiveness of the proposed
GTLB method under peak load conditions of 400
requests per second.

Table 1. Metric Comparison under Peak Load

Algorithm Average CPU
Response | Standard
Time Deviation
(ms) (%)
Round Robin (RR) 185.4 15.8
Least Connections (LC) 110.2 8.3
GTLB (proposed) 75.6 2.1

Source: compiled by the authors

The graph below shows how the stabilization
time changes with an increasing number of instances

(Fig. 3).

1400 Least Connections (LC)
GTLB (Our Approach)

- -
o N
o [=
o o
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Stabilization Time (ms)

200

6 8 10 12 14 16 18 20
Number of Instances

Fig. 3. Stabilization Time vs. Number of
Instances
Source: compiled by the authors
The experiment also confirmed that the
system’s stabilization time increases polynomially
with the number of instances, remaining several
times lower than that of LC (Table 2).

Table 2. Stabilization time versus system scale

Number of Stabilization Stabilization
instances time of LC (ms) | time of GTLB
(ms)
5 250 120
10 580 210
20 1400 380

Source: compiled by the authors

Thus, GTLB demonstrates stable convergence
and lower load variance, ensuring that the system
operates near the Nash equilibrium.

CONCLUSIONS

As a result of the conducted research, a game-
theoretic method for decentralized load balancing,
GTLB, was developed, providing coordinated
request distribution in microservice architectures
without the need for centralized control. The method
formalizes the load balancing problem as an exact
potential game, where each service instance acts as a
rational agent minimizing its own cost. This enables
the achievement of Nash equilibrium, corresponding
to a stable system state in which no node has an
incentive to unilaterally change its strategy.

The developed stochastic Softmax-update
algorithm implements gradient descent of the
potential function, taking into account asynchrony
and communication delays between agents. It has
been proven that the process converges to a
stationary state in polynomial time, ensuring
scalability in systems with a large number of service
instances.

Experimental modeling in the SimPy
environment demonstrated a significant advantage of
GTLB over classical algorithms such as Round
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Robin and Least Connections. The proposed method  convergence, and high efficiency in dynamic

reduced the average system response time under  microservice environments. Its application improves

peak load, decreased CPU utilization variance, and load distribution and enhances system reliability

achieved faster stabilization of the operating state. even under sharp fluctuations in request intensity.
The obtained results confirm that the proposed

method demonstrates analytical stability, proven

REFERENCES
1. Xiao, H., Zhang, Z. & Zhou, Z. “GWS - a collaborative load-balancing algorithm for Internet-of-
Things”. Sensors. 2018; 18 (8): 2479, https://www.scopus.com/pages/

publications/85051077846?origin=resultslist. DOI: https://doi.org/10.3390/518082479.

2. Bandyopadhyay, A., Swain, S., Singh, R. K., Sarkar, P., Bhattacharyya, S. & Mrsic, L. “Game-
theoretic resource allocation and dynamic pricing mechanism in fog computing”. IEEE Access. 2024; 12:
51704-51718, https://www.scopus.com/pages/publications/85189629587?origin=resultslist. DOl:
https://doi.org/10.1109/ACCESS.2024.3384334.

3. Komleva, N. & Nikitchenko, M. “Method for incremental control of consistency between structural
and behavioral views of software architecture”. Applied Aspects of Information Technology. 2025; 8 (2):
162-177. DOI: https://doi.org/10.15276/aait.08.2025.11.

4. Komleva, N., Liubchenko, V. & Zinovatna, S. “Evaluation of the quality of survey data and its
visualization using dashboards”. Computer Science and Information Technologies. 2020; 2:
234-237, https://www.scopus.com/pages/publications/85100509851?origin=resultslist.

DOI: https://doi.org/10.1109/CSI1T49958.2020.9321970.

5. Naaz, Z., Joshi, G. & Sharma, V. “Load-balancing model using game theory in edge-based loT
network”. Pervasive and Mobile Computing. 2025; 109: 102041,
https://www.scopus.com/pages/publications/105000559042?crigin=resultslis.t
DOI: https://doi.org/10.1016/j.pmcj.2025.102041.

