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ABSTRACT

Reliable vacuum-cleaning trajectories require selecting joint configurations from which a robotic arm can continue motion in
task-relevant directions without encountering self-collision, joint-limit violations, or singularities. Classical manipulability measures
describe dexterity using the Jacobian but do not account for the geometric constraints and directional motion patterns typical in floor-
cleaning tasks. This work presents a data-driven method for estimating a task-specific manipulability score that reflects how easily a
seven degrees-of-freedom robotic arm equipped with a floor-contact vacuum tool can continue motion in six primitive directions
(forward, backward, left, right, clockwise rotation, counterclockwise rotation). A dataset of one hundred and seventy-six thousand
and twenty valid joint configurations was generated by sweeping a four-dimensional grid of feasible end-effector poses, computing
up to three inverse-kinematics solutions per pose, and simulating incremental movements with collision checking. Each configuration
was assigned a directional score based on inverse-kinematics reachability, collision outcomes, and distance-dependent penalties.

A fully connected neural network was trained to regress six scores from the seven joint angles. The model achieved a
denormalized Mean Absolute Error of approximately two point zero for translational directions and one point fifty-five to one point
sixty for rotational directions (approximately eight percent of the full score range), while enabling extremely fast inference—around
ninety-five thousand eight hundred and eighty evaluations per second on a consumer GPU.

By shifting the computationally expensive stage of collision checking and inverse-kinematics sampling to offline
preprocessing, the method provides a lightweight surrogate for online motion planning. The learned score can help planners avoid
unfavorable configurations and maintain consistent vacuuming trajectories. Limitations include the absence of environment-aware
terms, stochastic inverse-kinematics sampling, and hand-tuned scoring parameters. Future work will focus on integrating obstacle
information, improving label generation, and embedding the score into trajectory optimization frameworks for more robust real-
world operation.
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INTRODUCTION

Service robotics is a rapidly growing field, with
autonomous cleaning robots becoming increasingly
ubiquitous in  commercial and industrial
environments. While mobile bases handle large-area
navigation, the integration of robotic manipulators
(robotic arms) allows for more complex cleaning
tasks, such as vacuuming floors with vacuum
installed at the wrist of the robotic arm.

Many modern robotic arms have more than 6
joints and more than 6 degrees-of-freedom (DOF)
respectively. For a redundant manipulator, such as
the 7-DOF xArm?7, there are theoretically infinite
joint configurations (inverse kinematics solutions)

tool pose [2]. However, selecting the optimal
configuration is computationally expensive. In
vacuuming scenarios, the robot often needs to follow
linear trajectories in Cartesian space on the floor. A
poorly chosen initial configuration can lead to
situations where the arm “locks up” (reaches a
singularity) [1], collides with the mobile base (self-
collision), or requires excessive joint velocities to
continue the movement.

Classical manipulability indices, such as the
Yoshikawa measure [3], describe the robot's ability
to move in arbitrary directions but do not account for
specific task constraints or collisions. Conversely,
standard collision-checking libraries (e.g., Bullet

for a given end-effector pose [1]. This redundancy is
advantageous as it allows the robot to avoid
obstacles and self-collisions while maintaining the
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[4]) provide collision safety information but lack the
gradient information needed to guide the planner
toward “more comfortable” states.

In this study, the data-driven approach proposed
to estimate a task-specific manipulability score. The
neural network was trained to map the robot's joint
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state to a set of six scores representing the ease of
movement in the cleaning plane: movement in
positive X, negative X, positive y, negative Y,
positive yaw, negative yaw directions. This
approach shifts the heavy computations burden of
collision checking of bunches of neighboring
vacuum states to an offline training phase, allowing
for real-time query speeds suitable for online path
planning.

RELATED WORK

Classical approaches to redundancy resolution
and manipulator dexterity have been extensively
studied in robotics. The Yoshikawa manipulability
index [3] is a well-known measure that quantifies a
robot arm’s ability to move its end-effector in any
direction, essentially measuring the volume of the
velocity ellipsoid (and thus the distance to kinematic
singularities). While useful, this index assumes
unconstrained, isotropic motion and does not
account for obstacles or task-specific directions. To
address some of these limitations, Vahrenkamp et al.
[5] proposed an extended manipulability analysis for
humanoid robots that incorporate additional
constraints such as joint limits and self-collision
avoidance (through a “self-distance” metric) into the
manipulability measure. This approach stores a
representation of the robot’s workspace capabilities
and favors configurations that are both reachable and
allow greater freedom of movement. Similarly,
Ghosal [1] analyzed methods for redundancy
resolution in robots (and drew parallels with the
human arm), demonstrating how an extra degree of
freedom can be exploited to optimize performance
criteria — for example, using a redundant joint to
maintain an isotropic end-effector velocity ellipse or
to avoid singular  configurations.  These
mathematically rigorous methods rely on the
manipulator’s Jacobian and predefined metrics;
however, they do not inherently consider the full
complexity of a robot’s geometry in -cluttered
environments or the specific motion constraints of a
given task.

