
Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems

275

DOI: https://doi.org/10.15276/hait.07.2024.19

UDC 004.582

CIPerf: a benchmark for continuous integration

services performance and cost analysis

Volodymyr I. Obrizan
ORCID: https://orcid.org/0000-0002-1835-4056; Volodymyr.obrizan@gmail.com

Kharkiv National University of Radio Electronics, 14, Nauki Ave. Kharkiv, 61166, Ukraine

ABSTRACT

Continuous Integration is a crucial practice in modern software development, enabling teams to automate the process of

building, testing, and merging code increments to ensure continuous delivery of high-quality software. Despite its growing adoption,

the cost and performance of Continuous Integration services often go unexamined in sufficient detail. This paper presents CIPerf, a

comprehensive benchmark designed to analyze both the performance and cost of cloud-based and self-hosted Continuous Integration

services. The study centers on a comparison between two specific services: Bitbucket Pipelines, a cloud-based offering by Atlassian,

and Hetzner, a self-hosted solution. By focusing on these platforms, the research aims to provide practical insights into the real-world

costs and execution performance of Continuous Integration services. To achieve this, CIPerf conducted automated tests on an hourly

basis over a two-month period, measuring critical timeframes such as resource provisioning, environment setup, and the actual test

execution times. The results showed significant differences in both the cost efficiency and the consistency of performance between

the two services. For instance, Bitbucket Pipelines, while convenient in its cloud-based offering, demonstrated higher variability in

provisioning times compared to the stable, predictable performance of Hetzner’s self-hosted environment. The analysis also explored

how these performance metrics influence key software development metrics, including deployment frequency and developer

productivity. CIPerf provides a clear methodology for developers and organizations to objectively assess their Continuous Integration

service options, ultimately helping them optimize their workflows. Moreover, this benchmark can serve as an ongoing tool to

monitor service performance over time, identifying potential degradations or improvements in service quality, thus offering long-

term value for teams that rely on Continuous Integration for their development processes.

Keywords: Continuous integration; performance Benchmark; Bitbucket Pipelines; service performance; DevOps metrics;

developer experience; Lead Time; automated testing; test setup; networkX Benchmark

For citation: Obrizan V. I. “CIPerf: a benchmark for continuous integration services performance and cost analysis”. Herald of Advanced

Information Technology. 2024; Vol. 7 No.3: 275–283. DOI: https://doi.org/10.15276/hait.07.2024.19

1. INTRODUCTION,

FORMULATION OF THE PROBLEM

Continuous integration (CI) is a software

development practice which requires running builds

of separate software system components, integrating

them into final deliverables and subsequently

running static code analysis checks and automatic

tests. It is a widely adopted practice: in 2016 70 %

of the most popular projects on GitHub use CI [1].

There are several places to perform such

continuous integration:

a) a local developer’s computer;

b) computers in a corporate’s data center (self-

hosted, or on-premises continuous servers);

c) cloud-based continuous integration services

(SaaS). Publicly available continuous integration

SaaS are popular nowadays, notable: Atlassian

Bitbucket Pipelines, GitHub Actions, GitLab,

Amazon Web Services, CodePipeline, Microsoft

Azure, Circle CI, Travis CI, and lots more.

© Obrizan V., 2024

There are several ways to reduce costs related

to continuous integration. Algorithms reduce

number of test runs:

a) batch testing algorithms [2, 18] group builds

in batches, run one test suite per a group and bisects

the group in case of a failure to find out a code

commit which introduces the error;

b) test outcome prediction algorithms use

machine-learning classifiers or similar algorithms to

predict build failures and skip builds which will pass

with high probability [3, 4], [5, 20].

Some authors consider the cost factor of CI as

developers’ efforts and time to set-up and maintain it

[6, 19]. However, mentioned papers don’t consider

CI costs as a cost paid to cloud based CI SaaS for

computing resources. Some authors report that CI is

used to test performance of systems under test but

not the performance of CI system itself [7, 8].

Place of CI in the DevOps cycle. DevOps

Research and Assessment (DORA) group at Google

has identified four key metrics that indicate the

performance of a software development team [9]:

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

http://hait.od.ua/index.php/journal/theme2

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

276

Information technology in computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Table 1. Pros and Cons of different placement of

CI jobs

Deployemnt Pros Cons

Local

computer

Quick turnaround,

high performance,

low cost

Computer is busy

while running the

CI job

Self-hosted The local computer

is free while

running the CI job;

Ability to configure

hardware; Better

security

Additional costs

maintaining a

server

Cloud-based

provider

The local computer

is free while

running the CI job

Additional costs of

renting a server;

Low performance;

Slow turnaround;

Security issues

Source: compiled by the author

a) Deployment Frequency – How often an

organization successfully releases to production;

b) Lead Time for Changes – The amount of

time it takes a commit to get into production;

c) Change Failure Rate – The percentage of

deployments causing a failure in production;

d) Time to Restore Service How long it takes an

organization to recover from a failure in production.