6. Ulichev, O. & Kulahin, V. “Game-theoretic approach to microservice optimization”. Central
Ukrainian  Scientific  Bulletin  (Technical  Sciences). 2025, 12 (43) Part I. 44-57.
DOI: https://doi.org/10.32515/2664-262X.2025.12(43).1.44-57.

7. Telmanov, M., Suchkov, M., Abdiakhmetova, Z. & Kartbayev, A. “Strategic processor task
allocation through game-theoretic modeling in distributed computing environments™. Bulletin of Electrical
Engineering and Informatics. 2025; 14 (2): 1371-1380,
https://www.scopus.com/pages/publications/85216537772origin=resultslist.

DOI: https://doi.org/10.11591/eei.v14i2.9257.

8. Tripathi, R., Sivaraman, V., Tamarapalli, V., Chronopoulos, A. T. & Siar, H. “Non-cooperative
power and latency aware load balancing in distributed data centers”. Journal of Parallel and Distributed
Computing. 2017; 107: 76-86, https://www.scopus.com/pages/publications/850191107267origin=resultslist.
DOI: https://doi.org/10.1016/j.jpdc.2017.04.006.

9. Liu, S., Tian, J., Deng, X., Yuan, Z., Bian, J. et al. “Stackelberg game-based task offloading in
vehicular edge computing networks”. International Journal of Communication Systems. 2021; 34 (16):
e4947. DOI: https://doi.org/10.1002/dac.4947.

10. Abedin, S. F., Bairagi, A. K., Munir, M. S., Tran, N. H.& Hong, C. S. “Fog load balancing for
massive machine type communications: a game and transport theoretic approach”. IEEE Access. 2019; 7:
42044218, https://www.scopus.com/pages/publications/85059274942%crigin=resultslist. DOl:
https://doi.org/10.1109/ACCESS.2018.2888869.

11. Polgar, Z. A. & Varga, M. “Game theory-based load-balancing algorithms for small cells’ wireless
backhaul connections”. Applied Sciences. 2023; 13 (3): 1485,
https://www.scopus.com/pages/publications/85147871379%origin=resultslist.

DOI: https://doi.org/10.3390/app13031485.

12. Kungurtsev, O. & Komleva, N. “Implementation of Class Interaction under Aggregation
Conditions”. Eastern-European Journal of Enterprise Technologies. 2024; 2 (2) (128): 20-30,
https://www.scopus.com/pages/publications/85194906111?origin=resultslist.

DOI: https://doi.org/10.15587/1729-4061.2024.301011.

494 Information technologies and ISSN 2663-0176 (Print)
computer systems ISSN 2663-7731 (Online)


https://doi.org/10.3390/s18082479
https://doi.org/10.1109/ACCESS.2024.3384334
https://doi.org/10.15276/aait.08.2025.11
https://doi.org/10.1109/CSIT49958.2020.9321970
https://doi.org/10.1016/j.pmcj.2025.102041
https://doi.org/10.32515/2664-262X.2025.12(43).1.44-57
https://doi.org/10.11591/eei.v14i2.9257
https://doi.org/10.1016/j.jpdc.2017.04.006
https://doi.org/10.1002/dac.4947
https://doi.org/10.1109/ACCESS.2018.2888869
https://doi.org/10.15587/1729-4061.2024.301011

Hryshchenko A. 1., Komleva N. O. / Herald of Advanced Information Technology
2025; Vol.8 No.4: 488-496

13. Surkov, S. S., Martynyuk, O. M., Drozd, O. V. & Drozd, M. O. “A model and method for
enhancing the efficiency of processing operation queues at maximum server equipment load.” Applied
Aspects of Information Technology. 2024; 7 (2): 125-134. DOI: https://doi.org/10.15276/aait.07.2024.9.

14. Yi, C., Cai, J., Zhu, K. & Wang, R. “A queueing game based management framework for fog
computing with strategic computing speed control”. IEEE Transactions on Mobile Computing. 2022; 21(5):
1537-1551. https://www.scopus.com/pages/publications/851285269207origin=resultslist. DOl:
https://doi.org/10.1109/TMC.2020.3026194.