To address these limitations, a growing research
direction investigates learning-based manipulability
modeling, where robots acquire manipulability
profiles directly from data. These approaches aim to
capture how experienced users or optimized
controllers position the robot to maximize flexibility,
strength, or task-space mobility.

A key early contribution in this domain is the
work of Rozo et al. [6], who introduced the concept
of manipulability transfer. Their method enables
robots to learn and reproduce manipulability

ellipsoids from expert demonstrations, framing
manipulability as a geometric object lying on the
manifold of symmetric positive definite (SPD)
matrices. Using a tensor-based Gaussian mixture
model that respects the curved structure of this
manifold, they demonstrated how robots can adapt
their posture to match a desired manipulability
ellipsoid learned from human examples. This work
established  the  foundation  for  treating
manipulability not merely as a scalar index but as a
structured, learnable descriptor of dexterity.

Building on this idea, Jaquier et al. proposed a
series of geometry-aware approaches that further
develop the learning and use of manipulability
ellipsoids. In their control scheme for tracking
manipulability profiles [7], the robot is tasked with
following a time-varying desired ellipsoid either as
its primary goal or as a secondary objective during
motion execution. Their formulation explicitly
incorporates the SPD manifold geometry, ensuring
that both tracking errors and control updates remain
consistent with the mathematical structure of
manipulability  ellipsoids.  Experiments  with
redundant arms and real robots showed that this
geometry-aware ~ method  outperforms  prior
Euclidean manipulations of manipulability data,
which often distort ellipsoid shape and orientation.

This line of work culminated in a
comprehensive framework by Jaquier et al. [8],
which unifies manipulability learning, tracking, and
transfer. Their method couples a tensor-based
learning model with a geometry-aware controller,
enabling robots to learn manipulability ellipsoids
from demonstrations and subsequently reproduce or
adapt them across a wide variety of platforms,
including redundant manipulators, humanoids, and
dual-arm systems. The ability to generalize
manipulability profiles across embodiments and
tasks highlights the potential of learned
manipulability for versatile robot motion generation.

Beyond manipulability ellipsoids alone, Abu-
Dakka et al. [9] extended the idea of learning
geometry-based robot skills using datapoints
represented as SPD matrices, including stiffness,
inertia, and manipulability. Their probabilistic
framework incorporates Kernelized Movement
Primitives (KMPs) to learn and adapt SPD-valued
trajectories, enabling robots to generalize
manipulation skills encoded by geometric quantities
to new situations. This approach demonstrates how
manipulability can serve as one component within a
broader set of learned geometric constraints, further
emphasizing the importance of manifold-aware
learning techniques.
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While the previous works focus primarily on
tracking or reproducing manipulability profiles,
complementary  research  investigates  neural
network—based controllers that can modulate robot
motion according to learned internal models. He and
Yu [10] explored fuzzy neural network control for a
flexible single-link manipulator, demonstrating how
NN-based controllers can adjust motion to achieve
desired dynamic properties (such as vibration
suppression). Although not directly centered on
manipulability, such neural controllers illustrate the
broader applicability of learning-based approaches
for shaping the robot's dynamic and kinematic
characteristics — capabilities that can be integrated
with manipulability-aware learning.

Overall, learning-based manipulability methods
provide a promising alternative to classical
Jacobian-based criteria. They allow robots to acquire
dexterity profiles from demonstrations, adapt
manipulability to task constraints, and incorporate
the true geometric structure of manipulability
ellipsoids. However, these approaches
predominantly operate at the level of full ellipsoids
in velocity/force space and focus on representing
dexterity in an abstract geometric form, rather than
directly  predicting  task-specific  directional
feasibility or operational comfort as required in
vacuuming scenarios. Consequently, while these
works offer powerful theoretical tools, they do not
provide a direct mechanism for estimating how
suitable a particular configuration is for a
constrained floor-cleaning motion. The method
proposed in this paper — estimating a custom
directional manipulability score from joint angles —
aims to fill this gap by combining the strengths of
learning-based  approaches with task-oriented
geometric evaluation.

Beyond manipulability considerations, effective
robot performance in constrained environments also
depends on the ability to generate safe and efficient
motions. Motion planning and collision avoidance is
another critical aspect of robotic manipulation. A
variety of traditional path planning algorithms exist
to handle obstacles in  high-dimensional
configuration spaces. Probabilistic Roadmaps
(PRM) [11] and Rapidly-Exploring Random Trees
(RRT) are prominent examples of sampling-based
planners: they construct a graph or tree of collision-
free configurations via random sampling and then
search for a feasible path through these structures.
While these methods are probabilistically complete
(they will find a path if one exists), their solutions
are not necessarily optimal. Karaman and Frazzoli
(2011) [11] addressed this by introducing

asymptotically optimal variants, PRM* and RRT*,
which ensure the path cost converges to the
optimum as the number of samples grows.