They outline four grades of DevOps performers:

Elite, High, Medium, and Low. For example, the

Lead Time for Changes metric for Elite performers

must be less than one hour. Thus, a CI job can’t take

more than one hour to satisfy an Elite performers

grade.

Role of CI service in developer experience

(DevEx). DevEx defines how software engineers

feel about, think about, and value their work. The

report shows that such metrics as “Satisfaction with

automated test speed and output”, “Satisfaction with

time it takes to deploy a change to production”,

“Time it takes to generate CI results”, “Deployment

lead time (time it takes to get a change released to

production)”.

Object of the research – cloud-based and self-

hosted CI services. Subject of the research – CI

service performance and costs to run tests. The goal

of the research is to develop and apply a benchmark

to analyze and compare the performance and cost

efficiency of cloud-based and self-hosted continuous

integration (CI) services, providing insights for

developers and organizations to make data-driven

decisions in selecting CI solutions.

2. OPERATION OF CONTINUOUS

INTEGRATION SERVICES

The following section provides a detailed

breakdown of how a typical CI service operates,

from the initial code push to the final deployment of

build artifacts.

1. A software developer submits a code

increment by committing and pushing to a git

repository.

2. A continuous integration service listens for

code push events.

3. When the CI service gets a CODE_PUSH

event it evaluates whether to initiate a build process

based on predefined rules.

These rules may include:

а) Branch filters (e.g., only build for specific

branches);

b) File path filters (e.g., ignore changes to

documentation files);

c) Commit message filters (e.g., skip builds for

minor changes);

d) Author filters (e.g., ignore commits from

certain users); e) Time-based rules (e.g., limit build

frequency).

4. Build initiation: If the commit passes the

evaluation, the CI system initiates the build process.

Otherwise, the commit is ignored for CI purposes.

5. Environment setup: A clean, isolated

environment is prepared for the build and tests.

6. Code retrieval: The latest code is fetched

from the repository.

7. Dependency resolution: Required libraries

and dependencies are installed.

8. Compilation: The code is compiled (if

necessary for the language used).

9. Unit testing: Automated unit tests are run to

check individual components.

10. Integration testing: Broader tests are

executed to ensure components work together.

11. Code quality checks: Static code analysis

and linting tools may be run.

12. Artifact generation: Deployable artifacts

(e.g., executables, containers) are created.

13. Reporting: Results of the build and tests are

compiled and reported.

14. Notification: Developers are notified of the

build status, especially if issues arise.

15. Artifact storage: Successful builds are

stored for potential deployment.

http://hait.od.ua/index.php/journal/theme2

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems

277

3. COST AND PERFORMANCE OF CLOUD-

AND SELF-HOSTED CI SERVICES

Comparison of a CI job execution cost using

major CI service vendors.

Table 2. Comparison of fees associated with

different CI services providers

Service Job execution cost*

Bitbucket Pipelines (cloud) [10] $0.010/min

GitLab (cloud) [11] $0.010/min

GitHub Actions (cloud) [12] $0.005/min

Hetzner (self-hosted) [13] $0.001/min

* the lowest proposed hardware configuration pricing is presented.
Source: compiled by the author

To compare job execution cost with a self-

hosted CI service we choose Hetzner datacenter and

their EX44 dedicated server proposal (Intel® Core™

i5-13500, 64 GB RAM). It is priced as €

39.00/month (roughly $43.26 / month). We assumed

31 days × 24 hours = 744 hours in a single month,

which gives us $43.26 / 744 / 60 ≈ 0.001 $/min.

Performance and exact specification of

underlying hardware of cloud-based CI services is

not clear and not advertised by the vendors. In most

cases they advertise computer nodes by number of

available cores (1, 2,…), by architecture (X86,

ARM, AMD64), by available RAM. And it is

sometimes unclear if the provided computing

resources are dedicated (fully available to the client

only) or shared (the same hardware resources are

used by several CI service tenants).

4. THE CIPERF BENCHMARK

Main principles:

1. Independence. It is neither controller nor

sponsored by any major CI service provider. CI

service providers can’t cherry-pick benchmark tests

to highlight their service in good light and hide the

worst sides of their service.

2. Open. It is open-sourced and easy to

reproduce the benchmark results.

