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ABSTRACT 

Reliable vacuum-cleaning trajectories require selecting joint configurations from which a robotic arm can continue motion in 

task-relevant directions without encountering self-collision, joint-limit violations, or singularities. Classical manipulability measures 

describe dexterity using the Jacobian but do not account for the geometric constraints and directional motion patterns typical in floor-

cleaning tasks. This work presents a data-driven method for estimating a task-specific manipulability score that reflects how easily a 

seven degrees-of-freedom robotic arm equipped with a floor-contact vacuum tool can continue motion in six primitive directions 

(forward, backward, left, right, clockwise rotation, counterclockwise rotation). A dataset of one hundred and seventy-six thousand 

and twenty valid joint configurations was generated by sweeping a four-dimensional grid of feasible end-effector poses, computing 

up to three inverse-kinematics solutions per pose, and simulating incremental movements with collision checking. Each configuration 

was assigned a directional score based on inverse-kinematics reachability, collision outcomes, and distance-dependent penalties. 

A fully connected neural network was trained to regress six scores from the seven joint angles. The model achieved a 

denormalized Mean Absolute Error of approximately two point zero for translational directions and one point fifty-five to one point 

sixty for rotational directions (approximately eight percent of the full score range), while enabling extremely fast inference–around 

ninety-five thousand eight hundred and eighty evaluations per second on a consumer GPU. 

By shifting the computationally expensive stage of collision checking and inverse-kinematics sampling to offline 

preprocessing, the method provides a lightweight surrogate for online motion planning. The learned score can help planners avoid 

unfavorable configurations and maintain consistent vacuuming trajectories. Limitations include the absence of environment-aware 

terms, stochastic inverse-kinematics sampling, and hand-tuned scoring parameters. Future work will focus on integrating obstacle 

information, improving label generation, and embedding the score into trajectory optimization frameworks for more robust real-

world operation. 

Keywords: Manipulability; robotic arm; vacuuming robot; neural networks; collision avoidance; trajectory planning; collision 

prediction 
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INTRODUCTION 

Service robotics is a rapidly growing field, with 

autonomous cleaning robots becoming increasingly 

ubiquitous in commercial and industrial 

environments. While mobile bases handle large-area 

navigation, the integration of robotic manipulators 

(robotic arms) allows for more complex cleaning 

tasks, such as vacuuming floors with vacuum 

installed at the wrist of the robotic arm. 

Many modern robotic arms have more than 6 

joints and more than 6 degrees-of-freedom (DOF) 

respectively. For a redundant manipulator, such as 

the 7-DOF xArm7, there are theoretically infinite 

joint configurations (inverse kinematics solutions) 

for a given end-effector pose [1]. This redundancy is 

advantageous as it allows the robot to avoid 

obstacles and self-collisions while maintaining the 
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tool pose [2]. However, selecting the optimal 

configuration is computationally expensive. In 

vacuuming scenarios, the robot often needs to follow 

linear trajectories in Cartesian space on the floor. A 

poorly chosen initial configuration can lead to 

situations where the arm “locks up” (reaches a 

singularity) [1], collides with the mobile base (self-

collision), or requires excessive joint velocities to 

continue the movement. 

Classical manipulability indices, such as the 

Yoshikawa measure [3], describe the robot's ability 

to move in arbitrary directions but do not account for 

specific task constraints or collisions. Conversely, 

standard collision-checking libraries (e.g., Bullet 

[4]) provide collision safety information but lack the 

gradient information needed to guide the planner 

toward “more comfortable” states. 

In this study, the data-driven approach proposed 

to estimate a task-specific manipulability score. The 

neural network was trained to map the robot's joint 
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state to a set of six scores representing the ease of 

movement in the cleaning plane: movement in 

positive x, negative x, positive y, negative y, 

positive yaw, negative yaw directions. This 

approach shifts the heavy computations burden of 

collision checking of bunches of neighboring 

vacuum states to an offline training phase, allowing 

for real-time query speeds suitable for online path 

planning. 

RELATED WORK 

Classical approaches to redundancy resolution 

and manipulator dexterity have been extensively 

studied in robotics. The Yoshikawa manipulability 

index [3] is a well-known measure that quantifies a 

robot arm’s ability to move its end-effector in any 

direction, essentially measuring the volume of the 

velocity ellipsoid (and thus the distance to kinematic 

singularities). While useful, this index assumes 

unconstrained, isotropic motion and does not 

account for obstacles or task-specific directions. To 

address some of these limitations, Vahrenkamp et al. 

[5] proposed an extended manipulability analysis for 

humanoid robots that incorporate additional 

constraints such as joint limits and self-collision 

avoidance (through a “self-distance” metric) into the 

manipulability measure. This approach stores a 

representation of the robot’s workspace capabilities 

and favors configurations that are both reachable and 

allow greater freedom of movement. Similarly, 

Ghosal [1] analyzed methods for redundancy 

resolution in robots (and drew parallels with the 

human arm), demonstrating how an extra degree of 

freedom can be exploited to optimize performance 

criteria – for example, using a redundant joint to 

maintain an isotropic end-effector velocity ellipse or 

to avoid singular configurations. These 

mathematically rigorous methods rely on the 

manipulator’s Jacobian and predefined metrics; 

however, they do not inherently consider the full 

complexity of a robot’s geometry in cluttered 

environments or the specific motion constraints of a 

given task. 