In contrast, optimization-based planners such as
CHOMP [12] and the Elastic Band approach [13]
take a different route by deforming an initial
trajectory to improve its safety and smoothness.
CHOMP uses gradient-based optimization on a
trajectory cost function (including obstacle
avoidance via distance fields), while the Elastic
Band method — implemented in modern variants like
the Timed Elastic Band (TEB) [13] — connects path
planning and control by treating the path as a “band”
that can stretch or compress to avoid obstacles.

These approaches can produce collision-free,
smoother paths and even incorporate some
kinematic constraints, but they tend to be

computationally intensive for high-DOF (redundant)
manipulators. Computing precise distance gradients
or iterating over many samples in a 7-DOF arm’s
configuration space is slow, which can be
problematic for real-time applications.

To address the computational burden of
collision checking in high-dimensional spaces,
researchers have explored parallel and learning-
based techniques. Pan and Manocha [14] leveraged
GPU-based parallel collision detection to speed up
the evaluation of many potential configurations
simultaneously, achieving near real-time
performance in motion planning scenarios. Beyond
brute-force parallelization, recent efforts focus on
learning proxy models that approximate the collision
boundary. Das et al. introduced the Fastron
algorithm [15], [16], an online learning model
(based on a kernel perceptron) that actively samples
configurations to label as collision or collision-free,
updating its model incrementally. Fastron
demonstrated significantly faster collision queries
(several times faster than traditional geometric
checking) by conservatively approximating the
robot’s configuration-space obstacles and refining
the model with new data points as needed. Building
on this idea, Zhi et al. developed DiffCo [17], an
auto-differentiable collision detector that not only
classifies configurations by collision status (with the
ability to handle multiple object collision classes)
but also provides analytical gradients. This means a
trajectory optimizer can get feedback on how to
adjust the robot’s joints to avoid collisions, enabling
smoother and more efficient avoidance maneuvers.
Meanwhile, other state-of-the-art approaches have
leveraged neural implicit representations of
geometry for fast collision evaluation. Ortiz et al.
[18] presented a real-time neural signed distance
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field (SDF) model of the robot’s environment, which
allows instantaneous queries of distances to the
nearest surfaces for any given robot pose. Joho et al.
[19] went a step further by learning a neural implicit
swept volume model for the manipulator -
effectively capturing the volume the robot occupies
as it moves — to enable ultra-fast collision checking
for entire motion segments. These learning-based
methods represent the cutting edge in balancing
geometric fidelity and computational speed for
motion planning.

Our previous work also explored learning-based
collision avoidance in the context of redundant arms.
In Medvid and Yakovyna [20], we employed
Kolmogorov-Arnold Networks (KAN) to predict
self-collisions for a 7-DOF robot. KAN is a neural
network architecture derived from a theoretical
decomposition of multivariate functions, which we
used to map joint configurations to a binary outcome
indicating whether any self-collision would occur.
This approach proved effective in quickly flagging
unsafe (self-colliding) arm postures, illustrating the
feasibility of using learned models for internal
collision checking. However, a binary collision
classification provides limited insight for planning —
it tells the planner which states are forbidden, but
not how suitable a given free state is. It offers no
measure of how close the robot is to a singularity or
collision, nor how easily the arm can continue
moving if it stays in that state. In other words, the
KAN-based predictor could improve safety by
avoiding collisions, but it could not guide the robot
toward better configurations among the many that
are collision-free.

Task-specific planning strategies for redundant
manipulators have also been developed, recognizing
that not all trajectories are equally desirable for a
given job. Zhang and Wang [21] proposed a
redundancy-based motion planning method that
integrates task constraints directly into the planning
process. In their framework, a 7-DOF manipulator’s
extra degree of freedom is used to satisfy secondary
objectives like maintaining a particular end-effector
orientation or pose constraint throughout the motion.
For example, in a home-care scenario of transporting
a bowl or spoon without spilling, the planner can
ensure the end-effector remains level while still
reaching the goal position. By considering such task
constraints (including orientation alignment and
workspace limitations), their method improved the
efficiency and success rate of planning in complex
tasks, as it guides the search toward configurations
that inherently respect the task requirements. Wu et
al. [22] tackled a related challenge for dual-arm

robots operating in open environments. They
developed a real-time collision avoidance scheme
for two 7-DOF arms working together, which
coordinates the arms’ motions by exploiting
redundancy in each arm to avoid both self-collision
and mutual collisions. This approach allows a dual-
manipulator system to react on-the-fly and
reconfigure its joints to bypass obstacles or avoid the
arms interfering with each other, all while fulfilling
the task (such as handling an object collaboratively).
Both of these works highlight the importance of
using redundancy not just for avoiding collisions,
but also for maintaining task-specific criteria during
motion execution.

