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ABSTRACT 

This study proposes a hybrid chaotic-deterministic method for controlling a swarm of unmanned aerial vehicles, integrating 

social interactions such as separation, cohesion, alignment, and binding with an attraction-driven search strategy. The two-level anti-

stagnation system operates at the level of individual agents (‘micro’) and the collective swarm (‘macro’) to prevent local minima and 

maintain controlled trajectory smoothing. The method uses double course conditioning to balance smooth trajectories with stochastic 

exploration. Meanwhile, an attractiveness function evaluates potential movement directions quantitatively based on territory novelty, 

distance factors and course stability. Social interaction forces – repulsion, cohesion, alignment and centroid binding – ensure swarm 

stability and collision avoidance throughout mission execution. 

Comparative experimental validation was conducted through multiple simulation launches for each method in irregular 

polygonal territories. Both the chaotic and deterministic waypoint-based approaches demonstrated exceptional mission reliability, 

achieving a target coverage threshold in all trials, thereby confirming complete success rates. In terms of coverage efficiency, the 

chaotic method achieved superior average territory completeness compared to the deterministic approach, representing a measurable 

improvement. However, this enhanced coverage precision comes at a significant computational time cost: the chaotic method required 

substantially longer average mission duration compared to the optimized waypoint method. The chaotic approach also exhibited 

notably higher variability in results, reflecting the inherently stochastic nature of exploration-based methods. Thus, while the chaotic 

method demonstrates superior coverage efficiency, it exhibits inferior time efficiency compared to the deterministic baseline. 

These findings quantify the fundamental trade-off between thorough exploration and time efficiency in unmanned aerial vehicle 

swarm operations, providing empirical evidence to inform mission-critical deployment decisions. The results suggest that chaotic 

methods are best suited to scenarios that prioritize comprehensive coverage and adaptability, such as search and rescue operations 

where undetected casualties would be a critical failure, while deterministic approaches are more effective in time-sensitive missions 

with predictable environments. The reliability of both methodologies, combined with the quantification of performance differences, 

enables the selection of methods based on evidence, aligned with specific operational requirements, mission constraints and acceptable 

risk-time-accuracy trade-off parameters. 
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INTRODUCTION 

The development of territory scanning 

technologies has been and remains relevant to this 

day. In the event of a diverse range of emergencies, 

including but not limited to floods, earthquakes and 

wars, there is often a necessity to undertake the 

search for victims or the assessment of damage. The 

involvement of human operators in such operations 

poses a significant risk to their personal safety, as 

the aforementioned areas are often inaccessible and 

difficult to reach. The utilization of unmanned aerial 

vehicles (UAVs) for scanning such areas has been a 

practice for many years [1], [2].  
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In light of the substantial consequences that 
emergencies can entail, the deployment of a group of 
drones, or a swarm of drones, is frequently 
employed. The utilization of unmanned aerial 
vehicle swarms in emergency situations has 
exhibited substantial practical advantages in a 
multitude of real-world scenarios, thereby 
substantiating the imperative for advanced 
autonomous coordination algorithms. 

The 2011 Fukushima nuclear disaster 
demonstrated the limitations of human intervention 
in hazardous environments, where radiation 
exposure prevented direct assessment of reactor 
damage [3].  

Unmanned aerial vehicle (UAV) systems have 
been demonstrated to provide significant benefits in  
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the realm of aerial reconnaissance, enabling  
engineers to formulate effective recovery strategies 
without compromising the safety of human life  
[4], [5]. 

However, the initial deployment of UAVs 
revealed coordination issues when multiple aircraft 
operated simultaneously in confined airspace, 
emphasizing the necessity for enhanced collision 
avoidance and area coverage algorithms [6]. 

During the 2019-2020 bushfire crisis in 
Australia, coordinated swarms of UAVs proved 
essential for monitoring bushfires and searching for 
victims in smoke-filled areas [7]. Conventional 
single-UAV operations were plagued by limited 
coverage and protracted mission durations, while the 
uncoordinated deployment of multiple UAVs gave 
rise to excessive scanning and communication 
interference.  