3. Actuality. It is run once per hour to observe

CI service degradation or improvements over time.

4.1. The Benchmark organization

The benchmark project is stored as a public

Bitbucket git repository [14]. Bitbucket Pipelines –

Atalssian’s CI/CD service is configured for this

repository to be triggered on each code push. There

is a clone of this repository on a standalone

computer hosted at Hetzner [15]. Every hour an

automatic script creates a small change into the local

repository, commits the change and pushes the

change to the Bitbucket-hosted repository. Bitbucket

Pipelines listens for the changes and triggers a build

automatically.

The configuration of a Bitbucket Pipeline is

defined in a YAML file, typically named bitbucket-

pipelines.yml, which resides in the root directory of

a project’s repository. This file specifies the steps to

be executed during the CI process, including

environment setup, dependency installation, and

testing. In the example configuration for CIPerf, the

pipeline is designed to run on a Python 3.10

environment and includes steps for installing

necessary dependencies, such as PostgreSQL client

tools and Python libraries. The script first updates

the system's package manager, installs required

software, and sets up a Python virtual environment.

Following this, automated tests for the NetworkX

library are run using the pytest framework, while

performance metrics are recorded. The pipeline also

connects to a PostgreSQL database to log

benchmark results, such as the total execution time

and performance test duration.

This setup allows Bitbucket Pipelines to

automatically trigger tests upon code changes,

ensuring that performance data is consistently

captured and analyzed. Bitbucket-pipelines.yml is a

configuration file for Bitbucket CI service [16]:

image: python:3.10

pipelines:

 default:

 - step:

 name: Test

 caches:

 - pip

 script:

 - started_at=$(date -uIseconds)

 - start_time=$(date +%s)

 - apt-get update

 - apt-get install -y time postgresql-

common

 - YES=yes

 - yes "" | /usr/share/postgresql-

common/pgdg/apt.postgresql.org.sh

 - apt install -y postgresql-client-16

 - python -m venv venv

 - source venv/bin/activate

 - pip install --upgrade pip

 - pip install -r requirements/default.txt

-r requirements/test.txt

 - pip install -e .

 - /usr/bin/time -ap -o benchmark.txt

pytest --pyargs networkx

 - user_time=$(grep 'user' benchmark.txt |

awk '{print int($2)}')

 - end_time=$(date +%s)

 - total_time=$(($end_time - $start_time))

http://hait.od.ua/index.php/journal/theme2

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

278

Information technology in computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 - psql -h $DBHOST -U $DBUSER -p $DBPORT -

d statistics -c "INSERT INTO public.runs

(total_sec, performance_test_sec, vendor,

benchmark_id, commit, started_at) VALUES

($total_time, $user_time, 'Bitbucket Pipelines',

'networkx1', '$BITBUCKET_COMMIT', '$started_at');"

 - "echo Total time, sec: $total_time.

Benchmark time, sec: $user_time."

This configuration includes two main parts:

1. Installation of needed dependencies

(postgresql client, Python packages).

2. Automatic tests for the NetworkX library.

The benchmark records the following timestamps:

code_pushed, ci_job_started,

dependencies_installed, test_completed (Table 3).

Table 3. Main events of the CI process

Timestamp Description

code_pushed Recorded right after successful

code push: the code repository

accepted the source codes.

ci_task_

started

Recorded on execution the very

first line of bitbucket-

pipelines.yml script. It means

the computer is provisioned for

a task by continuous integration

service.

dependencies_

installed

Recorded after all dependencies

are installed (command line

tools, Python libraries).

test_completed Recorded after automatic tests

are completed.
Source: compiled by the author

The chain of events code_pushed →

ci_task_started → test_completed is on the critical

path for the “Lead Time for Changes” DORA metric

and the “Time it takes to generate CI results”

developer experience metric.

Meaning of selected time frames for the

benchmark (Table 4):

The provisioning timeframe refers to the period

between the moment the CI system detects a code

push (or a trigger event) and when the actual job

starts executing on the allocated computing

resources. In other words, it measures the time

required for the CI service to prepare the

infrastructure needed to run the build and tests,

which includes allocating or spinning up virtual

machines, containers, or any other required

resources.

During the provisioning phase, the CI system

ensures that a clean and isolated environment is

ready for the upcoming tasks. The length of the

provisioning timeframe can vary depending on the

CI provider, the underlying infrastructure, and the

current load on shared cloud resources. For instance,

cloud-based CI services often experience variability

in provisioning times due to resource availability,

while self-hosted CI services may have consistently

shorter provisioning times since dedicated hardware

is already available. The provisioning timeframe

directly impacts the overall efficiency of the CI

pipeline, especially for teams that rely on rapid

feedback from their builds and tests.