Another line of research has applied
reinforcement  learning (RL) to  complex
manipulation tasks with redundant robots [23], [24].
Deep reinforcement learning can, in principle, learn
control policies that map sensor or state inputs to
joint actions, optimizing directly for a task-specific
reward function. For instance, Cui et al. [23]
introduced a task-adaptive deep RL framework for a
dual-arm manipulator, where the system learned to
adjust its strategy (including coordination between
arms and even impedance parameters) to accomplish
coordinated tasks like pick-and-place with heavy or
delicate objects. Such an RL-based approach can
handle continuous control and discover non-intuitive
solutions by trial and error. Lillicrap et al. [24], in a
foundational work, demonstrated that deep neural
networks combined with an actor-critic architecture
(specifically the Deep Deterministic Policy Gradient
algorithm) can achieve continuous control on high-
dimensional systems, effectively learning to operate
a simulated manipulator arm directly from reward
feedback. While these RL approaches show promise
in leveraging redundancy and mastering complex
behaviors, they come with certain drawbacks for
safety-critical or real-world deployment. Policies
learned end-to-end are often difficult to interpret,
and it is challenging to guarantee that the robot will
always operate within safe limits, especially when
faced with novel situations outside the training
distribution. In  contrast, classical planners
(potentially augmented with learned models or
heuristics) can enforce constraints and safety checks
explicitly, making their behavior more predictable.
Thus, a middle-ground approach is to use learning to
assist planning — for example, by providing a learned
metric or value function — rather than to replace the
planner entirely.

A line of research closely related to our work
focuses on learning feasibility or heuristic functions
to accelerate task-and-motion planning (TAMP).
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Wells et al. [25] train a classifier that predicts
whether a candidate task plan is likely to admit a
feasible motion instantiation and use this prediction
to bias TAMP search. Kim et al. [26] introduce a
score-space representation and learn to guide TAMP
using data-driven constraints that prune the search
space. More recently, Yang et al. [27] propose
PIGINet, a Transformer-based model that predicts
plan skeleton feasibility and significantly reduces
planning time in long-horizon rearrangement tasks.
In all these approaches, learning is used to assess
global plan feasibility or cost at the level of
symbolic or action sequences.

In parallel, several works leverage neural
networks to approximate geometric properties
relevant for collision checking and contact handling.
Zesch et al. [28] propose neural collision detection
and neural collision fields that learn continuous
fields encoding collision information for deformable
or triangle-based geometry, enabling fast collision
queries without explicit spatial data structures.
Pulikottil et al. [29] introduce a robotic ease of
disassembly metric (Re-DiM) tailored to human-
robot cooperative disassembly of products such as
vacuum cleaners, highlighting the importance of
task-specific performance scores in robotics. Our
work is complementary: we learn a task-specific
manipulability score at the level of individual joint
configurations of a 7-DOF arm in floor-vacuuming
scenarios, aggregating collision outcomes and joint-
limit information into a scalar measure that can be
used as a low-level heuristic inside different motion-
planning pipelines.

PROBLEM STATEMENT

Reliable vacuum-cleaning trajectories require
selecting joint configurations from which the robotic
arm can continue motion in task-relevant directions
without encountering self-collision, joint-limit
violations, or kinematic singularities. Classical
manipulability measures and collision-checking
techniques do not directly indicate how
“comfortable” a particular configuration is for
continuing linear or rotational movement along the
floor.

The aim of this research is to develop a fast
method for estimating a task-specific manipulability
score that quantifies how easily the robot can
continue motion from a given joint configuration in
six vacuuming-relevant directions (+x, —Xx, +y, =,
+yaw, —yaw).

To achieve this aim, the following research
objectives were formulated:

1) to design a scoring function that evaluates
motion feasibility based on inverse kinematics

reachability, collision outcomes, and distance-
dependent penalties;

2) to generate a large dataset of feasible arm
configurations labelled with the proposed directional
scores;

3) to train a neural-network regression model
capable of estimating these scores from the robot’s
joint angles;

4) to evaluate the estimation accuracy and
computational efficiency of the model for potential
integration into motion-planning pipelines.

MATERIALS AND METHODS
Robotic Platform and Vacuuming Task Setup

The experiments were conducted using the
xArm7 robotic manipulator (UFactory) mounted on
a commercial cleaning robot developed by Somatic
Holdings LTD.

The robotic arm operates a custom vacuum-
cleaning end-effector designed to maintain contact
with the floor during the cleaning motion. Joint
limits of the manipulator could be seen at Table 1.

Table 1. Joint limits of xArm7 arm

Joint Number Min Angle Max Angle
0 -360° 360°
1 -118° 120°
2 -360° 360°
3 -11° 225°
4 -360° 360°
5 -97° 180°
6 -360° 360°

Source: compiled by the [30]

To ensure that the vacuum head remains on the
floor, only arm configurations corresponding to
feasible end-effector poses at floor height were
included in the dataset. An example of a robot state
with a vacuum head on the floor could be seen on
Fig. 1.