The application of coordinated UAV swarms 
can be extended to multiple disaster scenarios with 
varying operational requirements. For example, in 
urban search and rescue operations following 
earthquakes, swarm systems must navigate complex 
three-dimensional environments comprising 
collapsed structures, unstable rubble and narrow 
passages, which would impede the operations of 
individual UAVs. The Fukushima incident further 
demonstrated the necessity for radiation-resistant 
autonomous systems that can operate in 
environments where human presence poses fatal 
risks. Swarm coordination enables a comprehensive 
assessment of damage across multiple reactor sites 
simultaneously [3], [4]. Avalanche rescue operations 
in mountainous regions present unique temporal and 
environmental constraints. Buried victims face 
critical survival windows, so there is a need for rapid 
area coverage capabilities, which only coordinated 
swarm systems can provide. This is because the 
terrain is characterized by unstable snow conditions, 
limited accessibility and complex human recognition 
challenges. Maritime rescue operations present 
further challenges. Swarms must contend with 
dynamic sea conditions and limited communication 
range over water. They must also provide rapid area 
coverage in time-critical scenarios where 
hypothermia or drowning threatens survival [1], [7]. 

These operational limitations underscored the 
critical importance of intelligent swarm coordination 
algorithms that could optimize coverage while 
minimizing the risks of overlap and collision [8], [9]. 

TECHNICAL CHALLENGES IN SEARCH 

OPERATIONS 

Search and rescue operations present distinctive 

algorithmic challenges that differentiate them from 

conventional UAV applications [9]. In scenarios 

where time is of the essence, it is imperative to 

swiftly cover the area while maintaining adequate 

resolution to detect casualties. The heterogeneous 

nature of emergency situations, including urban 

rubble, forest canopies, and flooded areas, 

necessitates the development of adaptive motion 

algorithms capable of adjusting to varying visibility 

and obstacle density conditions [11]. 

Contemporary deterministic methodologies, 

predicated on waypoints, while engendering 

predictable coverage patterns, frequently prove 

inadequate for dynamic emergency scenarios, 

wherein the optimal routes cannot be ascertained in 

advance. It is evident that obstacles in the 

environment, areas of no communication, and 

equipment malfunctions require real-time adaptation 

capabilities that traditional fixed-route algorithms 

are incapable of providing [1]. Moreover, the 

necessity for redundant coverage in critical areas, 

with a view to averting potential casualties, appears 

to be at odds with the pursuit of efficiency 

optimization in deterministic systems. 

Energy management constitutes a further 

critical constraint in emergency operations, wherein 

UAV swarms must maximize uptime whilst 

ensuring sufficient battery reserve to return to base. 

The issue is further exacerbated in heterogeneous 

swarms comprising diverse drone types, each 

exhibiting distinct energy profiles, communication 

ranges, and sensor capabilities [12]. The 

coordination of such heterogeneous systems 

necessitates the implementation of sophisticated 

algorithms that can dynamically balance the 

objectives of coverage with the constraints of energy 

across the entire swarm. 

Real-world operational limitations encompass 

multiple technical and environmental constraints that 

challenge the effectiveness of autonomous swarms. 

Poor visibility conditions, including smoke, fog, dust 

and darkness, significantly degrade sensor 

performance, compromising both obstacle detection 

and victim identification capabilities [7], [12]. Urban 

environments introduce dense obstacle fields 

comprising vertical structures, power lines and 

debris, necessitating sophisticated three-dimensional 

collision avoidance systems that go beyond simple 

waypoint navigation [10]. Terrain complexity 

further compounds operational challenges: forest 

canopies obscure ground-level casualties; flooded 

areas cause GPS signal degradation and 

communication blackouts; and mountainous regions 

generate unpredictable wind patterns that affect 

flight stability [1], [12]. Damage to communication 
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infrastructure during disasters creates intermittent 

connectivity, forcing swarms to operate with 

degraded coordination or autonomous decision-

making capabilities when centralized control 

becomes unavailable [12]. These real-world 

constraints highlight the need for adaptive 

algorithms that can maintain mission effectiveness 

despite partial system degradation and 

environmental unpredictability. 

The intricacy of contemporary emergency 

response scenarios necessitates the implementation 

of UAV swarm algorithms that are capable of 

performing multiple tasks in a simultaneous manner. 

These include the comprehensive coverage of the 

designated territory, collision avoidance, energy 

optimization, and adaptation to environmental 

changes in real time. Conventional methodologies 

predicated on predefined waypoints or elementary 

rule-based coordination prove inadequate in 

addressing the dynamic and unpredictable nature of 

emergency situations [13], [14]. 