Table 4. Main timeframes of the CI process

Timeframe Formula Description

provisioning ci_task_

started −

code_pushed

Time in seconds,

needed for a CI

provider to

provision

computing

resources (a

computer) to

execute a CI job.

test_setup dependencies_

installed −

ci_task_

started

Time in seconds,

needed for a

computer provided

by a CI service to

install

dependencies.

computing test_completed

−

dependencies_

installed

Time in seconds,

needed for a CI-

service-provided

computer to

complete automatic

tests for the

NetworkX library.
Source: compiled by the author

The test_setup timeframe represents the

duration required to set up the testing environment

in a Continuous Integration (CI) process.

Specifically, it measures the time taken from the

start of the CI job (after the computing resources are

provisioned) to the point when all necessary

dependencies are installed, and the environment is

fully configured for testing. This stage includes

actions like downloading necessary libraries,

installing required software packages, setting up

configurations, and preparing any other resources

required to run the tests. In CI workflows, the

test_setup phase is critical because any delays in

setting up the environment can prolong the overall

CI job, thereby increasing lead times and reducing

efficiency.

The computing benchmark is a unit-test suite

for NetworkX Python library [17]. It consists of

functional tests for different graph algorithms. We

consider this as a good choice for computing

http://hait.od.ua/index.php/journal/theme2

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems

279

benchmark, because of the pure computational

nature of graph algorithms, thus no I/O (disk,

network) resources are exercised during the

benchmark.

4.2. Benchmark results

Analysis of CIPerf benchmark running hourly

on Bitbucket Pipelines starting 29.06.2024 to

08.09.2024, 1710 runs in total.

Benchmark statistics for Bitbucket Pipelines:

Table 5. Benchmark statistics for Bitbucket

Pipelines

Timeframe

Min,

sec

Mean,

sec

p95,

sec

p99,

sec

Max,

sec

Average,

sec Stddev

provisioning 12 21 35 54 1990 26 63

test_setup 23 38 64 92 163 41 13

computing 127 167 205 223 246 169 19

Source: compiled by the author

Statistics for a local personal computer:

Table 6. Benchmark statistics for a local personal

computer

Timeframe
Min,

sec

Mean,

sec

p95,

sec

p99,

sec

Max,

sec

Average,

sec Stddev

provisioning 0 0 0 0 0 0 0

test_setup 57 64 70 74 75 65 4

computing 111 120 134 134 134 121 8

Source: compiled by the author

Statistics for a self-hosted server (Hetzner):

Table 7. Benchmark statistics for a self-hosted

server

Timeframe
Min,

sec

Mean,

sec

p95,

sec

p99,

sec

Max,

sec

Average,

sec Stddev

provisioning 0 0 0 0 0 0 0

test_setup 27 29 31 31 31 29 1

computing 83 85 86 86 86 85 1

Source: compiled by the author

5. DISCUSSION AND TAKEAWAYS

The CIPerf benchmark highlights several

important findings regarding the cost and

performance of continuous integration (CI) services.

The comparison between cloud-based (Bitbucket

Pipelines) and self-hosted (Hetzner) solutions

reveals clear distinctions in both pricing models and

performance metrics, providing valuable insights for

organizations looking to optimize their CI

workflows.

1. Cost Efficiency: The cost analysis shows that

self-hosted solutions like Hetzner are significantly

more cost-effective than cloud-based services such

as Bitbucket Pipelines, especially for long-running

or frequent CI jobs. While Bitbucket Pipelines

charges approximately $0.010 per minute of job

execution, the self-hosted Hetzner service costs only

around $0.001 per minute. This tenfold difference

highlights the potential savings for organizations

that are willing to manage their own infrastructure,

particularly for projects with extensive CI usage.

2. Performance Variability: The performance of

Bitbucket Pipelines exhibits greater variability

compared to the self-hosted Hetzner solution. While

Hetzner consistently delivers fast provisioning and

computing times, Bitbucket shows a higher standard

deviation in key timeframes, particularly in

provisioning, where the p99 value reaches up to

1,990 seconds. This variability can lead to

unpredictable delays in the CI process, which could

hinder developer productivity, especially for teams

that rely on rapid feedback from CI pipelines.

3. Provisioning Time: One of the most striking

differences is in the provisioning time, where

Hetzner performs significantly better with no delay

in resource allocation, as it is a dedicated server. In

contrast, Bitbucket Pipelines shows variability, with

provisioning times ranging from 12 to 1.990

seconds. This indicates that shared cloud resources

can introduce significant delays, particularly during

peak usage periods, making it challenging to

maintain a high level of CI performance.

