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ABSTRACT 

The paper presents a novel deep learning approach for crowd counting in intelligent video surveillance systems, addressing the 

growing need for accurate monitoring of public spaces in urban environments. The demand for precise crowd estimation arises from 

challenges related to security, public safety, and efficiency in urban areas, particularly during large public events. Existing crowd 

counting techniques, including feature-based object detection and regression-based methods, face limitations in high-density 

environments due to occlusions, lighting variations, and diverse human figures. To overcome these challenges, the authors propose a 

new deep encoder-decoder architecture based on VGG16, which incorporates hierarchical feature extraction with spatial and channel 

attention mechanisms. This architecture enhances the model’s ability to manage variations in crowd density, leveraging adaptive 

pooling and dilated convolutions to extract meaningful features from dense crowds. The model’s decoder is further refined to handle 

sparse and crowded scenes through separate density maps, improving its adaptability and accuracy. Evaluations of the proposed 

model on benchmark datasets, including Shanghai Tech and UCF CC 50, demonstrate superior performance over state-of-the-art 

methods, with significant improvements in mean absolute error and mean squared error metrics. The paper emphasizes the 

importance of addressing environmental variability and scale differences in crowded environments and shows that the proposed 

model is effective in both sparse and dense crowd conditions. This research contributes to the advancement of intelligent video 

surveillance systems by providing a more accurate and efficient method for crowd counting, with potential applications in public 

safety, transportation management, and urban planning. 
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INTRODUCTION, FORMULATION OF  

THE PROBLEM 

Intelligent video surveillance systems (IVS) 

have rapidly advanced and become a crucial 

component in modern security frameworks. In recent 

years, with the growth of urban areas, increasing 

foot traffic in public spaces, and rising security 

threats, the demand for solutions that can 

autonomously monitor large crowds has 

significantly increased. Intelligent video surveillance 

systems are now an integral part of smart cities, 

access control systems, and public safety 

enforcement. As urbanization continues to grow, the 

automation of video stream analysis for monitoring 

human crowds becomes critical. This opens the door 

to solving key problems, such as anomaly detection, 

public event safety management, and optimizing 

public transportation efficiency. 

One of the most important tasks faced by 

modern intelligent surveillance systems is accurate 
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crowd counting. This task plays a fundamental role 

in IVS functionality as it not only enables the 

estimation of crowd density but also helps identify 

abnormal situations, such as excessive crowding in 

confined spaces, which could indicate potential 

threats like evacuation risks. Additionally, accurate 

people counting facilitates better crowd management 

in densely populated areas such as stadiums, train 

stations, airports, and shopping malls. In the context 

of pandemics and other mass public health threats, 

the ability to precisely estimate the number of 

individuals in restricted areas allows for more 

effective application of distancing measures and 

other control protocols (Fig. 1). 

Despite its relevance and importance, crowd 

counting is a highly complex task from a technical 

standpoint. Various factors complicate the process: 

variations in people’s postures and positions, 

occlusions caused by overlapping individuals, 

changes in lighting, dynamic crowd movements, and 

the diversity of human figures. All of these factors 

present technical challenges for the development of 
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reliable and accurate counting algorithms. Particular 

difficulties arise when dealing with dense crowds, 

where individual figures overlap, making the visual  

separation of people extremely challenging. 

Addressing these issues requires sophisticated 

computer vision algorithms, machine learning, and 

deep learning techniques that can handle non-

standard filming conditions. 

Traditional methods, such as feature-based 

object detection or motion analysis, have long been 

employed in crowd counting tasks. However, these 

methods suffer from several limitations. First, they 

are often ineffective in high-density crowd 

environments, where the visual features of 

individuals may be obscured. Second, existing 

methods are often sensitive to environmental 

conditions: changes in lighting or the presence of 

dynamic objects in the background can significantly 

reduce their accuracy. Additionally, many methods 

require complex image preprocessing or the use of 

additional sensors, increasing the complexity and 

cost of such systems. 

Modern approaches based on deep neural 

networks have dramatically improved crowd 

counting performance, but even they are not without 

limitations. One of the major issues with deep 

learning-based solutions is the need for large 

datasets for training, which is not always feasible in 

real-world scenarios. 