Fig. 1. Robot with vacuum tool installed
Source: screenshot from Somatic Holdings LTD software
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Dataset Generation Procedure

A custom C++ data generation pipeline was
developed to compute a manipulability score for a
bunch of robot configurations.

The pipeline consisted of:

1. A discretized 4D grid of feasible end-effector
poses (x,Y, 2, Oyaw)-
2. Inverse kinematics (IK) search for valid arm
configurations.
Collision checking (Bullet physics).
4. Motion simulation in six task-relevant
directions: +x, -X, +y, -y, +yaw, -yaw.

Each grid cell represented a possible vacuum
head position on the floor. The grid resolution and
index ranges are listed in Table 2.

@

Table 2. End effector grid parameters

AXis Step | Index Range Physical
Range
X 0.04 m -14...40 -0.56...1.60 m
0.04 m -30...30 -1.20...1.20 m
z 0.015m -1...2 -0.015...0.03 m
yaw 20° -8...9 -160°...180°

Source: compiled by the authors

The end effector in this case means the origin
with zero point at the center of the bottom of the
vacuum head; Z axis directed upwards
perpendicularly to the floor; X axis directed parallel
to the floor as a projection of the vacuum pipe on the
floor; and the Y axis directed left along vacuum
head. At Fig. 2 the end effector origin shown with
red cylinder representing X axis, green cylinder
representing Y axis and blue cylinder representing Z
axis.

Fig. 2. Vacuum head end effector origin
Source: screenshot from Somatic Holdings LTD software

The physical range of the end effector origin
was selected based on the physical reachability of
the tool for a specific robot model. A few additional
steps in z coordinates were added because of not
ideally flat floors and some errors of the physical
model of the robotic arm. So sometimes the robot
operates with vacuum head positioned not at
theoretical O meters level.

The conversion from the grid indices to end
effector position in the robot base calculated with
formula (1):

EEyos = {ix - Stepy, iy - step,, i, - step,, }, (1)

where EE,,; is a three-dimensional vector defining
position of an end effector in the robot base
coordinate system; iy, iy, i, are X, y and z indices in
grid; stepy, step,, step,, - are X, y and z steps in
the grid.

The conversion from the yaw index to end
effector rotation in the robot base calculated with
formula (2):

EEyqw = lyaw * Stepyaw, 2)

where EE,,,,, is a rotation angle along Z axis; iyq.
is a yaw index in the grid; step,q,, is a yaw step in
the grid.

Inverse Kinematics Sampling

For each grid cell end effector at first the end
effector origin is calculated. Then using IK
algorithm arm states, with corresponding end
effector origins generated. To reduce computational
cost, a maximum of 3 IK solutions per grid position
was retained. Note that for some end effector origins
there might not exist corresponding arm states.

In this case these positions are ignored and the
data generation process proceeds.

Manipulability Score Evaluation

In this work, we use a task-specific
manipulability score — a scalar value estimating how
easily the robot can continue motion from a given
joint configuration in several vacuuming-relevant
directions. The score is a practical heuristic derived
from inverse kinematics feasibility and collision-
checking results, intended to help a motion planner
prefer configurations that are more likely to allow
longer, collision-free movements without hitting
joint limits or singularities.

For each arm state (configuration) generated on
previous steps (let’s call it a base state in this
subsection) the ability of the manipulator to move in
six directions (x*,x~,y*,y~,yaw™, yaw™) was
evaluated.
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Each direction was tested using a sequence of
incremental displacements:

* linear directions: 10 steps x 2 cm;

« rotational directions: 6 steps x 5°.

For each step:

* a new target pose was calculated considering
current step number and direction;

« arm configurations for a new origin calculated
with IK;

«if we get more than 8 configurations, then
only 8 random configurations kept to speed up data
generation;

» each candidate configuration was checked for
collisions;

* a partial score was accumulated to get a total
score for current base state and direction.

Scoring formula

The final manipulability score for a base state
and a direction d € {x*,x~,y*,y",yaw*, yaw~}
calculates with formula (3):

_ steps
Sa = Scou + Xgp=1 * SCOTED,, (3)

where S.,;; is a penalty if the original state colliding
(-8 used in experiments); steps, is a number of
steps (10 for translation, 6 for rotation) for current
direction; st is a current step of displacement from
the base state; and scorep, is a score for st -th
displacement in current direction, calculated by
formula 4:

%,if |IK solutions| = 0
dist_weight

SCOTeDst = ZNSt SCOTest 501
sol=1 gist_ weight

. . . (4)
,if |IK solutions| > 0

where N, is a number of IK solutions for a current
pose (base pose + st steps in current direction),
limited by maximum 8 solutions as it described in
Manipulability Score Evaluation subsection; also, it
worth noting that if no IK solutions found then the
arm possibly can’t reach the position SO we have a
penalty ‘-1’ in this case; sol is a current IK solution
index; scoreg so; is @ score for current IK solution
of a current step in a current direction; it equals 1 if
there is no collision for this configuration and equals
-0.18 if there is at least one collision; dist_weight
is a multiplier that reduces the score based on
distance from starting origin; it’s calculated with
formula 5:
1

1+a-st’

dist_weight = 5)
where a is a distance penalty factor (0.2 used in
experiments) to make closer states more important,
than distant ones.