4. Test Setup and Computing Time: Hetzner

also outperforms Bitbucket Pipelines in test setup

and computing times. While the difference in

computing time (the actual test execution) is notable,

the most significant gap is in test setup, where

Bitbucket takes nearly 30% longer on average to

install dependencies and prepare the environment.

This overhead can be detrimental for CI pipelines

that require frequent setup of complex environments.

5. Developer Experience and Lead Time for

Changes: The unpredictability of provisioning and

setup times in cloud-based solutions like Bitbucket

can negatively impact developer experience (DevEx)

and key DevOps metrics such as Lead Time for

Changes. In contrast, the consistent performance of

the Hetzner self-hosted server offers a more reliable

and predictable CI experience, which can enhance

http://hait.od.ua/index.php/journal/theme2

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

280

Information technology in computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

overall developer satisfaction and operational

efficiency.

6. Scalability vs. Control: While cloud-based CI

services offer ease of setup, scalability, and reduced

infrastructure management overhead, they come at

the cost of performance consistency and higher job

execution fees. Self-hosted solutions, like Hetzner,

provide better control, cost savings, and

performance stability but require additional effort in

managing hardware and software environments.

Organizations must weigh these trade-offs based on

their CI needs and operational constraints.

5.1. Takeaways

1. Cost Savings for Heavy CI Usage:

Organizations with frequent or long-running CI jobs

can achieve significant cost savings by opting for

self-hosted solutions like Hetzner. However, the

cost-benefit analysis should include the potential

overhead of maintaining a self-hosted infrastructure.

2. Performance Stability: For teams that

prioritize consistency and rapid feedback in their CI

processes, self-hosted solutions may offer better

reliability and predictability compared to cloud-

based services, which can exhibit high variability

due to shared resources.

3. Cloud-Based Services for Simplicity and

Scalability: While cloud-based CI services like

Bitbucket Pipelines introduce variability in

performance, they are still appealing for smaller

teams or projects that need fast scalability and

minimal infrastructure management.

4. CI Monitoring: CIPerf can serve as a

valuable tool for ongoing monitoring of CI service

performance, helping teams detect potential service

degradation over time. This makes it useful for both

cloud and self-hosted environments, ensuring that CI

processes remain optimized and responsive.

In conclusion, the CIPerf benchmark provides

concrete data to guide organizations in selecting the

most appropriate CI service based on their unique

cost, performance, and management requirements.

Future work could explore additional CI services to

further expand the analysis, offering a more

comprehensive view of the CI ecosystem.

6. CONCLUSIONS AND FUTURE WORK

This paper presents CIPerf, a benchmark

designed to analyze and compare the cost and

performance of cloud-based and self-hosted

Continuous Integration (CI) services. Through an

extensive study involving Bitbucket Pipelines

(cloud) and Hetzner (self-hosted) over two months,

the results demonstrate substantial differences in

both cost efficiency and performance stability

between these two options.

The scientific novelty of this research lies in

the development of CIPerf, a unique, independent

benchmark specifically designed to measure and

compare both the performance and cost of cloud-

based and self-hosted continuous integration (CI)

services. Unlike previous studies, CIPerf provides a

reproducible, open-source framework that evaluates

the CI infrastructure itself, offering detailed insights

into provisioning times, test setup durations, and

computational efficiency, which have not been

systematically analyzed in the context of CI service

cost-performance trade-offs before.

The practical significance of this research is

that it provides developers, teams, and organizations

with a reliable tool (CIPerf) to objectively assess the

performance and cost efficiency of continuous

integration (CI) services. By offering concrete data

on provisioning times, test setup, and execution

costs, CIPerf helps decision-makers optimize their

CI workflows, reduce operational expenses, and

enhance developer productivity through informed

selection of CI services, whether cloud-based or

self-hosted. Additionally, it can be used to monitor

performance degradation or improvements over

time, ensuring consistent and efficient software

development practices.

Key conclusions from this study include:

1. Cost-Performance Trade-offs: Self-hosted CI

solutions, such as Hetzner, offer significantly lower

job execution costs compared to cloud-based

services like Bitbucket Pipelines. However, they

require more operational oversight and infrastructure

management, which may not be ideal for smaller

teams or organizations prioritizing ease of use.

2. Performance Variability: Cloud-based

services exhibit higher variability in provisioning

and job execution times, potentially causing delays

in the CI pipeline. In contrast, self-hosted solutions

provide more consistent performance, especially in

terms of provisioning and test setup times.