Moreover, deep learning models are prone to 

overfitting and can be sensitive to changes in 

environmental parameters, such as camera angle or 

crowd density. Another significant drawback is the 

demand for extensive computational resources, 

which limits the deployment of these methods on 

low-power devices. 

Thus, despite the impressive progress achieved 

in the field of crowd counting, existing methods still 

face numerous challenges. Insufficient accuracy, 

particularly under complex conditions, high 

computational costs, and dependence on data quality 

leave room for further research and development of 

more efficient and versatile solutions. The 

advancement of intelligent video surveillance 

systems demands continuous improvement in crowd 

counting methods, making this a highly active area 

of research and technical innovation. 

Thus, the purpose of this study is to provide a 

technique for accurate deep-learning based density-

aware crowd counting for intelligent video 

surveillance systems. 

1. LITERATURE REVIEW 

Crowd counting may be executed using two 

main methodologies: object detection and 

density map estimation. The first approach 

involves a picture as input, yielding a numerical 

result that denotes the total count of individuals  
 

 
 

Fig. 1. Illustration of the crowd counting task 
Source: compiled by the [1] 



Dobryshev R. Y., Maksymov M. V.          /       Herald of Advanced Information Technology        

                                                                                          2024; Vol.7 No.3: 253–261 

ISSN 2663-0176  (Print)    

ISSN 2663-7731 (Online) 

Methodological principles of 

information technology 
255 

 
 

inside the frame. In the second technique, a model 

produces a crowd density map, which is then merged 

to ascertain the overall headcount. 

Conventional techniques for crowd counting 

mostly depended on detection-based methodologies. 

These technologies used image processing 

techniques to identify pre-engineered elements, such 

as body shapes or components, subsequently using 

machine learning models. Examples of these models 

include linear regression, ridge regression, Gaussian 

processes, support vector machines (SVMs), random 

forests, gradient boosting, and fundamental neural 

networks. Nevertheless, the precision of these 

approaches markedly diminished when addressing 

photographs of dense crowds owing to many 

problems, including object occlusion, poor 

resolution, and complications related to perspective 

and angles.  

To address the shortcomings of detection-based 

techniques, regression-based methods were 

developed to estimate the total population inside a 

whole picture or its portions. In contrast to detection 

models, these approaches do not seek to identify 

particular body parts but rather use global picture 

properties such as texture, foreground contrast, and 

gradients. 

These methods mitigate several issues 

associated with poor resolution and object occlusion; 

yet, they exhibit limited efficacy when used on 

pictures characterized by high crowd density.  

Recent studies illustrate the superior efficacy of 

convolutional neural networks (CNNs) in crowd 

counting tasks, attributable to their capacity for 

automated extraction of intricate information. 

Analogous to other computer vision tasks, including 

image classification, object recognition, and 

segmentation, convolutional neural networks 

(CNNs) have emerged as the preeminent method for 

crowd counting, markedly surpassing conventional 

techniques. 

In contrast to traditional methods that just 

forecast total headcount, convolutional neural 

networks (CNNs) are often used for crowd density 

estimates. This method entails forecasting a density 

map of the scene, which encompasses both the 

overall number of individuals and their spatial 

distribution inside the picture, therefore significantly 

augmenting scene analysis skills. 

Further studies have extensively embraced the 

density estimate technique using convolutional 

neural networks (CNN) as a pivotal strategy for 

addressing the crowd counting issue. The design of 

these models has undergone significant 

improvements to achieve optimal accuracy. 

Conventionally, we assess the efficacy of any 

deep learning model using benchmark datasets, and 

over time, we have introduced numerous specific 

datasets for crowd counting tasks. 

The datasets have significantly increased the 

complexity of the issue by including elements such 

as elevated crowd density, size differences, scene 

variety, fluctuations in lighting, unequal crowd 

distribution, severe occlusions, and perspective 

distortions. 

Over time, researchers have created more 

sophisticated CNN architectures, novel learning 

techniques, and enhanced assessment criteria to 

successfully tackle these issues and achieve high 

accuracy on complicated data. 