To address these limitations, a growing research 

direction investigates learning-based manipulability 

modeling, where robots acquire manipulability 

profiles directly from data. These approaches aim to 

capture how experienced users or optimized 

controllers position the robot to maximize flexibility, 

strength, or task-space mobility. 

A key early contribution in this domain is the 

work of Rozo et al. [6], who introduced the concept 

of manipulability transfer. Their method enables 

robots to learn and reproduce manipulability  

 

ellipsoids from expert demonstrations, framing 

manipulability as a geometric object lying on the 

manifold of symmetric positive definite (SPD) 

matrices. Using a tensor-based Gaussian mixture 

model that respects the curved structure of this 

manifold, they demonstrated how robots can adapt 

their posture to match a desired manipulability 

ellipsoid learned from human examples. This work 

established the foundation for treating 

manipulability not merely as a scalar index but as a 

structured, learnable descriptor of dexterity. 

Building on this idea, Jaquier et al. proposed a 

series of geometry-aware approaches that further 

develop the learning and use of manipulability 

ellipsoids. In their control scheme for tracking 

manipulability profiles [7], the robot is tasked with 

following a time-varying desired ellipsoid either as 

its primary goal or as a secondary objective during 

motion execution. Their formulation explicitly 

incorporates the SPD manifold geometry, ensuring 

that both tracking errors and control updates remain 

consistent with the mathematical structure of 

manipulability ellipsoids. Experiments with 

redundant arms and real robots showed that this 

geometry-aware method outperforms prior 

Euclidean manipulations of manipulability data, 

which often distort ellipsoid shape and orientation. 

This line of work culminated in a 

comprehensive framework by Jaquier et al. [8], 

which unifies manipulability learning, tracking, and 

transfer. Their method couples a tensor-based 

learning model with a geometry-aware controller, 

enabling robots to learn manipulability ellipsoids 

from demonstrations and subsequently reproduce or 

adapt them across a wide variety of platforms, 

including redundant manipulators, humanoids, and 

dual-arm systems. The ability to generalize 

manipulability profiles across embodiments and 

tasks highlights the potential of learned 

manipulability for versatile robot motion generation. 

Beyond manipulability ellipsoids alone, Abu-

Dakka et al. [9] extended the idea of learning 

geometry-based robot skills using datapoints 

represented as SPD matrices, including stiffness, 

inertia, and manipulability. Their probabilistic 

framework incorporates Kernelized Movement 

Primitives (KMPs) to learn and adapt SPD-valued 

trajectories, enabling robots to generalize 

manipulation skills encoded by geometric quantities 

to new situations. This approach demonstrates how 

manipulability can serve as one component within a 

broader set of learned geometric constraints, further 

emphasizing the importance of manifold-aware 

learning techniques. 
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While the previous works focus primarily on 

tracking or reproducing manipulability profiles, 

complementary research investigates neural 

network–based controllers that can modulate robot 

motion according to learned internal models. He and 

Yu [10] explored fuzzy neural network control for a 

flexible single-link manipulator, demonstrating how 

NN-based controllers can adjust motion to achieve 

desired dynamic properties (such as vibration 

suppression). Although not directly centered on 

manipulability, such neural controllers illustrate the 

broader applicability of learning-based approaches 

for shaping the robot's dynamic and kinematic 

characteristics – capabilities that can be integrated 

with manipulability-aware learning. 

Overall, learning-based manipulability methods 

provide a promising alternative to classical 

Jacobian-based criteria. They allow robots to acquire 

dexterity profiles from demonstrations, adapt 

manipulability to task constraints, and incorporate 

the true geometric structure of manipulability 

ellipsoids. However, these approaches 

predominantly operate at the level of full ellipsoids 

in velocity/force space and focus on representing 

dexterity in an abstract geometric form, rather than 

directly predicting task-specific directional 

feasibility or operational comfort as required in 

vacuuming scenarios. Consequently, while these 

works offer powerful theoretical tools, they do not 

provide a direct mechanism for estimating how 

suitable a particular configuration is for a 

constrained floor-cleaning motion. The method 

proposed in this paper – estimating a custom 

directional manipulability score from joint angles –

aims to fill this gap by combining the strengths of 

learning-based approaches with task-oriented 

geometric evaluation. 

Beyond manipulability considerations, effective 

robot performance in constrained environments also 

depends on the ability to generate safe and efficient 

motions. Motion planning and collision avoidance is 

another critical aspect of robotic manipulation. A 

variety of traditional path planning algorithms exist 

to handle obstacles in high-dimensional 

configuration spaces. Probabilistic Roadmaps 

(PRM) [11] and Rapidly-Exploring Random Trees 

(RRT) are prominent examples of sampling-based 

planners: they construct a graph or tree of collision-

free configurations via random sampling and then 

search for a feasible path through these structures. 