15. Swathy, R., Vinayagasundaram, B., Rajesh, G., Nayyar, A., Abouhawwash, M. & Abu-Elsoud, M.
“Game theoretical approach for load balancing using SGMLB model in cloud environment”. PLOS ONE.
2020; 15 (4): e0231708, https://www.scopus.com/pages/publications/850835053077origin=resultslist.
DOI: https://doi.org/10.1371/journal.pone.0231708.

16. Jie, Y., Tang, X., Choo, K.-K. R., Li, M., Guo, C & Su, S. “Online task scheduling for edge
computing based on repeated stackelberg game”. Journal of Parallel and Distributed Computing. 2018; 122:
159-172, https://www.scopus.com/pages/publications/85052873006?origin=resultslist. DOl:
https://doi.org/10.1016/j.jpdc.2018.07.019.

17. He, Q., Wang, H., Jin, H. et al. “A Game-theoretical approach for user allocation in edge
computing environment”. IEEE Transactions on Parallel and Distributed Systems. 2020; 31 (4): 515-529.
https://www.scopus.com/pages/publications/85076917885%origin=resultslist.

DOI: https://doi.org/10.1109/TPDS.2019.2938944.

18. Yuan, X., Min, G., Yang, L. T., Ding, Y. & Fang, Q. “A game theory-based dynamic resource
allocation strategy in geo-distributed datacenter clouds”. Future Generation Computer Systems. 2017; 76:
63-72, https://www.scopus.com/pages/publications/85020441051?origin=resultslist.

DOI: https://doi.org/10.1016/j.future.2017.04.046.

19. Wang, Y., Wang, J. & Sun, J. “A game-theoretic based resource allocation strategy for cloud
computing services”. Scientific Programming. 2016. p. 1629893.
DOI: https://doi.org/10.1155/2016/1629893.

20. Wu, H., Shi, B., He, Q., Cui, G., Chen, S., Feng, Z., Zomaya, A. Y. & Deng, S. “A game-theoretic
approach for microservice request dispatching in mobile edge computing systems”. IEEE Transactions on
Services Computing. 2025; 18 (5): 2503-2516, https://www.scopus.com/pages/publications/
105014779787?0rigin=resultslist. DOI: https://doi.org/10.1109/TSC.2025.3602905.

21. Kishor, A., Niyogi, R. & Veeravalli, B. “A game-theoretic approach for cost-aware load balancing
in  distributed  systems”.  Future  Generation Computer  Systems. 2020; 109: 29-44,
https://www.scopus.com/pages/publications/85082017829%origin=resultslist.

DOI: https://doi.org/10.1016/j.future.2020.03.027.

22. Komleva, N. O., Cherneha, K. S., Tymchenko, B. I. & Komlevoy, O. M. “Intellectual Approach
Application for Pulmonary Diagnosis”. Proceedings of the IEEE First International Conference on Data
Stream Mining & Processing (DSMP). 2016; 1 48-52.
https://www.scopus.com/pages/publications/84994235648?crigin=resultslist.

DOI: https://doi.org/10.1109/DSMP.2016.7583505.

23. Shuryhin, K. A. & Zinovatna, S. L. “Recommendation system for financial decision-making using
Artificial Intelligence.” Applied Aspects of Information Technology. 2024; 7 (4): 348-358. DOI:
https://doi.org/10.15276/aait.07.2024.24.

24. Siar, H., Kiani, K. & Chronopoulos, A. T. “An effective game theoretic static load balancing
applied to distributed computing”.  Cluster ~ Computing. 2015, 18 (4): 1609-1623,
https://www.scopus.com/pages/publications/84983393840?crigin=resultslist.

DOI: https://doi.org/10.1007/510586-015-0486-0.

25. Kumar, S., Sharma, V. & You, 1. “A game-theoretic approach for increasing resource utilization in
edge computing enabled IoT”. IEEE Access. 2022; 10: 57974-57989,
https://www.scopus.com/pages/publications/85130435382?crigin=resultslist.

DOI: https://doi.org/10.1109/ACCESS.2022.3175850.