3. Developer Experience: For teams that

prioritize rapid feedback in their CI processes, the

performance stability of self-hosted solutions like

Hetzner can enhance developer experience and

reduce overall lead time for changes. On the other

hand, cloud-based services offer convenience and

scalability but may introduce unpredictable delays.

4. Benchmarking Utility: CIPerf proves to be a

valuable tool for objectively measuring the

performance of CI services. It provides a

http://hait.od.ua/index.php/journal/theme2

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems

281

reproducible framework that can be used to monitor

CI service degradation or improvements over time,

ensuring that organizations can optimize their CI

workflows based on real data.

There are several avenues for future research

that can build on the findings of this study:

1. Inclusion of More CI Services: Future work

could expand the scope of CIPerf to include

additional CI

services such as GitHub Actions, Travis CI, and

CircleCI. This would provide a broader comparative

analysis across a wider range of cloud-based and

self-hosted solutions, offering more comprehensive

insights for organizations choosing CI tools.

2. Exploration of Different Workloads: The

current benchmark focuses on a specific test suite

(NetworkX). Future research could explore different

types of workloads, including more I/O-intensive

tests, larger codebases, or multi-language projects, to

assess how CI services perform under varying

conditions.

3. Real-World Application: While the current

study runs automated tests in a controlled

environment, future research could integrate CIPerf

into real-world software development pipelines,

analyzing how CI performance affects development

cycles, release times, and developer productivity in

diverse organizational contexts.

4. Cost-Benefit Analysis of Hybrid CI Models:

Another potential area of exploration is the cost-

benefit analysis of hybrid CI models, where

organizations use a combination of cloud-based and

self-hosted CI systems. This could provide insights

into how teams can balance scalability, cost, and

performance based on their specific needs.

REFERENCES

1. Hilton, M., Tunnell, T., Huang, K., Marinov, D. & Dig, D. “Usage, costs, and benefits of continuous

integration in open-source projects”. Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering. 2016. p. 426–437, https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.

DOI: https://doi.org/10.1145/2970276.2970358.

2. Fallahzadeh, E., Bavand, A. H. & Rigby, P. C. “Accelerating continuous integration with parallel

batch testing”. Proceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 2023. p. 55–67.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180557197&doi=10.1145%2f3611643.3616255&

partnerID=40&md5=bc128a0694c9acce1bb7d45ba94d4fce. DOI: https://doi.org/10.1145/3611643.3616255.

3. Jin, X. & Servant, F. “A cost-efficient approach to building in continuous integration”. Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering. 2020. p. 13–25,

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094315421&doi=10.1145%2f3377811.3380437&

partnerID=40&md5=bb745a103bef9f097daf338a82b09882. DOI: https://doi.org/10.1145/3377811.3380437.

4. Jin, X. “Reducing cost in continuous integration with a collection of build selection approaches”.

Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. 2021. p. 1650–1654,

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116277591&doi=10.1145%2f3468264.3473103&

partnerID=40&md5=d990ab64f1533ee41c7cd50853d356d1. DOI: https://doi.org/10.1145/3468264.3473103.
5. Hong, Y., Tantithamthavorn, C., Pasuksmit, J., Thongtanunam, P., Friedman, A., Zhao, X. &

Krasikov, A. “Practitioners’ challenges and perceptions of CI Build Failure Predictions at Atlassian”.

Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software

Engineering. 2024. p. 370–381, https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e

2ff. DOI: https://doi.org/10.1145/3663529.3663856.

6. Hilton, M., Tunnell, T., Huang, K., Marinov, D. & Dig, D. “Usage, costs, and benefits of continuous
integration in open-source projects”. Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering. 2016. p. 426–437, https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14

763. DOI: https://doi.org/10.1145/2970276.2970358.

http://hait.od.ua/index.php/journal/theme2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/3611643.3616255
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094315421&doi=10.1145%2f3377811.3380437&partnerID=40&md5=bb745a103bef9f097daf338a82b09882
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094315421&doi=10.1145%2f3377811.3380437&partnerID=40&md5=bb745a103bef9f097daf338a82b09882
https://doi.org/10.1145/3377811.3380437
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116277591&doi=10.1145%2f3468264.3473103&partnerID=40&md5=d990ab64f1533ee41c7cd50853d356d1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116277591&doi=10.1145%2f3468264.3473103&partnerID=40&md5=d990ab64f1533ee41c7cd50853d356d1
https://doi.org/10.1145/3468264.3473103
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e2ff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e2ff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e2ff
https://doi.org/10.1145/3663529.3663856
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.
https://doi.org/10.1145/2970276.2970358

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

282

Information technology in computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

7. Yu, L., Alégroth, E., Chatzipetrou, P. & Gorschek, T. “A Roadmap for Using Continuous Integration

Environments”. Communications of the ACM. 2024. p. 82–90,

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194381501&doi=10.1145%2f3631519&

partnerID=40&md5=7476310c4de33d8a5d431fa2b166b79d. DOI: https://doi.org/10.1145/3631519.