While these methods are probabilistically complete 

(they will find a path if one exists), their solutions 

are not necessarily optimal. Karaman and Frazzoli 

(2011) [11] addressed this by introducing 

asymptotically optimal variants, PRM* and RRT*, 

which ensure the path cost converges to the 

optimum as the number of samples grows. 

In contrast, optimization-based planners such as 

CHOMP [12] and the Elastic Band approach [13] 

take a different route by deforming an initial 

trajectory to improve its safety and smoothness. 

CHOMP uses gradient-based optimization on a 

trajectory cost function (including obstacle 

avoidance via distance fields), while the Elastic 

Band method – implemented in modern variants like 

the Timed Elastic Band (TEB) [13] – connects path 

planning and control by treating the path as a “band” 

that can stretch or compress to avoid obstacles. 

These approaches can produce collision-free, 

smoother paths and even incorporate some 

kinematic constraints, but they tend to be 

computationally intensive for high-DOF (redundant) 

manipulators. Computing precise distance gradients 

or iterating over many samples in a 7-DOF arm’s 

configuration space is slow, which can be 

problematic for real-time applications. 

To address the computational burden of 

collision checking in high-dimensional spaces, 

researchers have explored parallel and learning-

based techniques. Pan and Manocha [14] leveraged 

GPU-based parallel collision detection to speed up 

the evaluation of many potential configurations 

simultaneously, achieving near real-time 

performance in motion planning scenarios. Beyond 

brute-force parallelization, recent efforts focus on 

learning proxy models that approximate the collision 

boundary. Das et al. introduced the Fastron 

algorithm [15], [16], an online learning model 

(based on a kernel perceptron) that actively samples 

configurations to label as collision or collision-free, 

updating its model incrementally. Fastron 

demonstrated significantly faster collision queries 

(several times faster than traditional geometric 

checking) by conservatively approximating the 

robot’s configuration-space obstacles and refining 

the model with new data points as needed. Building 

on this idea, Zhi et al. developed DiffCo [17], an 

auto-differentiable collision detector that not only 

classifies configurations by collision status (with the 

ability to handle multiple object collision classes) 

but also provides analytical gradients. This means a 

trajectory optimizer can get feedback on how to 

adjust the robot’s joints to avoid collisions, enabling 

smoother and more efficient avoidance maneuvers. 

Meanwhile, other state-of-the-art approaches have 

leveraged neural implicit representations of 

geometry for fast collision evaluation. Ortiz et al. 

[18] presented a real-time neural signed distance 
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field (SDF) model of the robot’s environment, which 

allows instantaneous queries of distances to the 

nearest surfaces for any given robot pose. Joho et al. 

[19] went a step further by learning a neural implicit 

swept volume model for the manipulator – 

effectively capturing the volume the robot occupies 

as it moves – to enable ultra-fast collision checking 

for entire motion segments. These learning-based 

methods represent the cutting edge in balancing 

geometric fidelity and computational speed for 

motion planning. 

Our previous work also explored learning-based 

collision avoidance in the context of redundant arms. 

In Medvid and Yakovyna [20], we employed 

Kolmogorov–Arnold Networks (KAN) to predict 

self-collisions for a 7-DOF robot. KAN is a neural 

network architecture derived from a theoretical 

decomposition of multivariate functions, which we 

used to map joint configurations to a binary outcome 

indicating whether any self-collision would occur. 

This approach proved effective in quickly flagging 

unsafe (self-colliding) arm postures, illustrating the 

feasibility of using learned models for internal 

collision checking. However, a binary collision 

classification provides limited insight for planning – 

it tells the planner which states are forbidden, but 

not how suitable a given free state is. It offers no 

measure of how close the robot is to a singularity or 

collision, nor how easily the arm can continue 

moving if it stays in that state. In other words, the 

KAN-based predictor could improve safety by 

avoiding collisions, but it could not guide the robot 

toward better configurations among the many that 

are collision-free. 

Task-specific planning strategies for redundant 

manipulators have also been developed, recognizing 

that not all trajectories are equally desirable for a 

given job. Zhang and Wang [21] proposed a 

redundancy-based motion planning method that 

integrates task constraints directly into the planning 

process. In their framework, a 7-DOF manipulator’s 

extra degree of freedom is used to satisfy secondary 

objectives like maintaining a particular end-effector 

orientation or pose constraint throughout the motion. 

For example, in a home-care scenario of transporting 

a bowl or spoon without spilling, the planner can 

ensure the end-effector remains level while still 

reaching the goal position. By considering such task 

constraints (including orientation alignment and 

workspace limitations), their method improved the 

efficiency and success rate of planning in complex 

tasks, as it guides the search toward configurations 

that inherently respect the task requirements. Wu et 

al. [22] tackled a related challenge for dual-arm 

robots operating in open environments. They 

developed a real-time collision avoidance scheme 

for two 7-DOF arms working together, which 

coordinates the arms’ motions by exploiting 

redundancy in each arm to avoid both self-collision 

and mutual collisions. This approach allows a dual-

manipulator system to react on-the-fly and 

reconfigure its joints to bypass obstacles or avoid the 

arms interfering with each other, all while fulfilling 

the task (such as handling an object collaboratively). 