26. Proietti Mattia, G., Pietrabissa, A. & Beraldi, R. “A load balancing algorithm for equalising latency
across fog or edge computing nodes”. IEEE Transactions on Services Computing. 2023; 16 (5): 3129-3140,
https://www.scopus.com/pages/publications/851533828867origin=resultslist.

DOI: https://doi.org/10.1109/TSC.2023.3265883.

27. Niu, Y. et al. “Load Balancing Across Microservices”. IEEE INFOCOM Conference Proceedings.

2018. DOI: https://doi.org/10.1109/INFOCOM.2018.8486300.

ISSN 2663-0176 (Print) Information technologies and 495
ISSN 2663-7731 (Online) computer systems


https://doi.org/10.1109/TMC.2020.3026194
https://doi.org/10.1371/journal.pone.0231708
https://doi.org/10.1016/j.jpdc.2018.07.019
https://doi.org/10.1109/TPDS.2019.2938944
https://doi.org/10.1016/j.future.2017.04.046
https://doi.org/10.1155/2016/1629893
https://doi.org/10.1109/TSC.2025.3602905
https://doi.org/10.1016/j.future.2020.03.027
https://doi.org/10.1109/DSMP.2016.7583505
https://doi.org/10.1007/s10586-015-0486-0
https://doi.org/10.1109/ACCESS.2022.3175850
https://doi.org/10.1109/TSC.2023.3265883
https://doi.org/10.1109/INFOCOM.2018.8486300

Hryshchenko A. I., Komleva N. O. / Herald of Advanced Information Technology
2025; Vol.8 No.4: 488-496

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Author Nataliia O. Komleva is a member of the Editorial Board of this journal. This role had no influence on the peer review process
or editorial decision regarding this manuscript

Received 30.09.2025
Received after revision 26.11.2025
Accepted  03.12.2025

DOI: https://doi.org/10.15276/hait.08.2025.31
YK 004.89:004.272.4:681.518

IrpoBo-TeopeTHUHMIA METO/I ACHEHTPATI30BAHOTO 0AJTAHCYBAHHS
HABAHTAKEHHS B MIKPOCEPBICHHX apXiTeKTypax

I'pumenko Aunpiii Iroposny”

ORCID: https://orcid.org/0009-0007-1191-7948; andrew.hryshchenko@gmail.com

KomaeBa Haraxist OuteriBna?®

ORCID: https://orcid.org/0000-0001-9627-8530, komleva@op.edu.ua. Scopus Author ID: 57191858904
D Komnanis Lowe’s, Inc., M. Mypcsin, mrrar Iisniuna Kaponina, CILIA

2) HarionanpHuit yHiBepcureT «OJiechka mositexHikay, np. llleBuenka, 1. Oneca, Ykpaina, 65044

AHOTALIA

VY cTaTTi TpEACTaBICHO TEOPETUKO-IrPOBHII METON JICLEHTPATi30BaHOr0 OajlaHCYBaHHS HAaBAHTXXEHHS B MIKPOCEPBICHHX
apXiTeKTypax, CIpPSAMOBaHWIl Ha IMiJBMILEHHA E(EKTHBHOCTI pO3MOIUTYy 3allUTiB MK eK3eMIULIpaMH cepBiciB 0e3 BHKOPHCTaHHS
LIEHTPaJTi30BaHUX KOHTpoepiB. OCHOBHA iiesl MoNsrae B MPEICTaBICHHI TPOLIeCy OallaHCyBaHHS SIK HEKOONEPAaTUBHOI MOTEHIIIHOI I'pH, B
SIKI KOXKEH MIKPOCEpPBIC PO3IJIAIAcThCs SIK aBTOHOMHHUI areHT, SIKW IparHe MiHIMi3yBaTH BiacHy (yHKUiro BuTpar. Ha BimMiHy Bix
TpaJMLIiHHUX anropuTMiB, Takux sik Round Robin Ta Least Connections, 3anpornoHOBaHuUi ITi/IXin 6a3yeThCs Ha aJaNTHBHOMY KOPHT'YBaHHI
CTparterii areHTiB 3aJIe)KHO Bifl NMOTOYHOrO CTaHy CHCTEMH, IO 3a0e3nedye JOCsTHeHHs piBHoBarn Hemra Ta cTaOlmbHMI pO3MOZIIN
HABAHTKCHHS.