The present study focuses on the chaotic motion 

algorithm as a promising alternative to deterministic 

approaches, offering improved adaptability and 

coverage characteristics in unstructured 

environments [8]. The algorithm in question draws 

inspiration from the natural behavior of swarms and 

chaos theory, thereby providing the requisite 

flexibility to respond to emergencies while 

maintaining the coordination necessary for effective 

multi-agent operations. 

The development of such sophisticated 

algorithms represents a significant advancement in 

the field of UAV swarm systems, paving the way for 

the creation of fully autonomous systems capable of 

independent operation in emergency scenarios. This 

advancement is crucial in disaster situations where 

rapid response is imperative for survival, as it has 

been demonstrated that even a few minutes can 

make a substantial difference in the outcome. 

RELATED WORKS 

The application of chaotic dynamics in rotor 

robotics and unmanned aerial vehicle systems has 

emerged as a promising paradigm for overcoming 

the limitations of deterministic algorithms [15]. 

Conventional approaches rely on predefined 

trajectories or rule-based coordination. In contrast, 

chaotic algorithms exploit the characteristics 

inherent in deterministic chaos, namely aperiodic 

bounded behavior and extreme sensitivity to initial 

conditions, in order to create more adaptive and 

efficient exploration models. This section provides a 

review of recent developments in chaotic swarm 

algorithms, analyzing their methodologies, 

performance characteristics, and relevance to 

autonomous territory scanning applications. 

The primary challenge in the field of swarm 

robotics pertains to the formulation of exploration 

strategies for robots with constrained resources that 

are devoid of advanced sensory, localization, or 

computational capabilities [16], [17]. Conventional 

methodologies, predicated on random wandering, 

while exhibiting computational simplicity, are 

encumbered by suboptimal parameterization 

requirements and constrained adaptability to 

environmental variability. Recent studies have 

demonstrated that chaotic dynamics and dynamics at 

the edge of chaos can significantly enhance 

exploration performance in such minimalistic 

systems. 

Sartorio et al. conducted a study into the use of 

random Boolean networks (RBNs) as controllers for 

Kilobot swarms performing target search tasks. 

RBNs are autonomous systems with discrete states 

and discrete time, originally developed to model 

gene regulation processes. These systems are 

characterized by nodes with Boolean states, which 

are connected by directed edges. The state of each 

node is determined by a logical function that acts on 

the input states of the nodes, thereby creating 

complex nonlinear dynamics. The study 

demonstrated that RBNs operating at the edge of 

chaos – a transitional regime between orderly and 

chaotic behavior – create research models that 

outperform traditional Lévy-modulated correlated 

random walks (LMCRWs). 

The experimental methodology employed 

realistic simulations of Kilobot platforms, 

incorporating individual variability in course 

deviation and movement characteristics. This 

heterogeneity, which is often considered problematic 

in swarm systems, was explicitly exploited as a 

useful feature rather than an artefact to be corrected. 

The RBN of each robot was employed to regulate 

the turn angles and step lengths of the robots by 

extracting binary state templates from the network 

and converting them into motion parameters. The 

network evolved autonomously according to 

synchronous update rules, and the resulting 

dynamics determined the robot’s exploration 

trajectory. 

The performance evaluation was centered on 

the average first-pass time, defined as the duration 

for a robot to locate a randomly positioned target 

within a confined circular arena. The findings 

demonstrated that RBNs with suitable network sizes 

(notably, N = 20 nodes) attained a search time of 
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approximately 1300 seconds, in comparison to 988 

seconds for the optimally parameterized LMCRW 

baseline. However, the critical conclusion was not 

only the equivalence of performance, but also the 

relationship between network dynamics and 

exploration efficiency. 

Quantitative analysis of chaotic properties 

employed sensitivity to initial conditions as the 

primary metric. The dynamic regime of each 

controller was characterized by the introduction of 

small perturbations to network states and the 

subsequent measurement of the evolution of 

Hamming distances over time. Networks that 

exhibited positive sensitivity values demonstrated 

divergence of perturbed trajectories, indicating 

chaotic dynamics or dynamics on the edge of chaos. 

Correlation analysis revealed a strong negative 

correlation between sensitivity to perturbations and 

first-pass time for networks with corresponding size 

constraints. This suggests that higher chaotic 

sensitivity corresponds to more efficient exploration. 