Both of these works highlight the importance of 

using redundancy not just for avoiding collisions, 

but also for maintaining task-specific criteria during 

motion execution. 

Another line of research has applied 

reinforcement learning (RL) to complex 

manipulation tasks with redundant robots [23], [24]. 

Deep reinforcement learning can, in principle, learn 

control policies that map sensor or state inputs to 

joint actions, optimizing directly for a task-specific 

reward function. For instance, Cui et al. [23] 

introduced a task-adaptive deep RL framework for a 

dual-arm manipulator, where the system learned to 

adjust its strategy (including coordination between 

arms and even impedance parameters) to accomplish 

coordinated tasks like pick-and-place with heavy or 

delicate objects. Such an RL-based approach can 

handle continuous control and discover non-intuitive 

solutions by trial and error. Lillicrap et al. [24], in a 

foundational work, demonstrated that deep neural 

networks combined with an actor-critic architecture 

(specifically the Deep Deterministic Policy Gradient 

algorithm) can achieve continuous control on high-

dimensional systems, effectively learning to operate 

a simulated manipulator arm directly from reward 

feedback. While these RL approaches show promise 

in leveraging redundancy and mastering complex 

behaviors, they come with certain drawbacks for 

safety-critical or real-world deployment. Policies 

learned end-to-end are often difficult to interpret, 

and it is challenging to guarantee that the robot will 

always operate within safe limits, especially when 

faced with novel situations outside the training 

distribution. In contrast, classical planners 

(potentially augmented with learned models or 

heuristics) can enforce constraints and safety checks 

explicitly, making their behavior more predictable. 

Thus, a middle-ground approach is to use learning to 

assist planning – for example, by providing a learned 

metric or value function – rather than to replace the 

planner entirely. 

A line of research closely related to our work 

focuses on learning feasibility or heuristic functions 

to accelerate task-and-motion planning (TAMP). 
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Wells et al. [25] train a classifier that predicts 

whether a candidate task plan is likely to admit a 

feasible motion instantiation and use this prediction 

to bias TAMP search. Kim et al. [26] introduce a 

score-space representation and learn to guide TAMP 

using data-driven constraints that prune the search 

space. More recently, Yang et al. [27] propose 

PIGINet, a Transformer-based model that predicts 

plan skeleton feasibility and significantly reduces 

planning time in long-horizon rearrangement tasks. 

In all these approaches, learning is used to assess 

global plan feasibility or cost at the level of 

symbolic or action sequences. 

In parallel, several works leverage neural 

networks to approximate geometric properties 

relevant for collision checking and contact handling. 

Zesch et al. [28] propose neural collision detection 

and neural collision fields that learn continuous 

fields encoding collision information for deformable 

or triangle-based geometry, enabling fast collision 

queries without explicit spatial data structures. 

Pulikottil et al. [29] introduce a robotic ease of 

disassembly metric (Re-DiM) tailored to human–

robot cooperative disassembly of products such as 

vacuum cleaners, highlighting the importance of 

task-specific performance scores in robotics. Our 

work is complementary: we learn a task-specific 

manipulability score at the level of individual joint 

configurations of a 7-DOF arm in floor-vacuuming 

scenarios, aggregating collision outcomes and joint-

limit information into a scalar measure that can be 

used as a low-level heuristic inside different motion-

planning pipelines. 

PROBLEM STATEMENT 

Reliable vacuum-cleaning trajectories require 

selecting joint configurations from which the robotic 

arm can continue motion in task-relevant directions 

without encountering self-collision, joint-limit 

violations, or kinematic singularities. Classical 

manipulability measures and collision-checking 

techniques do not directly indicate how 

“comfortable” a particular configuration is for 

continuing linear or rotational movement along the 

floor. 

The aim of this research is to develop a fast 

method for estimating a task-specific manipulability 

score that quantifies how easily the robot can 

continue motion from a given joint configuration in 

six vacuuming-relevant directions (+x, −x, +y, −y, 

+yaw, −yaw). 

To achieve this aim, the following research 

objectives were formulated: 

1) to design a scoring function that evaluates 

motion feasibility based on inverse kinematics 

reachability, collision outcomes, and distance-

dependent penalties; 

2) to generate a large dataset of feasible arm 

configurations labelled with the proposed directional 

scores; 

3) to train a neural-network regression model 

capable of estimating these scores from the robot’s 

joint angles; 

4) to evaluate the estimation accuracy and 

computational efficiency of the model for potential 

integration into motion-planning pipelines. 

MATERIALS AND METHODS 

Robotic Platform and Vacuuming Task Setup 

The experiments were conducted using the 

xArm7 robotic manipulator (UFactory) mounted on 

a commercial cleaning robot developed by Somatic 

Holdings LTD. 

The robotic arm operates a custom vacuum-

cleaning end-effector designed to maintain contact 

with the floor during the cleaning motion. Joint 

limits of the manipulator could be seen at Table 1. 