Code snipped of base states score calculation
could be seen at Fig. 3.

for (size_t step = 1; step <= stepsCount; step++) {

Pose target = basePose.Translate(step * posStep)
.Rotate(step * yawStep);
auto ik = solver.InverseKinematicsAll(target, seed, Llimit);
ClampToMaxSolutions(ik, 8);
if (ik.empty()) {
score += (-1.8) / (1 + 0.2 * step);
continue;
}
for (auto& sol : ik) {
bool coll = collisionEngine.IsColliding(sol);
score += (coll ? -0.18 : 1.0) / (1 + 8.2 * step);

Fig. 3. Scoring formula code snippet
Source: compiled by the authors

Based on scoring formula the minimum
possible score for translational directions equals:
SXpmin = S¥min = —0.18 -8 - 3110 =

step=1140.2-step

~ —7.45,

The minimum possible score for rotational
directions equals:

1
SYaw,,;;, = —0.18-8 - thepzlr

2:step

~ —5.3.

The total minimum possible score equals:

Total,in = 2 (SXpuin + SYomin + SYaw,,;,) = —25.5

min
At the same time maximum possible scores
equlas:
SXmax = SYmax = 1.0-8-320,  ——  ~ 414

step=11,02.step

1
SYaw,,., = 1.0-8 - nge?:lm ~ 29.46.

Totalyay = 2+ (SXmax + SYmax + SYawy,q,) = 224.5.
JSON dataset structure

After calculating manipulability scores for each
state all the data saved in a json file which has some
metainformation and the main data structured as
follows: a field “States” has a dictionary value and
each entry of this dictionary has a robotic arm state
as a key (represented by string consisting of 7 floats
separated by whitespace — angles of arm joints) and
a manipulability scores as a value (represented by
string consisting of 6 floats separated by whitespace
-{xt,x7,y*,y", yaw™, yaw~} scores calculated by
the presented algorithm). A total of 176,020 valid
configurations with corresponding scores were
collected.
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Neural Network Model

The mapping R” -» R® was learned using a
fully connected Multi-Layer Perceptron (MLP). The
architecture of the neural network layers shown at
Fig. 4.

MLP([
Linear(7 — 128), RelLU(),
Linear(128 - 256), RelLU(),
Linear(256 — 128), RelLU(),
Linear (128 - 64), RelLuU(),
Linear (64 - 6)

1)
Fig. 4. Architecture of NN snippet

Source: compiled by the authors

Activation function used — ReLU, optimizer —
Adam with starting learning rate 0.001 and
increasing with cosine annealing to 0.000001 during
training process. Loss used for training is mean
squared error (MSE), but also mean absolute error
(MAE) used for final model evaluation.

Normalization

Mean and standard deviation were computed on
the training set. Loss was computed in normalized
space; MAE/MSE were reported in denormalized
form.

Training procedure

Epochs — 1500, batch size — 128, validation
split — 20 %.

TensorBoard was used to log:

- train/val MSE;

« train/val MAE;

* MAE per direction.

RESULTS

The following metrics were computed:

* MSE (denormalized);

* MAE (denormalized);

* per-direction MAE (6 curves train + 6 curves
validation).

The results of training can be seen at Figures 5-12.

—— Train MSE
Val MSE

0 200 400 600 800 1000 1200 1400
Epach

Fig. 5. Total MSE
Source: compiled by the authors with Matplotlib

Fig. 5 shows that total mean square error
dropped to nearly 27.94 on train data and to 101.22
on a validation data.

7071 —— Train MAE
Wal MAE
607

MAE {denorm)
w & ow
8 & 3B

~
=

-

Skt bl o

-
=

a 200 400 600 800 1000 1200 1400
Epoch

Fig. 6. Total MAE
Source: compiled by the authors with Matplotlib

At the same time at Fig. 6 can be seen that the
mean absolute error dropped to nearly 7.25 on train
data and to 11.15 on a validation data.

The training results divided by different
directions shown at Fig.7, Fig 8, Fig9, Fig 10,

Fig 11 and Fig 12.