Subsequent refinement using evolutionary 

robotics techniques resulted in the development of 

evolutionary Boolean networks (EBNs), which 

retained chaotic dynamics while optimizing 

connection patterns and logical functions. A genetic 

algorithm incorporating a tournament selection, 

simulated binary crossover and polynomial mutation 

was utilized to evolve populations of 40 networks 

over 700 generations. The optimal EBN 

configuration attained a first-pass duration of 913 

seconds, representing a 7.6 % enhancement over 

LMCRW, while preserving dynamics on the 

periphery of chaos, characterized by Δ values 

ranging from 0.2 to 0.4. This finding indicates that 

evolutionary optimization does not necessitate the 

compromise of advantageous chaotic properties to 

attain performance enhancements. 

Network activation patterns within the study 

were analyzed, revealing different modes of behavior. 

It was observed that networks with excessive step 

length ranges (N ≥ 28) generated trajectories that 

exceeded the size of the arena, resulting in frequent 

collisions with walls and degraded performance. This 

limitation was addressed by evolution, which directed 

such networks towards ordered modes (low Δ values) 

that maintained smaller, more controllable step 

lengths. Conversely, networks of an appropriate size 

(N = 20-22) enabled evolution to exploit chaotic 

dynamics fully, as maximum stride lengths remained 

commensurate with the scale of the environment [18]. 

Whilst the focus of RBN-based approaches is 

on minimalist local control, bio-inspired 

metaheuristic algorithms offer additional 

opportunities for global trajectory optimization in 

complex environments [19]. The present study 

investigates the application of particle swarm 

optimization (PSO), a technique inspired by the 

collective behavior of flocks of birds, in the planning 

of the trajectory of UAVs. However, classical PSO 

implementations are susceptible to premature 

convergence to local optima, slow convergence 

rates, and sensitivity to parameter settings. These 

constraints are particularly pronounced in high-

dimensional optimization problems with constraints 

[20]. 

Chu et al. developed the Improved Chaotic-

VAINDIWPSO (IC-VAINDIWPSO) algorithm, 

which integrates chaos theory into several 

components of the PSO structure with a view to 

overcoming the shortcomings identified in the 

existing literature. This approach was tested on 

three-dimensional trajectory planning for an 

unmanned aerial vehicle in complex terrain with 

multiple cylindrical threat zones, requiring 

simultaneous optimization of trajectory length, 

threat avoidance, altitude constraints, and trajectory 

smoothness. The algorithm introduces three main 

innovations. 

Firstly, improved nonlinear dynamic inertial 

weights (INDIW) replace the standard linear decay 

strategy. 

Secondly, adaptive velocity control alters the 

behavior of particle updates in accordance with 

fitness evolution. In the event of an improvement in 

a particle’s fitness between successive iterations, its 

velocity is updated in accordance with standard PSO 

equations, thus enabling it to continue moving in the 

direction of promising regions. Conversely, when 

fitness deteriorates, the particle retains its previous 

velocity, thereby preventing counterproductive 

changes in direction. 

Thirdly, chaotic initialization employs logistic 

maps to generate uniformly distributed initial 

populations, as opposed to purely random 

initialization. The initialization process involves the 

generation of 1,000 candidate particles, the 

evaluation of their fitness, and the selection of the 

500 most fit individuals as the initial population. 

This approach provides a more extensive overview 

of the solution space and reduces initialization bias 

towards suboptimal regions. 

Furthermore, during the course of evolution, 

when the rate of fitness change (FCR) falls below a 

certain threshold and less than two-thirds of the 

maximum number of iterations have elapsed, the 

global best particle undergoes a chaotic mutation. 
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This mechanism employs the ergodic properties 

of chaos theory to circumvent local optima, thereby 

progressively enhancing the search as it approaches 

convergence. 

The experimental validation employed a digital 

terrain model of Christmas Island, Australia, with 

Unmanned Aircraft Vehicle missions necessitating 

navigation from initial to final coordinates, 

circumventing cylindrical threat zones with 

predetermined radii and safety margins. The cost 

function integrated path length, penalties for 

proximity to threats, altitude violations, and 

smoothness metrics based on turn and climb angles.  

A comparative analysis with the standard PSO 

and an intermediate variant of VAINDIWPSO 

(including only INDIW and speed disturbances) 

revealed a significant improvement in performance. 

In the seven-threat scenario, IC-VAINDIWPSO 

achieved average fitness values of 5575.78, in 

comparison to 7350.46 for PSO and 6704.68 for 

VAINDIWPSO. Convergence occurred in 20 

iterations for the present study, in comparison to 449 

for PSO and 250 for VAINDIWPSO, representing a 

reduction in the number of iterations by 95.5 % and 

92 %, respectively. The initialization time was 

reduced to 0.644 seconds, which is 86.35 % faster 

than the 4.745 seconds required by PSO. 