In recent years, many deep neural network 

(DNN) models have been introduced for crowd 

counting, varying in size and design:  

1.  Single-column models, despite being small, 

have a lower performance in processing high-density 

pictures and encounter scaling variation challenges; 

2.  Multi-column models can manage scale 

variation in objects, but the number of columns 

limits their adaptability to diverse item scales. 

Moreover, multi-column models incur significant 

computational costs due to the need to train many 

columns concurrently, hence escalating resource 

requirements.; 

3.  Single-column models with multi-scale 

modules have been created to address scale changes 

more efficiently in terms of computing. These 

methodologies are derived from the Inception 

architecture, with some design alterations; 

4.  People often use encoder-decoder models 

when maintaining spatial resolution is crucial, 

particularly for producing high-quality density maps. 

These approaches provide multi-tiered supervision, 

enhancing control at different phases of the network; 

5.  Nonetheless, both single-column and multi-

column models developed from the ground up 

exhibit constrained accuracy when evaluated on 

extensive datasets, particularly those with very 

packed pictures. Pre-trained models, like VGG, 

Inception, and ResNet, are often used to enhance 

counting precision. Models using pre-trained 

backbone neural networks (frontends) experience 

expedited training. Nonetheless, this results in 

augmented model size and execution duration, 

rendering them less appropriate for real-time 

applications. 

2. PROPOSED MODEL 

Typically, methodologies using deep neural 

networks (DNNs) use conventional and dilated 

convolutions as fundamental components to discern 
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local patterns and density maps. The majority use 

identical filters, pooling matrices, and configurations 

across the entire picture, implicitly assuming 

uniform congestion levels. This assumption often 

proves inaccurate in practice.  

Due to the dynamic variability in congested 

environments, it is critical to employ a variety of 

features and branches in order to effectively react to 

and collect information at varying degrees of 

density. Despite the fact, that different proposed 

approaches demonstrating high efficiency via 

various strategies, there is significant potential for 

improvement in developing highly efficient 

convolutional layer architectures capable of properly 

addressing crowd scenarios with substantial density 

variations. Usually, a size factor 3 for kernel of a 

convolution filter is more efficient than bigger sizes 

for extracting significant features since it captures 

more details with lesser complexity, facilitating 

easier network training. Reduced receptive fields 

yielded enhanced performance. 

Secondly, the use of patch-based and multi-

patch processing is time-consuming since identical 

features must traverse several pathways and patches 

again. To leverage the advantages of multi-variant 

techniques, it is advisable to extract proximate 

characteristics from the network and thereafter direct 

them to other branches for refinement to identify 

more intricate features. To use a more complex 

network for crowd counting, it is essential to 

implement the previously discussed strategies inside 

a multi-branch framework to enhance performance. 

This paper proposes a new deep encoder-

decoder architecture that incorporates hierarchical 

feature extraction with focus models to give better 

features for estimating crowds of different sizes and 

densities. 

The overall architecture of proposed technique 

is illustrated in Fig. 2. 

This novel structure is composed of selective 

pooling as well as 1×1 and 3×3 convolutions, which 

are employed to enhance the feature matrices in 

order to effectively manage objects of varying sizes 

inside a scene using hierarchical feature extraction. 

As previously mentioned, we formulate the 

problem of crowd counting by regressing the density 

map of individuals in relation to a scene. There are 

five primary components that make up this 

framework. 

These components are as follows: convolutional 

network based on VGG16, a hierarchical feature 

extractor, a branch block, decoder block, and focus 

block. The total accuracy and efficiency of the 

model for counting the number of persons in a 

crowd is correlated with each of these blocks, and 

there is a connection between the aforementioned 

blocks. 

The foundation of proposed model is based on 

VGG16, which is often utilized for the extraction of 

low-level characteristics. When we consider the 

compromise between time and accuracy, we delete 

the layers that are located between the last few 

pooling levels. 

Next, we apply a focus block to highlight the 

most significant aspects. After that, these features 

are introduced into the hierarchical block, which is a 

mix of selective pooling and factor 1 and factor 3 

convolutions. This block is responsible for creating 

features for the decoder block. 