8. Melone, C. & Jones, S. “Verifying functionality and performance of HPC applications with

continuous integration”. Practice and Experience in Advanced Research Computing 2023: Computing for
the Common Good. 2023. p. 460–462, https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85176236613&doi=10.1145%2f3569951.3597557&partnerID=40&md5=8ef1de2e309c9b29543c562fcf756b10.

DOI: https://doi.org/10.1145/3569951.3597557.
9. “Google Cloud. 2022. Using the Four Keys to Measure Your DevOps Performance”. Google Cloud

Blog. 2024. – Available from: https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-

measure-your-devops-performance.

10. “Atlassian. 2024. Bitbucket Pricing”. Atlassian. 2024. – Available from:

https://www.atlassian.com/software/bitbucket/pricing.

11. “GitLab. 2024. GitLab Pricing”. GitLab. 2024. – Available from: https://about.gitlab.com/pricing.

12. “GitHub. 2024. About Billing for GitHub Actions”. GitHub Docs. 2024. – Available from:

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions.

13. “Hetzner. 2024. Dedicated Root Server EX Line”. Hetzner. 2024. – Available from:

https://www.hetzner.com/dedicated-rootserver/matrix-ex.

14. “1irs. 2024. NetworkX Benchmark”. Bitbucket. 2024. – Available from:

https://bitbucket.org/1irs/networkx_benchmark.

15. “Hetzner. 2024. Hetzner Homepage”. Hetzner. 2024. – Available from: https://www.hetzner.com.

16. “Atlassian. 2024. Bitbucket Pipelines Configuration Reference”. Atlassian Support. 2024. –

Available from: https://support.atlassian.com/bitbucket-cloud/docs/bitbucket-pipelines-configuration-

reference/

17. Hagberg, A. A., Schult, D. A. & Swart, P. J. “Exploring network structure, dynamics, and function

using NetworkX”. Proceedings of the 7th Python in Science Conference (SciPy2008). 2008. p. 11–15.

DOI: https://doi.org/10.25080/TCWV9851

18. Kamath, D. M., Fernandes, E., Adams, B. & Hassan, A. E. “On combining commit grouping and

build skip prediction to reduce redundant continuous integration activity”. Empirical Software Engineering,

2024; 29: 6, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202786343&doi=10.1007%2fs10664-

024-10477-1&partnerID=40&md5=d51af9fe4e85c1d918c2bf05d04a3512.

DOI: https://doi.org/10.1007/s10664-024-10477-1.

19. Zheng, S., Adams, B. & Hassan, A. E. “Does using Bazel help speed up continuous integration

builds?”. Empirical Software Engineering, 2024; 29: 5, https://www.scopus.com/inward/record.uri?eid=2-

s2.0-85199025885&doi=10.1007%2fs10664-024-10497-

x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79.

DOI: https://doi.org/10.1007/s10664-024-10497-x.

20. Lan, W., Zhang, J., Yang, H. & Cui, Z. “A directed greybox fuzzing tool for continuous

integration”. SoftwareX. 2024; 27. Scopus: https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a671

2e56. DOI: https://doi.org/10.1016/j.softx.2024.101824.