A scalability analysis was conducted in 

environments with varying threat densities (1-7 

obstacles), which demonstrated that the advantages 

of IC-VAINDIWPSO become more pronounced as 

the complexity of the environment increases. In 

scenarios involving three threats, all algorithms 

demonstrated a capacity to achieve near-optimal 

solutions. However, with five threats, the average 

fitness of IC-VAINDIWPSO, which was 5229.18, 

significantly outperformed PSO, which was 

6058.12. Further reliability testing was conducted on 

ten random threat configurations, the results of 

which confirmed a stable advantage in both fitness 

and convergence speed values. 

A visual analysis of the generated trajectories 

demonstrated that IC-VAINDIWPSO generates 

smoother, flyable trajectories that maintain an 

appropriate flight altitude above the terrain, thereby 

effectively avoiding threat zones. In contrast, PSO 

trajectories exhibited uneven turn angles and 

suboptimal altitude profiles, indicating local optima 

entrapment [22]. 

COMPARATIVE CONTEXT AND 

ALGORITHMIC DIFFERENCES 

RBN-based methods operate at the level of 

individual agents without global coordination 

(suitable for limited resources), while chaotic PSO 

operates at the population level for pre-flight 

mission planning. RBNs leverage dynamics at the 

edge of chaos to derive direct benefits from 

exploration, while chaotic PSO employs chaos to 

circumvent local optima. It is evident that none of 

the studies under review have considered 

heterogeneous swarms, which represent a pivotal 

aspect of the proposed algorithm. These findings 

serve to corroborate the efficacy of chaos theory. 

RBNs correspond to optimally tuned baselines, and 

chaotic PSO reduced iterations by more than 95 %. 

The hypothesis of evolutionary optimization with 

chaos preservation suggests that automatic design 

methods have the capacity to discover effective 

controllers for complex swarm tasks. 

PROBLEM STATEMENT 

The primary objective of this study is to 

develop a hybrid chaotic-deterministic method for 

autonomous coverage of a territory by a swarm of 

UAVs. This approach is informed by an analysis of 

existing approaches and an identification of the 

limitations of deterministic methods in emergency 

response scenarios. The proposed method aims to 

address the fundamental trade-off between the 

thoroughness of reconnaissance and the time of 

mission execution. 

The method builds upon a previously 

established multi-level control architecture [9], [12] 

that integrates social interaction forces (repulsion, 

cohesion, alignment, centroid binding) with chaotic 

exploration mechanisms. This architectural 

foundation ensures both swarm stability and 

adaptive coverage behavior in irregular polygonal 

territories, providing the structural basis for the 

following specific research objectives. 

The specific research objectives are formulated 

as follows. 

1. Design a multi-criteria direction selection 

function that incorporates unscanned area bias, 

heading continuity and social force integration. 

Formulate an attractiveness function for directional 

decision-making that can quantitatively evaluate 

candidate movement directions during chaotic 

exploration.  

This function should integrate the following:  

 territory novelty assessment through 

counting unscanned cells within directional 

sampling cones; 

 heading preference weighting to favor 

continuation of the current trajectory and minimize 

turn energy; 
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 distance-decay factors to evaluate target 

reachability; 

 social force contributions from separation, 

cohesion and alignment with neighboring agents.  

This multi-objective function should enable 

rational exploration under chaotic conditions, 

favoring direction selection towards unexplored 

areas while maintaining swarm cohesion and 

energy-efficient trajectories. 

2. Development of a two-level anti-stagnation 

system that integrates micro-level agent escape 

mechanisms and macro-level swarm redirection. A 

level-layer anti-stagnation architecture must be 

implemented to prevent confinement to local 

minimums during chaotic exploration. At the micro 

level, individual agents require stuck detection at a 

per-drone level, based on scan cell revisitation 

patterns. This triggers autonomous escape 

maneuvers towards distant, unscanned targets. At 

the macro level, the system must be able to detect 

when a critical proportion of agents are operating 

within already-scanned areas and initiate 

coordinated redirection towards a shared global 

target in unexplored territory. The system must 

maintain the stochastic characteristics of chaotic 

movement while ensuring progressive area coverage 

through individual initiative and collective 

coordination mechanisms. 