The next phase involves the use of a global 

average pooling and a fully connected layer in order 

to categorize the input scene as either very dense or 

sparse. After that, we transmit this information to the 

corresponding decoder using the same structure. 

In the decoder, there are four layers of dilated 

convolution that are 3×3 in size. We place an focus 

module after each of these layers. Furthermore, to 

handle the disparities in congestion that occur in 

sparse and dense locations, we build two variants of 

the decoder module. 

 
 

Fig. 2. The overview of proposed architecture 
Source: compiled by the authors 
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These variants are responsible for generating 

low- and high-density maps inside the input scene, 

and then assigning these maps to the regression 

losses that correspond to them. 

Using different features from the final layer of 

the decoder, we construct the resulting density map 

in the final stage. 

Proposed framework completes the end-to-end 

training of the model by applying a classification 

loss alongside the same loss for the sparse, dense, 

and final output density maps. 

As a result: 

1.  The focus block focuses its attention on the 

major characteristics, specifically areas that are 

congested; 

2.  the hierarchical block is able to create more 

productive features, which are better suited for the 

crowd counting job with different versions. Adaptive 

pooling techniques and dilated convolutions of 

varying sizes combine to accomplish this; 

3.  with the assistance of the branch block, the 

appropriate branch of the decoder may be located in 

accordance with the amount of congestion in the 

region; 

4.  we design the mid-branch decoder to handle 

any changes in congestion within the input picture. 

3. EXPERIMENTAL RESULTS 

Our approach will be evaluated for efficiency in 

this section. We conduct these tests on different 

datasets and compare the results with different 

popular approaches. Since their release, these 

methods have already been used to compare 

different methodologies. 

Evaluation metrics. Each computer application 

necessitates the establishment of assessment metrics 

to assess the effectiveness of the solutions. 

In crowd counting, many measures are used to 

evaluate model performance by juxtaposing 

anticipated outcomes with annotated ground facts. 

 The two predominant metrics in crowd 

counting are Mean Absolute Error (MAE) and Root 

Mean Squared Error (MSE), defined as follows: 
 

𝑀𝐴𝐸 =
1

𝑀
∑ |𝐶𝑚

𝑒𝑠𝑡 − 𝑐𝑚
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|
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where 𝑀 refers to the quantity of training or testing 

data; 𝐶𝑚
𝑔𝑡

 indicates the precise count of individuals 

inside the region of interest of the 𝑚-th scenario, and 

𝐶𝑚
𝑒𝑠𝑡 is the anticipated number of individuals in the 

crowd. 

Data Augmentation. We use data augmentation 

to reduce the danger of overfitting to the minimal 

number of training photos. We supplement data with 

five forms of cropping and resizing. We crop each 

photograph to 25 % of its source size. 

The cropped photos produce four non-

overlapping segments from each size of the source 

photo. Furthermore, the other variant is randomly 

selected from the source image. 

To resize, we simply resize the input picture to 

the dimensions 768x1024 or 1024x768, depending 

on the scale of the input data. 

If an input image's height exceeds its width, we 

simply choose 1024x768, and otherwise, we scale it 

to 768x1024 size. 

Results on the Shanghai Dataset. On the 

Shanghai Tech dataset, it is difficult to provide an 

accurate estimate of the number of pedestrians 

because the issue is generated by a variety of 

circumstances and variations in the amount of 

congestion. 

The KNN technique is used to determine the 

mean path between each person and its three closest 

neighbors, and 𝛾 is equals to 0.25. This is done in 

order to set 𝜎 for the part A of dataset. 

In the case of part B, we used a constant value 

of 15 for 𝜎.A comparison is made between our 

approach and the most current state-of-the-art 

methods that have been published on this dataset 

(Table 1). 