MareMaTyHa MOJIEIb TEOPETHKO-IrPOBOIO METOLY ACLEHTPANi30BaHOro OalaHCYBAHHS HABAaHTA)KEHHS BPaXOBYE IHTEHCHBHICTH
TIOTOKY 3aIUTIB, IPOITYCKHY 3[1aTHICTh KOXXHOT'O BY3J1a Ta KBaJPaTH4Hy CKJIaJOBY BUTPAT, MOB'S3aHUX 3 TIEPEBAHTAXEHHAM pecypciB. [l
onTHUMi3alii nporecy NPUIHATTA PillleHb BUKOPHCTOBYETHCS CTOXaCTHYHA JuHaMika Softmax-update, sika anpoKCHMYe IpaJlieHTHUH CITyCK
noreHuiiHoi ¢yHkuii. Lle no3Bonsie crucremi MOCTYNOBO OajaHCyBaTH HABAHTAXKEHHS HABITH 32 HASBHOCTI aCHHXPOHHUX OHOBJICHb Ta
3aTPUMOK 3B'I3KY MiX By3/aMu. byio noBezeHo, 110 mporec cXOIMThes 10 CTalliOHAPHOro CTaHy 3a MOJMHOMIAIbHUI Yac, 110 3a0e3neuye
MaclITaboBaHICTh Ta NependadyBaHy MOBEAIHKY Y BETUKUX PO3IMOILICHIX CEPEIOBHILAX.

ExcriepuMeHTanbHe TOCHiJDKSHHS], IPOBE/ICHE B CEPEIOBHILI MOZeIIoBaHH SimPy, IpoeMOHCTPyBaIo, 1110 3alpOHOHOBAaHUI METONT
3HAYHO MEPeBepIlye KIACHYHI aJrOPUTMH 32 KJIIOUYOBMMH IIOKa3HMKaMH. [lifl Yac MiKOBOro HaBAHTAXKEHHs AJIrOPUTM OajaHCyBaHHS
HAaBAHTA)KCHHsI Ha OCHOBI Teopii irop 3MEHIIMB CepelHii Yac BIATYKY CHUCTeMH MOpiBHSHO 3 anroputMaMiu Round Robin Ta Least
Connections. CraHoapTHE BiIXWICHHS BHUKOPHCTaHHS IPOLIECOpA 3MEHIIMIOCS, IO CBIMYMTH MPO OLIbLI 30aJaHCOBAHUK PO3IIOALT
PpOo0OYOro HaBaHTaXKEHHs Ta BiZICYTHICTb MEPEBaHTAKCHUX OOYHCITIOBAIILHHUX BY3IIiB.

OtpuMaHi pe3ylbTaTH MiATBEPDKYIOTh AHAITHYHY CTIMKICTh, 30DKHICTh Ta MNpPaKTHYHYy e(QEKTHUBHICTb IirpOBOrO MiIXOIY.
Po3pobnennii Meros 3a0e3neuye afanTUBHE CAMOPETYJIIOBAHHS CHCTEMH, MiHIMI3ye PH3HK IEpEBAHTAXKCHHS Ta INJBHUIIYE HAAIHHICTh
MIKPOCEpBICHUX apXiTeKTyp. [lomanblii JOCTiDKeHHs OBUHHI OYTH 30Cepe/DKeHI Ha iHTerpalii irpOBOro MeTOmy JACLEHTPaTi30BAHOIO
OaJlaHCYBaHHsI HABAHTAKCHHSI 3 XMAPHUMHU OPKECTPATOPaMU Ta MOIIMPEHHI MOJIeNi Ha 0araTopiBHEBI irpy B MiOPHIHUX OOYHCITIOBATBHUX
CepE/IOBHIIAX.

KurouoBi ciioBa: GanancyBaHHs1 HABaHTaKEHHS; MiKpOCEpBICHA apXiTEKTypa; Teopist irop; piBHoBara Heruia; posniozineHi cucremy;
MporpamMHa imKeHepist; OTUMI3aLIis pecypciB
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