3. Implementing double-course conditioning 

mechanism. A double-course conditioning 

mechanism must be established to balance 

randomness in exploration with stability in 

movement. This involves implementing exponential 

moving average (EMA) filtering of desired heading 

angles at the agent level and applying bounded turn 

rate constraints to prevent excessive angular 

acceleration. The smoothing parameters must be 

calibrated to minimize oscillatory behavior and 

energy consumption resulting from rapid direction 

changes, while ensuring sufficient stochastic 

variability for thorough territory exploration. The 

system should incorporate self-propulsion 

adjustment to maintain normal speed targets and 

minimize unnecessary velocity fluctuations during 

chaotic scanning operations. 

4. A rigorous comparative experiment must be 

conducted to quantify the differences in performance 

between chaotic and deterministic (waypoint-based) 

approaches, measuring coverage efficiency, 

temporal performance, result stability and mission 

reliability.  

5. The experimental protocol should employ 

multiple simulation runs (n ≥ 10) for each method 

and measure the following: 

 the percentage of coverage achieved within 

fixed time intervals; 

 the time taken to reach target coverage 

thresholds (≥ 95 %); 

 the coefficient of variation in completion 

times across replications to assess result stability; 

 the mission success rate under 

heterogeneous swarm conditions with agent loss 

scenarios.  

Statistical analysis should include mean values, 

standard deviations, confidence intervals and 

significance testing in order to provide empirical 

evidence of the performance characteristics of the 

methods. 

6. A quantitative analysis of the relationship 

between coverage and time in chaotic versus 

deterministic scanning methodologies is required to 

inform mission planning decisions. This analysis 

must systematically evaluate the inherent trade-off 

between coverage thoroughness and mission 

duration.  

The analysis should quantify the following:  

 coverage efficiency curves showing the area 

scanned as a function of elapsed time for both 

approaches; 

 redundancy metrics measuring overlap and 

re-scanning frequency; 

 energy consumption profiles relative to 

coverage achieved; 

 adaptive behavior in response to dynamic 

environmental changes or agent failures.  

This empirical evidence will inform the 

selection of methods for specific scenarios, 

determining when thoroughness-prioritized chaotic 

exploration outweighs time-critical deterministic 

path-following, particularly in emergency response 

applications where either rapid reconnaissance or 

comprehensive damage assessment may be 

paramount. 

The study is constrained to two-dimensional 

scanning of the territory in a simulation 

environment, with a focus on the algorithmic and 

coordination aspects of swarm behavior. 

CHAOTIC-DETERMINISTIC METHOD 

The proposed chaotic method of controlling a 

swarm of drones can be described as follows: 

1) local agent behavior: 

 each drone maintains an individual map of 

the territory, tracking scanned and unscanned areas; 

 movement directions are determined by an 

attractiveness function that evaluates potential 

angles based on territory novelty, distance factors 

and course stability; 
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 direction selection combines deterministic 

prioritization of promising areas with controlled 

randomness, choosing from the highest-ranked 

candidate directions; 

2) micro-level anti-stagnation:  

 individual drones continuously track their 

movement over recent time steps; 

 when movement falls below an efficiency 

threshold, adaptive angular correction is 

automatically activated; 

 stochastic rotation allows escape from local 

traps by applying random directional perturbations;  

 this mechanism prevents the immobilization 

of individual agents in confined or already explored 

areas; 

3) social interaction forces:  

 the repulsion force prevents collisions by 

pushing drones away when they approach a critical 

distance; 

 the cohesion force attracts agents to local 

neighboring centroids, maintaining the structural 

integrity of the group; 

 alignment synchronizes speeds within local 

groups, reducing chaotic trajectory fluctuations; 

 centroid binding connects agents to the 

global center of the swarm, preventing excessive 

dispersion and fragmentation; 

 these forces combine into a single social 

vector that ensures swarm stability and prevents 

collisions; 

4) anti-stagnation at the macro level: 

 the global swarm stagnation coefficient 

continuously monitors the collective efficiency of all 

agents; 

 when this coefficient exceeds a threshold 

that indicates widespread stagnation, global 

redirection is activated; 

 the system then forms a common area vector 

that directs the entire swarm towards unexplored 

areas, thereby preventing collective traps in which 

most agents remain confined to areas that have 

already been scanned; 

5) double-course conditioning: 

 first-level inertia smoothing acts as a low-

pass filter, dampening sudden directional changes 

through weighted averaging of previous and new 

angles; 

 second-level adaptive stabilization aligns 

individual movement with the average orientation of 

local neighbors; 

 this two-level filtering provides smooth, 

energy-efficient trajectories while preserving the 

stochastic variability necessary for effective 

exploration; 

6) combined stabilized control: 

 the method hierarchically prioritizes goals: 

global reorientation has the highest priority, 

followed by individual escape protocols and then 

normal exploration; 

 the desired direction passes through a double 

conditioning filter before physical execution; 

 the final motion vector integrates 

exploration goals, social constraints and stability 

requirements; 

 the system maintains a balance between 

chaotic exploration and coordinated swarm behavior 

throughout the mission. 