Table 1. Experimental results for the first part of 

Shanghai dataset 

Model MAE MSE 

Proposed 60.5 93.2 

DRSAN 69.4 96.3 

CSRNet 68.1 114.9 

SFCN 65.0 107.7 

TEDnet 63.9 108.8 

CAN 62.4 99.8 

SPN 61.8 99.7 

ACSCP 75.9 102.9 

ADCrowdNet 63.4 99.1 

Source: compiled by the authors 

We go through the original published papers of 

the other techniques and compile the findings of 

those approaches. In the experiment, it is clear that 

proposed model has obtained a mean absolute error 

(MAE) of 60.5 and a mean squared error (MSE) of 

93.2. Other top-ranked approaches are not as 
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advantageous as our model, which demonstrates 

considerable benefits over these approaches. 

As can be shown in Table 2, proposed model 

has obtained an MAE of 6.9 and an MSE of 11.0 on 

the second part of dataset. 

 

Table 2. Experimental results for the second part 

of Shanghai dataset 

Model MAE MSE 

Proposed 6.9 11.0 

DRSAN 10.9 17.9 

CSRNet 10.7 15.9 

SFCN 7.8 13.2 

TEDnet 8.3 12.9 

CAN 8.0 12.4 

SPN 9.5 14.6 

ACSCP 17.4 27.7 

ADCrowdNet 7.9 13.0 
 

Source: compiled by the authors 

Both of these findings are superior to other 

popular crowd counting models. The combination of 

the hierarchical block and the two-variant decoder 

seems to be the key to our proposed model's ability 

to handle both sparse and crowded scenes, as shown 

by these findings. 

Because of these factors, the model that we 

have presented is able to differentiate between the 

crowd levels of the source video and evaluate the 

crowd in accordance with the crowd level for 

improved estimate. 

Results on the Wex dataset. The findings of the 

MAE metric are shown in Table 3, which is based 

on five distinct scenarios from the Wex dataset. 

 

Table 3. Experimental results for the Wex dataset 

Model Sc1 Sc2 Sc3 Sc4 Sc5 Avg 

Proposed 1.8 9.0 9.7 7.4 2.3 6.1 

DRSAN 2.7 12.0 10.4 10.5 3.9 7.9 

CSRNet 3.0 11.6 8.7 16.5 3.5 8.7 

SFCN 2.7 13.6 10.7 12.4 3.5 8.6 

TEDnet 2.4 9.9 11.4 13.7 2.7 8.0 

CAN 2.9 11.9 9.9 8.0 4.4 7.4 

SPN 2.7 13.5 9.0 15.3 3.6 8.9 

ACSCP 2.9 14.0 9.7 7.9 2.8 7.4 

ADCrowdNet 2.1 14.3 11.7 8.0 3.0 7.8 
 

Source: compiled by the authors 

The suggested model has produced an average 

MAE of 6.1, as seen in the table. This represents a 

significant improvement over the results obtained by 

CAN, surpassing the state-of-the-art state by a 

margin of 1.3. 

Additionally, the suggested model produces the 

lowest MAE of four out of all five scenarios, with 

MAE values equal to 1.8, 9.0, 7.4, and 2.3, 

respectively. This is the case for all five scenes. 

Based on established results, the suggested model 

outperforms state-of-the-art techniques in a variety 

of situations. 

Results on the UCF dataset.  For the purpose of 

creating ground truth density maps on the UCF CC 

50 dataset, we choose a configuration that is 

analogous to the Shanghai Tech-A setting. 

Table 4 demonstrates that the suggested model 

performs much better than the models that are 

considered to be state-of-the-art when applied to this 

dataset. 

We are able to attain a mean absolute error of 

120.1 with a mean squared error of 157, which 

surpasses the performance of previous benchmark 

models. 

As a result of our trials, we have found that the 

suggested model is capable of providing an accurate 

estimation of the total number of individuals across 

all subgroups. 

It is possible to draw the conclusion that the 

suggested model is capable of functioning well in 

both sparse and crowded circumstances. 

 

Table 4. Experimental results for the UCF dataset 

Model MAE MSE 

Proposed 120.1 157 

DRSAN 158.9 189.8 

CSRNet 165.7 197.4 

SFCN 173.9 201.9 

TEDnet 149.3 174.7 

CAN 169.7 192.5 

SPN 159.1 186.0 

ACSCP 181.0 209.2 

ADCrowdNet 156.9 178.8 
 

Source: compiled by the authors 

CONCLUSIONS 

This research presents a unique deep framework 

for crowd counting. A density-variant decoder has 

been integrated into the model in order to 

accommodate the significant density variance that 

exists within the crowded scenes. 