Val X+

Q 200 400 600 BOO 1000 1200 1400
Epoch

Fig. 7. X* direction MAE
Source: compiled by the authors with Matplotlib

12 Val X-

o 200 400 600 800 1000 1200 1400
Epoch

Fig. 8. X direction MAE
Source: compiled by the authors with Matplotlib

| — Train Y+
127 Val Y+

104

MAE (denorm)

[} 200 200 600 800 1000 1200 1400
Epoch

Fig. 9. Y* direction MAE
Source: compiled by the authors with Matplotlib
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0 200 400 600 800 1000 1200 1400
Epoch

Fig. 10. Y- direction MAE
Source: compiled by the authors with Matplotlib

Train Yaw+
val Yaw+

& 0 o - @

MAE (denorm)

- N W

‘\\MM‘
] 200 400 600 800 1000 1200 1400
Epoch

Fig. 11. Yaw" direction MAE
Source: compiled by the authors with Matplotlib

—— Train Yaw-

MAE {denorm)
o oo o~ @

w

[

T . —

-

Val Yaw- |

) 200 400 600 800 1000 1200 1400
Epoch

Fig. 12. Yaw direction MAE
Source: compiled by the authors with Matplotlib

The results on Fig.7, Fig 8, Fig 9, Fig 10,
Fig. 11 and Fig. 12 shows how mean absolute error
on train data drops nearly to 1.33-1.35 for
{x*,x~,y*,y~} directions and nearly to 1.0 for
{yaw*, yaw™} directions. At the same time mean
absolute error on validation data drops nearly to 2.0
for {x*,x~,y*,y~} directions and to 1.55-1.6 for
{yaw™*, yaw~} directions.

The total training time was 2203 seconds for
1500 epochs and 140,816 train cases on a GeForce
RTX 3050 Mobile GPU. It means that on average
trained neural network calculates scores for
approximately 95,880 arm configurations per
second.

DISCUSSION

The experimental results demonstrate that the
proposed neural model is able to approximate the
custom manipulability score with sufficiently low
estimation error across all six evaluated motion
directions. To interpret the achieved accuracy in

context, it is useful to compare the observed MAE
values with the theoretical score ranges derived in
the “Materials and Methods” section. For
translational ~ directions, the  score  spans
approximately from —7.45 to 41.4, while rotational
directions cover a range from around —5.3 to 29.46.
Considering that the learned model on validation
data reaches MAE ~ 2.0 for translational axes and
~1.55-1.6 for rotational axes, the error constitutes
roughly 8% of the effective value range. This
indicates that although the network does not
perfectly reproduce the exact numerical scores, it
captures the relative ordering of “comfortable” and
“uncomfortable” configurations well enough to be
applied as a heuristic in planning tasks.

An important advantage of the approach lies in
decoupling heavy geometry-based computations
from online motion planning. Collision checking, IK
sampling, and multi-step evaluation of feasible
moves constitute the costliest parts of the scoring
procedure. By shifting them to an offline phase and
learning a compact parametric regressor over joint
angles, the planner is able to evaluate manipulability
almost instantaneously during trajectory generation.
This can help mitigate common issues in vacuuming
scenarios, such as selecting configurations that bring
the arm close to self-collision, joint limits, or
kinematic singularities.

However, several limitations must be
acknowledged. First, the dataset is constructed under
assumptions of a static environment and does not
model interactions with external obstacles, furniture,
or varying floor conditions. Thus, the learned score
reflects only self-collision and robot-base geometry,
not the full operational environment. Second, the
quality of the labels depends on stochastic IK
sampling: if the solver fails to find a valid
configuration, the score may underrepresent true
reachability. Third, the scoring formulation includes
hand-tuned parameters (step counts, penalty weights,
distance decay), which influence the learned
function and may not transfer optimally to all task
settings.

Finally, the model estimates directional
manipulability scores but does not provide gradients
with respect to joint angles. While this is not strictly
required for sampling-based planners, gradient
information could enable direct incorporation of the
score into optimization-based motion planning.
Future work may therefore explore differentiable
approximations of IK feasibility or hybrid methods
combining neural estimations with local Jacobian-
based metrics to obtain a more complete
manipulability descriptor.
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CONCLUSION

This work introduced a data-driven method for
estimating task-specific manipulability scores for a
7-DOF robotic arm performing vacuum cleaning
using a floor-contact tool. A large dataset of feasible
arm configurations was generated and annotated
using a multi-step 1K- and collision-based scoring
procedure. A multilayer perceptron was trained to
map joint configurations to six directional
manipulability values corresponding to the robot’s
ability to move in *x, +y, and xyaw directions

without encountering collisions or kinematic
limitations.
The trained model demonstrates low mean

absolute error relative to the full theoretical score
range, enabling reliable approximation of local
motion feasibility. Since inference is
computationally inexpensive, the model is well
suited for integration into real-time planning
pipelines, where it can help avoid unfavorable arm
postures and improve the robustness of vacuuming
trajectories.

Nevertheless, the approach remains limited by
its reliance on static, environment-free datasets and
the inherent imperfections of stochastic 1K sampling.
Extending the method to incorporate external
obstacles, dynamic constraints, and more expressive
geometric representations is a promising direction
for future research. Integrating the learned

manipulability score with trajectory optimization or
reinforcement learning frameworks could further
enhance the autonomy and reliability of service
robots operating in constrained environments.