Table 1. Joint limits of xArm7 arm 

Joint Number Min Angle Max Angle 

0 -360° 360° 

1 -118° 120° 

2 -360° 360° 

3 -11° 225° 

4 -360° 360° 

5 -97° 180° 

6 -360° 360° 

Source: compiled by the [30] 

To ensure that the vacuum head remains on the 

floor, only arm configurations corresponding to 

feasible end-effector poses at floor height were 

included in the dataset. An example of a robot state 

with a vacuum head on the floor could be seen on 

Fig. 1. 

 
Fig. 1. Robot with vacuum tool installed 

Source: screenshot from Somatic Holdings LTD software 
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Dataset Generation Procedure 

A custom C++ data generation pipeline was 

developed to compute a manipulability score for a 

bunch of robot configurations.  

The pipeline consisted of: 

1. A discretized 4D grid of feasible end-effector 

poses (𝑥, 𝑦, 𝑧, 𝛩𝑦𝑎𝑤). 

2. Inverse kinematics (IK) search for valid arm 

configurations. 

3. Collision checking (Bullet physics). 

4. Motion simulation in six task-relevant 

directions: +x, -x, +y, -y, +yaw, -yaw. 

Each grid cell represented a possible vacuum 

head position on the floor. The grid resolution and 

index ranges are listed in Table 2. 

Table 2. End effector grid parameters 

Axis Step Index Range Physical 

Range 

x 0.04 m -14…40 -0.56…1.60 m 

y 0.04 m -30…30 -1.20…1.20 m 

z 0.015 m -1…2 -0.015…0.03 m 

yaw 20° -8…9 -160°…180° 

Source: compiled by the authors 

The end effector in this case means the origin 

with zero point at the center of the bottom of the 

vacuum head; Z axis directed upwards 

perpendicularly to the floor; X axis directed parallel 

to the floor as a projection of the vacuum pipe on the 

floor; and the Y axis directed left along vacuum 

head. At Fig. 2 the end effector origin shown with 

red cylinder representing X axis, green cylinder 

representing Y axis and blue cylinder representing Z 

axis. 

 

Fig. 2. Vacuum head end effector origin 
Source: screenshot from Somatic Holdings LTD software 

The physical range of the end effector origin 

was selected based on the physical reachability of 

the tool for a specific robot model. A few additional 

steps in z coordinates were added because of not 

ideally flat floors and some errors of the physical 

model of the robotic arm. So sometimes the robot 

operates with vacuum head positioned not at 

theoretical 0 meters level. 

The conversion from the grid indices to end 

effector position in the robot base calculated with 

formula (1): 

𝐸𝐸𝑝𝑜𝑠 = {𝑖𝑥 ⋅ 𝑠𝑡𝑒𝑝𝑥, 𝑖𝑦 ⋅ 𝑠𝑡𝑒𝑝𝑦, 𝑖𝑧 ⋅ 𝑠𝑡𝑒𝑝𝑧, },  (1) 

where 𝐸𝐸𝑝𝑜𝑠 is a three-dimensional vector defining 

position of an end effector in the robot base 

coordinate system; 𝑖𝑥, 𝑖𝑦, 𝑖𝑧 are x, y and z indices in 

grid; 𝑠𝑡𝑒𝑝𝑥 , 𝑠𝑡𝑒𝑝𝑦, 𝑠𝑡𝑒𝑝𝑧, - are x, y and z steps in 

the grid. 

The conversion from the yaw index to end 

effector rotation in the robot base calculated with 

formula (2): 

𝐸𝐸𝑦𝑎𝑤 = 𝑖𝑦𝑎𝑤 ⋅ 𝑠𝑡𝑒𝑝𝑦𝑎𝑤,  (2) 

where 𝐸𝐸𝑦𝑎𝑤 is a rotation angle along Z axis; 𝑖𝑦𝑎𝑤 

is a yaw index in the grid; 𝑠𝑡𝑒𝑝𝑦𝑎𝑤 is a yaw step in 

the grid. 

Inverse Kinematics Sampling 

For each grid cell end effector at first the end 

effector origin is calculated. Then using IK 

algorithm arm states, with corresponding end 

effector origins generated. To reduce computational 

cost, a maximum of 3 IK solutions per grid position 

was retained. Note that for some end effector origins 

there might not exist corresponding arm states.  

In this case these positions are ignored and the 

data generation process proceeds. 

Manipulability Score Evaluation 

In this work, we use a task-specific 

manipulability score – a scalar value estimating how 

easily the robot can continue motion from a given 

joint configuration in several vacuuming-relevant 

directions. The score is a practical heuristic derived 

from inverse kinematics feasibility and collision-

checking results, intended to help a motion planner 

prefer configurations that are more likely to allow 

longer, collision-free movements without hitting 

joint limits or singularities. 

For each arm state (configuration) generated on 

previous steps (let’s call it a base state in this 

subsection) the ability of the manipulator to move in 

six directions (𝑥+, 𝑥−, 𝑦+, 𝑦−, 𝑦𝑎𝑤+, 𝑦𝑎𝑤−) was 

evaluated.  
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Each direction was tested using a sequence of 

incremental displacements: 

• linear directions: 10 steps × 2 cm; 

• rotational directions: 6 steps × 5°. 