We have also incorporated hierarchical features 

and focus blocks. In order to give more accurate 

crowd counting using two-scale density maps, the 

proposed model has made use of a branch module.  

This module is responsible for transferring the 

hierarchical characteristics directly to the decoder 

variant that is the most appropriate. 
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In order to aggregate these density maps, it 

makes use of the sigmoid function and generates a 

gating mask for the purpose of constructing the final 

density map. 

The performance of proposed model in terms of 

its resilience, accuracy, and generalization has been 

proved by extensive tests conducted on a variety of 

benchmark datasets. In comparison to the 

approaches that are considered to be state-of-the-art, 

proposed model is able to obtain superior 

performance on virtually all of the main crowd 

counting datasets. 

Throughout the course of this research, we have 

studied a variety of techniques for crowd counting 

and density estimation in order to come up with 

novel solutions that have the potential to beat the 

findings of the present state of the art by significant 

margins.  

On the basis of our experiences, a number of 

aspects that need more investigation have been 

recognized and summarized as follows: 

1) A suitable method for counting the number 

of people in a crowd ought to have a low level of 

complexity. In light of this rationale, we believe that 

future studies need to concentrate more on solutions 

that are based on a single column arrangement; 

2) it may be a good idea to employ a form of 

zooming approach in the center of models if a 

congested location is recognized. This will allow us 

to focus on the high density zone and extract more 

helpful features from that area for an accurate 

density estimate. This will allows us to address the 

intra-dense area that exists inside a scene; 

3) patch-based processing of average 

characteristics maps in the CNN-based model is an 

additional enhancement that may be made to the 

crowd counting framework. The results of our 

preliminary inquiry have shown that it has the 

potential to result in further enhancements to the 

precision of approaches for counting crowds.  
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АНОТАЦІЯ 
 

У статті представлено новий підхід на основі глибокого навчання для підрахунку натовпу в інтелектуальних системах 

відеоспостереження, що вирішує зростаючу потребу в точному моніторингу громадських місць у міських середовищах. 

Попит на точну оцінку кількості людей виникає через проблеми, пов’язані з безпекою, громадським порядком і 

ефективністю в міських зонах, особливо під час великих публічних заходів. Існуючі методи підрахунку натовпу, включаючи 

виявлення об’єктів на основі ознак і методи регресії, мають обмеження в умовах високої щільності через перекриття 

об’єктів, варіації освітлення та різноманітність людських фігур. Щоб подолати ці виклики, автори пропонують нову 

архітектуру енкодера-декодера на основі VGG16, яка включає ієрархічне вилучення ознак із використанням просторової та 

канальної уваги. Ця архітектура покращує здатність моделі керувати варіаціями щільності натовпу, використовуючи 

адаптивне підсумовування та дилатовані згортки для вилучення значущих ознак із щільних натовпів. Декодер моделі 

додатково вдосконалюється для обробки розріджених і густих сцен через окремі карти щільності, що підвищує її 

адаптивність і точність. Оцінка запропонованої моделі на еталонних наборах даних, включаючи Shanghai Tech і UCF CC 50, 

демонструє кращі результати порівняно з сучасними методами, з помітними покращеннями за метриками середньої 

абсолютної помилки та середньоквадратичної помилки. У статті підкреслюється важливість врахування змін у середовищі 

та різниці в масштабах у густонаселених середовищах, і показано, що запропонована модель ефективна як в умовах 

розрідженого, так і щільного натовпу. Це дослідження сприяє розвитку інтелектуальних систем відеоспостереження, 

пропонуючи більш точний і ефективний метод підрахунку натовпу з можливими застосуваннями у сфері громадської 

безпеки, управління транспортом і міського планування. 

Ключові слова: підрахунок натовпу; інтелектуальні системи відеоспостереження; глибоке навчання; архітектура 

енкодера-декодера; оцінка карти щільності; ієрархічне вилучення ознак; згорткові нейронні мережі; моніторинг громадської 

безпеки 
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