This sequence provides adaptive dispersion, 

coordinated congestion resolution and controlled 

trajectory randomness, effectively combining 

exploration of new areas with the use of 

accumulated coverage information. 

SOCIAL INTERACTION IN A SWARM 

Social interaction between agents constitutes a 

fundamental component of the proposed chaotic 

method, thereby ensuring swarm stability, collision 

avoidance, and coordinated movement. The model is 

predicated on the principles of Swarm Chemistry, 

whereby the behavior of each drone is formed as a 

result of the superposition of several interaction 

vectors, namely repulsion, cohesion, alignment, and 

binding to the group's centroid. These forces provide 

a balance between individual autonomy and 

collective coordination. 

The repulsion force 𝐹repulsion
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is initiated when 

the drones approach a critical distance from each 

other, thereby preventing collisions. This is 

calculated as a vector directed away from 

neighboring agents, with a force that decreases 

proportionally to the square of the distance between 

them: 

𝐹repulsion,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∑ 𝑘𝑟

𝑝𝑖⃗⃗  ⃗−𝑝𝑗⃗⃗⃗⃗ 

|𝑝𝑖⃗⃗  ⃗−𝑝𝑗⃗⃗⃗⃗ |2+𝜖𝑗∈𝑁𝑖
, 

where 𝑁𝑖  is set of i-th drone neighbors; 𝑘𝑟  is 

coefficient of repulsion; 𝜖  is small stabilizing 

parameter to avoid division by 0; 𝑝𝑖⃗⃗  ⃗  is position 

vector (coordinates) of the current drone i (the drone 

for which the repulsive force is currently being 

calculated); 𝑝𝑗⃗⃗  ⃗  position vector (coordinates) of 

neighboring drone j (the drone that creates the 

repulsive effect). 

Cohesion, in turn, plays a pivotal role in 

maintaining the structural integrity of the system. 

This component is responsible for ensuring the 
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cohesion of the drone population within the group, 

thereby preventing excessive dispersion and 

fragmentation of the swarm. The cohesion vector 

𝐹cohesion,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is defined as an attractive force directed 

towards the average position (centroid) of the 

nearest neighbors: 

𝐹cohesion,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑘𝑐(𝑝avg,𝑖 − 𝑝𝑖⃗⃗  ⃗), 

where 𝑘𝑐 is cohesion coefficient, which regulates the 

force of attraction; а 𝑝avg,𝑖 is the average position of 

neighbors, calculated as: 

𝑝avg,𝑖 =
1

|𝑁𝑖|
∑ 𝑝𝑗⃗⃗  ⃗𝑗∈𝑁𝑖

. 

This mechanism ensures that individual agents 

do not deviate excessively from their local group, 

thereby preserving the requisite local cohesion of the 

swarm. 

The subsequent critical vector is alignment, 

which ensures that the movement of drones within a 

local group is coordinated. This synchronization of 

trajectories has been shown to significantly 

contribute to the stability of the swarm as a whole 

dynamic system, thereby minimizing chaotic 

fluctuations in the trajectories of individual agents. 

      The alignment force directs the agent toward the 

average velocity vector of its neighbors: 

𝐹align,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑘𝑎(𝑣avg,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑣𝑖⃗⃗⃗  ), 

where 𝑘𝑎 is equalization factor, 𝑣𝑖⃗⃗⃗   is velocity vector 

of the current i-th drone and 𝑣avg,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the average 

velocity vector of neighbors, defined as: 

𝑣avg,𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
1

|𝑁𝑖|
∑ 𝑣𝑗⃗⃗⃗  

𝑗∈𝑁𝑖

, 

where 𝑣𝑗⃗⃗⃗   is this is the velocity vector of the 

neighbouring drone j. 

This enables drones to synchronize their 

movement directions, ensuring smooth transitions 

between zones and effectively avoiding collisions 

caused by unsynchronized movement. 