For each step: 

• a new target pose was calculated considering 

current step number and direction; 

• arm configurations for a new origin calculated 

with IK; 

• if we get more than 8 configurations, then 

only 8 random configurations kept to speed up data 

generation; 

• each candidate configuration was checked for 

collisions; 

• a partial score was accumulated to get a total 

score for current base state and direction. 

Scoring formula 

The final manipulability score for a base state 

and a direction 𝑑 ∈ {𝑥+, 𝑥−, 𝑦+, 𝑦−, 𝑦𝑎𝑤+, 𝑦𝑎𝑤−} 

calculates with formula (3): 

𝑆𝑑 = 𝑆𝑐𝑜𝑙𝑙 + ∑ 𝑠𝑐𝑜𝑟𝑒𝐷𝑠𝑡

𝑠𝑡𝑒𝑝𝑠𝑑
𝑠𝑡=1 ,  (3) 

where 𝑆𝑐𝑜𝑙𝑙 is a penalty if the original state colliding 

(-8 used in experiments); 𝑠𝑡𝑒𝑝𝑠𝑑 is a number of 

steps (10 for translation, 6 for rotation) for current 

direction; 𝑠𝑡 is a current step of displacement from 

the base state; and 𝑠𝑐𝑜𝑟𝑒𝐷𝑠𝑡
 is a score for 𝑠𝑡 -th 

displacement in current direction, calculated by 

formula 4: 

𝑠𝑐𝑜𝑟𝑒𝐷𝑠𝑡
= {

−1

𝑑𝑖𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡
, 𝑖𝑓 |𝐼𝐾 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠| = 0

∑
𝑠𝑐𝑜𝑟𝑒𝑠𝑡,𝑠𝑜𝑙

𝑑𝑖𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡

𝑁𝑠𝑡
𝑠𝑜𝑙=1 , 𝑖𝑓 |𝐼𝐾 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠| > 0

, (4) 

where 𝑁𝑠𝑡 is a number of IK solutions for a current 

pose (base pose + 𝑠𝑡 steps in current direction), 

limited by maximum 8 solutions as it described in 

Manipulability Score Evaluation subsection; also, it 

worth noting that if no IK solutions found then the 

arm possibly can’t reach the position so we have a 

penalty ‘-1’ in this case; 𝑠𝑜𝑙 is a current IK solution 

index; 𝑠𝑐𝑜𝑟𝑒𝑠𝑡,𝑠𝑜𝑙 is a score for current IK solution 

of a current step in a current direction; it equals 1 if 

there is no collision for this configuration and equals 

-0.18 if there is at least one collision; 𝑑𝑖𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 

is a multiplier that reduces the score based on 

distance from starting origin; it’s calculated with 

formula 5: 

𝑑𝑖𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 =
1

1+𝛼∙𝑠𝑡
,  (5) 

where 𝛼 is a distance penalty factor (0.2 used in 

experiments) to make closer states more important, 

than distant ones. 

 Code snipped of base states score calculation 

could be seen at Fig. 3. 

 
Fig. 3. Scoring formula code snippet 

Source: compiled by the authors 

Based on scoring formula the minimum 

possible score for translational directions equals: 

𝑆𝑋𝑚𝑖𝑛 = 𝑆𝑌𝑚𝑖𝑛 = −0.18 ∙ 8 ∙ ∑
1

1+0.2∙𝑠𝑡𝑒𝑝
≈ −7.4510

𝑠𝑡𝑒𝑝=1 . 

The minimum possible score for rotational 

directions equals: 

𝑆𝑌𝑎𝑤𝑚𝑖𝑛 = −0.18 ∙ 8 ∙ ∑
1

1+0.2∙𝑠𝑡𝑒𝑝
≈ −5.36

𝑠𝑡𝑒𝑝=1 . 

The total minimum possible score equals: 

𝑇𝑜𝑡𝑎𝑙𝑚𝑖𝑛 = 2 ∙ (𝑆𝑋𝑚𝑖𝑛 + 𝑆𝑌𝑚𝑖𝑛 + 𝑆𝑌𝑎𝑤𝑚𝑖𝑛) ≈ −25.5 

At the same time maximum possible scores 

equlas: 

𝑆𝑋𝑚𝑎𝑥 = 𝑆𝑌𝑚𝑎𝑥 = 1.0 ∙ 8 ∙ ∑
1

1+0.2∙𝑠𝑡𝑒𝑝
≈ 41.410

𝑠𝑡𝑒𝑝=1 . 

𝑆𝑌𝑎𝑤𝑚𝑎𝑥 = 1.0 ∙ 8 ∙ ∑
1

1+0.2∙𝑠𝑡𝑒𝑝
≈ 29.466

𝑠𝑡𝑒𝑝=1 . 

𝑇𝑜𝑡𝑎𝑙𝑚𝑎𝑥 = 2 ∙ (𝑆𝑋𝑚𝑎𝑥 + 𝑆𝑌𝑚𝑎𝑥 + 𝑆𝑌𝑎𝑤𝑚𝑎𝑥) ≈ 224.5. 