CODE AVAILABILITY

The source code for the neural network training
described in this article is available in the public
repository:
https://github.com/amedvid/VacuumingManipulabili
tyPrediction. The source code of training data
generation is not publicly available due to NDS, but
described in the “Dataset Generation Procedure*
subsection.
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Hapiline nmanyBaHHS pyXy pOOOTH30BaHO! PYKH MiJ Yac BaKyyMHOTO NpHOUpaHHA MOTpeOye BUOOpPY TaKUX KOHGIryparii
Cyrao0iB, 3 SKMX MaHIMyJSITOP MOXKE HPOIOBKYBATH PyX Y MOTPIOHMX HampsiMkax 0e3 caMOKOIi3ii, BUXOAY 32 MeXi 0OMexeHb
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cyryo0iB 4K MOTPAIUISHHS y CHHTYJIApHOCTI. KiacuuHi MOKa3HUKH MaHIMyJIbOBAaHOCTI OMMCYIOTh 3AaTHICTH MaHIMYJIATOpa pyXaTH
eHI-e(eKTOp y PI3HUX HAMPSMKAX, OJHAK HE BPaXOBYIOTh [€OMETPUYIHI OOMEKEHHS Ta XapaKTepHi JJisi IPUOHPaHHs HAPSMHI PYXH.

Y po6oTi 3ampoNOHOBAaHO METOA OIUHIOBAHHS CIICIialli30BaHOIO HAMPSMHOTO MOKAa3HHKA MaHIMYJIbOBAHOCTI I CEMH-
CTyIIeHeBOi poOOTH30BaHOT PYKH 3 ITi/UTOTOBOIO BaKyyMHOIO Hacankoro. [loka3sHuk BigoOpaxae, HACKUIBKH JIETKO MaHIITYJISITOP MOXKe
MIPOJOBXKYBAaTH pyX y IIECTH eJIeMEHTapHHX HampsiMKax (BIlepel, Ha3al, BIIBO, BIPABO, IIOBOPOT 3a T'OAMHHHUKOBOIO CTPLIKOIO,
MIOBOPOT IPOTH TOAWHHUKOBOI CTpiNkH). Byno crBopeHo Habip maHWX i3 CTa CIMIECSITH IIECTH THCSY JABAIIATH KOPEKTHUX
KOH(IrypaIif, OTpMMaHMX NUIIXOM aHaTi3y YOTHPHBUMIPHOI IpPAaTKH 103 eHA-eeKkTopa, OOUHCIEHHS IO TPHOX PO3B’SI3KIB
obOepHEeHO1 KiHEMaTHKH Ha KOJKHY 03y Ta MOKPOKOBOTO MOJETIOBAHHS JIOKAJBHOTO 3CYBY 3 IE€pEBIpKOI0 Ha Komizii. s xoxHOI
KoH(}irypauii copMOBaHO IIICTh HAMPSMHUX MOKA3HHUKIB, IO BPaXOBYIOTh NOCSDKHICTH 1HBEPCHOI KiHEMATHKH, 3ITKHEHHS Ta
BIJICTaHb BiJ{ BUXIJHOI ITO3H.

s ampokcuManii X 3HaueHb OyJI0 HABYCHO NMOBHO3B’SA3HY HEHpPOHHY Mepexy. Mopenb nocsria cepeIHboi abCOoMOTHOL
MOXHOKU MPUOIM3HO JBI IUIMX HYIb JECATHX JUIA TPAHCIAIINHNX 1 BiJf OMHIET HIJOT T’ ITAECAT I’ SATh COTUX JIO OJHIET IUTOT IIECTH
JecATHX Uil 00epTajJbHUX HaNpsMKiB (ONM3BKO BOCBMHU IIPOIEHTIB BiJ IOBHOTO Jiana3oHy) Ta 3a0e3nedumia TyXe MIBHIKY
TH(EpEHIIiI0 — OJIM3BKO JICB’THOCTA IT°SITH TUCSY BOCBMHCOT BICIMIIECATH KOH(Irypaiiii/c.

Ilixxin mepeHOCHTh TPYIOMICTKI OOUYHMCIeHHs y odualiH-eTan i 3a0e3medye Jerky arnpoKCHMAIIo Ul OHJIaHH-TUIaHyBaHHS.
Meron oOMexeHHH BiACYTHICTIO iH(pOpMAIl MPO 30BHINIHI MEPEHIKOIN Ta CTOXACTUYHICTIO CEMIUTIHTY iHBEPCHOI KiHEMaTHKH.
[opmanpmri mocmiKeHHS MaloTh OyTH CHPSMOBaHI HAa IHTErpamil0 CEPEeAOBHIIHMX OOMEKEHb 1 IO€THAHHS IIOKa3HUKA 3
ONTUMI3aliHHIM IUIAaHYBaHHSAM TPA€KTOPIH.

KurouoBi cioBa: MaHimynpOBaHICTh, pOOOTH30BaHA pyKa; pOOOT-MIOCOC; HEWPOHHI Mepeki, YHHKHEHHS KOJIi3iH;
IUTaHYBaHHS TPAEKTOPIi; nependadeHHs Koi3ii
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