Conflicts of Interest: the authors declare no conflict of interest

Received 26.06.2024

Received after revision 30.08.2024

Accepted 16.09.2024

http://hait.od.ua/index.php/journal/theme2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194381501&doi=10.1145%2f3631519&partnerID=40&md5=7476310c4de33d8a5d431fa2b166b79d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194381501&doi=10.1145%2f3631519&partnerID=40&md5=7476310c4de33d8a5d431fa2b166b79d
https://doi.org/10.1145/3631519
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176236613&doi=10.1145%2f3569951.3597557&partnerID=40&md5=8ef1de2e309c9b29543c562fcf756b10
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176236613&doi=10.1145%2f3569951.3597557&partnerID=40&md5=8ef1de2e309c9b29543c562fcf756b10
https://doi.org/10.1145/3569951.3597557
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://www.atlassian.com/software/bitbucket/pricing
https://about.gitlab.com/pricing/
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://www.hetzner.com/dedicated-rootserver/matrix-ex/
https://bitbucket.org/1irs/networkx_benchmark/
https://www.hetzner.com/
https://support.atlassian.com/bitbucket-cloud/docs/bitbucket-pipelines-configuration-reference/
https://support.atlassian.com/bitbucket-cloud/docs/bitbucket-pipelines-configuration-reference/
https://doi.org/10.25080/TCWV9851
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202786343&doi=10.1007%2fs10664-024-10477-1&partnerID=40&md5=d51af9fe4e85c1d918c2bf05d04a3512
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202786343&doi=10.1007%2fs10664-024-10477-1&partnerID=40&md5=d51af9fe4e85c1d918c2bf05d04a3512
https://doi.org/10.1007/s10664-024-10477-1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199025885&doi=10.1007%2fs10664-024-10497-x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199025885&doi=10.1007%2fs10664-024-10497-x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199025885&doi=10.1007%2fs10664-024-10497-x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79
https://doi.org/10.1007/s10664-024-10497-x
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a6712e56
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a6712e56
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a6712e56
https://doi.org/10.1016/j.softx.2024.101824

Obrizan V. I. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 275–283

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems

283

DOI: https://doi.org/10.15276/hait.07.2024.19

УДК 004.582

CIPerf: Бенчмарк для аналізу продуктивності

та вартості сервісів безперервної інтеграції

Обрізан Володимир Ігорович
1)

ORCID: https://orcid.org/0000-0002-1835-4056; Volodymyr.obrizan@gmail.com

1) Харківський національний університет радіоелектроніки, проспект Науки, 14. Харків, Україна

АНОТАЦІЯ

Безперервна інтеграція є важливою практикою в сучасній розробці програмного забезпечення, що дозволяє командам

автоматизувати процес збирання, тестування та злиття кодових змін, забезпечуючи безперервну доставку високоякісного

програмного забезпечення. Незважаючи на її зростаюче впровадження, вартість та продуктивність сервісів безперервної

інтеграції часто залишаються недостатньо вивченими. У цій статті представлено CIPerf — комплексний бенчмарк,

розроблений для аналізу як продуктивності, так і вартості хмарних та локальних сервісів безперервної інтеграції.

Дослідження зосереджене на порівнянні двох конкретних сервісів: Bitbucket Pipelines, хмарного сервісу від Atlassian, та

Hetzner, локального рішення. Зосереджуючись на цих платформах, дослідження має на меті надати практичні висновки

щодо реальних витрат і продуктивності виконання завдань у сервісах безперервної інтеграції. Для досягнення цієї мети

CIPerf проводив автоматизовані тести щогодини протягом двомісячного періоду, вимірюючи ключові часові інтервали, такі

як виділення ресурсів, налаштування середовища та фактичний час виконання тестів. Результати показали суттєві

відмінності як у вартості, так і в стабільності продуктивності між двома сервісами. Наприклад, Bitbucket Pipelines,

незважаючи на зручність хмарного сервісу, демонстрував більшу варіативність часу виділення ресурсів порівняно зі

стабільною, передбачуваною продуктивністю локального середовища Hetzner. Аналіз також досліджував, як ці показники

продуктивності впливають на ключові метрики розробки програмного забезпечення, включаючи частоту розгортання та

продуктивність розробників. CIPerf пропонує чітку методологію для розробників та організацій, яка дозволяє об'єктивно

оцінювати варіанти сервісів безперервної інтеграції, що в кінцевому підсумку допомагає оптимізувати їхні робочі процеси.

Крім того, цей бенчмарк може служити постійним інструментом для моніторингу продуктивності сервісів з часом,

виявляючи потенційне погіршення або покращення якості сервісу, надаючи таким чином довгострокову цінність для

команд, що залежать від безперервної інтеграції у своїх процесах розробки.

Ключові слова: безперервна інтеграція; Бенчмарк продуктивності; Bitbucket Pipelines; продуктивність сервісу;

метрики DevOps; досвід розробників; час виконання змін; автоматизоване тестування; час налаштування тестів; Бенчмарк

NetworkX

ABOUT THE AUTHOR

Volodymyr I. Obrizan - Doctoral student at Design Automation Department, Kharkiv National University of Radio

Electronics, 14 Nauki Avenue, Kharkiv, 61166, Ukraine
ORCID: https://orcid.org/0000-0002-1835-4056; Volodymyr.obrizan@gmail.com;

Research field: Computer systems and networks

Обрізан Володимир Ігорович - докторант каф. Автоматизації проектування обчислювальної техніки. Харківський

національний університет радіоелектроніки, проспект Науки, 14, Харків, Україна.

http://hait.od.ua/index.php/journal/theme2