JSON dataset structure 

After calculating manipulability scores for each 

state all the data saved in a json file which has some 

metainformation and the main data structured as 

follows: a field “States” has a dictionary value and 

each entry of this dictionary has a robotic arm state 

as a key (represented by string consisting of 7 floats 

separated by whitespace – angles of arm joints) and 

a manipulability scores as a value (represented by 

string  consisting of 6 floats separated by whitespace 

- {𝑥+, 𝑥−, 𝑦+, 𝑦−, 𝑦𝑎𝑤+, 𝑦𝑎𝑤−} scores calculated by 

the presented algorithm). A total of 176,020 valid 

configurations with corresponding scores were 

collected. 
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Neural Network Model 

The mapping ℝ7 → ℝ6 was learned using a 

fully connected Multi-Layer Perceptron (MLP). The 

architecture of the neural network layers shown at 

Fig. 4. 

 
Fig. 4. Architecture of NN snippet 

Source: compiled by the authors 

Activation function used – ReLU, optimizer – 

Adam with starting learning rate 0.001 and 

increasing with cosine annealing to 0.000001 during 

training process. Loss used for training is mean 

squared error (MSE), but also mean absolute error 

(MAE) used for final model evaluation. 

Normalization 

Mean and standard deviation were computed on 

the training set. Loss was computed in normalized 

space; MAE/MSE were reported in denormalized 

form. 

Training procedure 

Epochs – 1500, batch size – 128, validation 

split – 20 %. 

TensorBoard was used to log: 

• train/val MSE; 

• train/val MAE; 

• MAE per direction. 

RESULTS 

The following metrics were computed: 

• MSE (denormalized); 

• MAE (denormalized); 

• per-direction MAE (6 curves train + 6 curves 

validation). 

The results of training can be seen at Figures 5-12. 

 
Fig. 5. Total MSE 

Source: compiled by the authors with Matplotlib 

Fig. 5 shows that total mean square error 

dropped to nearly 27.94 on train data and to 101.22 

on a validation data. 

 

Fig. 6. Total MAE 
Source: compiled by the authors with Matplotlib 

At the same time at Fig. 6 can be seen that the 

mean absolute error dropped to nearly 7.25 on train 

data and to 11.15 on a validation data. 

The training results divided by different 

directions shown at  Fig.7,  Fig 8,  Fig 9,  Fig 10,  

Fig 11 and Fig 12. 

 

Fig. 7. X+ direction MAE 
Source: compiled by the authors with Matplotlib 

 

Fig. 8. X- direction MAE 
Source: compiled by the authors with Matplotlib 

 

Fig. 9. Y+ direction MAE 
Source: compiled by the authors with Matplotlib 
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Fig. 10. Y- direction MAE 
Source: compiled by the authors with Matplotlib 

 

Fig. 11. Yaw+ direction MAE 
Source: compiled by the authors with Matplotlib 

 

Fig. 12. Yaw- direction MAE 
Source: compiled by the authors with Matplotlib 

The results on Fig.7, Fig 8, Fig 9, Fig 10,  

Fig. 11 and Fig. 12 shows how mean absolute error 

on train data drops nearly to 1.33-1.35 for 

{𝑥+, 𝑥−, 𝑦+, 𝑦−} directions and nearly to 1.0 for 

{𝑦𝑎𝑤+, 𝑦𝑎𝑤−} directions. At the same time mean 

absolute error on validation data drops nearly to 2.0 

for {𝑥+, 𝑥−, 𝑦+, 𝑦−} directions and to 1.55-1.6 for 

{𝑦𝑎𝑤+, 𝑦𝑎𝑤−} directions. 

The total training time was 2203 seconds for 

1500 epochs and 140,816 train cases on a GeForce 

RTX 3050 Mobile GPU. It means that on average 

trained neural network calculates scores for 

approximately 95,880 arm configurations per 

second. 

DISCUSSION 

The experimental results demonstrate that the 

proposed neural model is able to approximate the 

custom manipulability score with sufficiently low 

estimation error across all six evaluated motion 

directions. To interpret the achieved accuracy in 

context, it is useful to compare the observed MAE 

values with the theoretical score ranges derived in 

the “Materials and Methods” section. For 

translational directions, the score spans 

approximately from −7.45 to 41.4, while rotational 

directions cover a range from around −5.3 to 29.46. 

Considering that the learned model on validation 

data reaches MAE ≈ 2.0 for translational axes and 

≈1.55-1.6 for rotational axes, the error constitutes 

roughly 8% of the effective value range. This 

indicates that although the network does not 

perfectly reproduce the exact numerical scores, it 

captures the relative ordering of “comfortable” and 

“uncomfortable” configurations well enough to be 

applied as a heuristic in planning tasks. 

An important advantage of the approach lies in 

decoupling heavy geometry-based computations 

from online motion planning. Collision checking, IK 

sampling, and multi-step evaluation of feasible 

moves constitute the costliest parts of the scoring 

procedure. By shifting them to an offline phase and 

learning a compact parametric regressor over joint 

angles, the planner is able to evaluate manipulability 

almost instantaneously during trajectory generation. 

This can help mitigate common issues in vacuuming 

scenarios, such as selecting configurations that bring 

the arm close to self-collision, joint limits, or 

kinematic singularities. 

However, several limitations must be 

acknowledged. First, the dataset is constructed under 

assumptions of a static environment and does not 

model interactions with external obstacles, furniture, 

or varying floor conditions. Thus, the learned score 

reflects only self-collision and robot–base geometry, 

not the full operational environment. Second, the 

quality of the labels depends on stochastic IK 

sampling: if the solver fails to find a valid 

configuration, the score may underrepresent true 

reachability. Third, the scoring formulation includes 

hand-tuned parameters (step counts, penalty weights, 

distance decay), which influence the learned 

function and may not transfer optimally to all task 

settings. 

Finally, the model estimates directional 

manipulability scores but does not provide gradients 

with respect to joint angles. While this is not strictly 

required for sampling-based planners, gradient 

information could enable direct incorporation of the 

score into optimization-based motion planning. 

Future work may therefore explore differentiable 

approximations of IK feasibility or hybrid methods 

combining neural estimations with local Jacobian-

based metrics to obtain a more complete 

manipulability descriptor. 
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CONCLUSION 

This work introduced a data-driven method for 

estimating task-specific manipulability scores for a 

7-DOF robotic arm performing vacuum cleaning 

using a floor-contact tool. A large dataset of feasible 

arm configurations was generated and annotated 

using a multi-step IK- and collision-based scoring 

procedure. A multilayer perceptron was trained to 

map joint configurations to six directional 

manipulability values corresponding to the robot’s 

ability to move in ±x, ±y, and ±yaw directions 

without encountering collisions or kinematic 

limitations. 

The trained model demonstrates low mean 

absolute error relative to the full theoretical score 

range, enabling reliable approximation of local 

motion feasibility. Since inference is 

computationally inexpensive, the model is well 

suited for integration into real-time planning 

pipelines, where it can help avoid unfavorable arm 

postures and improve the robustness of vacuuming 

trajectories. 

Nevertheless, the approach remains limited by 

its reliance on static, environment-free datasets and 

the inherent imperfections of stochastic IK sampling. 

Extending the method to incorporate external 

obstacles, dynamic constraints, and more expressive 

geometric representations is a promising direction 

for future research. Integrating the learned 

manipulability score with trajectory optimization or 

reinforcement learning frameworks could further 

enhance the autonomy and reliability of service 

robots operating in constrained environments. 

CODE AVAILABILITY 

The source code for the neural network training 

described in this article is available in the public 

repository: 

https://github.com/amedvid/VacuumingManipulabili

tyPrediction. The source code of training data 

generation is not publicly available due to NDS, but 

described in the “Dataset Generation Procedure“ 

subsection.  
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АНОТАЦІЯ 

Надійне планування руху роботизованої руки під час вакуумного прибирання потребує вибору таких конфігурацій 

суглобів, з яких маніпулятор може продовжувати рух у потрібних напрямках без самоколізій, виходу за межі обмежень 
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суглобів чи потрапляння у сингулярності. Класичні показники маніпульованості описують здатність маніпулятора рухати 

енд-ефектор у різних напрямках, однак не враховують геометричні обмеження та характерні для прибирання напрямні рухи. 

У роботі запропоновано метод оцінювання спеціалізованого напрямного показника маніпульованості для семи-

ступеневої роботизованої руки з підлоговою вакуумною насадкою. Показник відображає, наскільки легко маніпулятор може 

продовжувати рух у шести елементарних напрямках (вперед, назад, вліво, вправо, поворот за годинниковою стрілкою, 

поворот проти годинникової стрілки). Було створено набір даних із ста сімдесяти шести тисяч двадцяти коректних 

конфігурацій, отриманих шляхом аналізу чотиривимірної ґратки поз енд-ефектора, обчислення до трьох розв’язків 

оберненої кінематики на кожну позу та покрокового моделювання локального зсуву з перевіркою на колізії. Для кожної 

конфігурації сформовано шість напрямних показників, що враховують досяжність інверсної кінематики, зіткнення та 

відстань від вихідної пози. 

Для апроксимації цих значень було навчено повнозв’язну нейронну мережу. Модель досягла середньої абсолютної 

похибки приблизно дві цілих нуль десятих для трансляційних і від однієї цілої п’ятдесят п’ять сотих до однієї цілої шести 

десятих для обертальних напрямків (близько восьми процентів від повного діапазону) та забезпечила дуже швидку 

інференцію – близько дев’яноста п’яти тисяч восьмисот вісімдесяти конфігурацій/с. 

Підхід переносить трудомісткі обчислення у офлайн-етап і забезпечує легку апроксимацію для онлайн-планування. 

Метод обмежений відсутністю інформації про зовнішні перешкоди та стохастичністю семплінгу інверсної кінематики. 

Подальші дослідження мають бути спрямовані на інтеграцію середовищних обмежень і поєднання показника з 

оптимізаційним плануванням траєкторій. 

Ключові слова: маніпульованість; роботизована рука; робот-пилосос; нейронні мережі; уникнення колізій; 

планування траєкторій; передбачення колізій 
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