In order to impede both excessive expansion 

and fragmentation of the swarm at the global level, 

an additional vector is introduced. This vector is a 

link to the centroid (𝐹𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ). This force binds 

agents to the global center of mass (centroid) of the 

entire system, ensuring macroscopic cohesion: 

𝐹centroid,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑘𝑔(𝑝centroid⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑝𝑖⃗⃗  ⃗), 

where 𝑘𝑔  is centripetal force and 𝑝centroid  is 

coordinates of the swarm center, calculated as: 

𝑝centroid⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
1

𝑁
∑ 𝑝𝑖⃗⃗  ⃗

𝑁
𝑖=1 , 

where N is total number of drones. This component 

is critical for maintaining swarm integrity even 

under conditions of asymmetric agent distribution or 

global redirection maneuvers. 

All of the above components of social 

interaction – repulsion ( 𝐹repulsion
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ), cohesion 

( 𝐹cohesion
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ), alignment (𝐹align

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  and binding to the 

centroid (𝐹centroid
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) – integrate into a single aggregate 

vector of social power: 

𝐹social,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐹repulsion,𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐹cohesion,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐹align, 𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐹centroid,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

This resulting vector 𝐹social,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   serves as the basis 

for calculating the final direction of the drone's 

movement. 

MULTI-CRITERIA DIRECTION 

SELECTION 

Local behavior constitutes the foundation for 

each drone's unique dynamics, thereby ensuring the 

flexibility and stability of the swarm in its entirety. 

At this level, each agent possesses a map of the 

territory, including information regarding scanned 

and unscanned areas. Concurrently, data pertaining 

to its own status contributes to the decision-making 

process. 

The fundamental objective is to harmonize 

adherence to social norms with one’s personal 

aspirations, namely, the exploration of uncharted 

territory. The drone’s navigation strategy entails the 

pursuit of areas that have not been previously 

scanned, while concurrently evading excessive 

regularity, a tactic that facilitates more equitable 

coverage of the territory. 

In order to implement local exploration, it is 

necessary for the drone to possess a mechanism that 

enables it to select its direction of movement not 

only randomly, but also taking into account the 

value of specific areas for exploration. In essence, 

even in situations involving chaotic movement, a 

discernible “rationality” emerges. The agent exhibits 

a propensity to maneuver towards areas where it can 

maximally contribute to the coverage of the 

territory, while eschewing superfluous alterations in 

course and the repetition of scanning the same 

regions. 

For this purpose, the attractiveness function 

𝑆(𝑎) is calculated for each possible deflection angle 

α: 

𝑆(𝑎) = 𝐸(𝑎) ⋅ (1 + γ𝐷(𝑎)) ⋅ 𝐻(𝑎), 

where 𝐸(𝑎) is assessment of the potential novelty of 

the area, taking into account the number of 

unscanned cells in the selected direction; 𝐷(𝑎) is the 
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distance factor to the target, which encourages the 

drone to move to more remote areas and prevents 

excessive concentration of agents within already 

explored boundaries; 𝐻(𝑎)  is a bonus of stability, 

which reduces the likelihood of sudden changes in 

direction and makes the trajectory smoother; 𝛾  is 

weight coefficient that determines the significance 

of the distance factor. 

Following the calculation of 𝑆(𝑎) values for all 

candidates, the direction is selected at random from 

the top 80 % of options. This decision enables the 

synthesis of a deterministic emphasis on innovation 

with an element of randomness. 

Consequently, the drone does not invariably 

select the optimal direction in the strict sense, but 

rather generates a movement that is adequately 

directed to circumvent superfluous repetitions, while 

simultaneously being sufficiently random to avert 

the consequences of symmetry and mass 

accumulation. 

The direction that proves successful is denoted 

by a vector 𝑑𝑒𝑥𝑝𝑙𝑜𝑟𝑒,i
̂ . The formation of the agent’s 

local movement vector 𝑉𝑙𝑜𝑐𝑎𝑙,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ entails the integration 

of individual objectives (i.e., exploration) and 

collective constraints (i.e., social forces): 

𝑉𝑙𝑜𝑐𝑎𝑙,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  𝛽 ⋅ 𝑑𝑒𝑥𝑝𝑙𝑜𝑟𝑒,𝑖

̂ + (1 − β) ⋅ 𝐹𝑠𝑜𝑐𝑖𝑎𝑙,𝑖
̂ , 

where 𝑑𝑒𝑥𝑝𝑙𝑜𝑟𝑒,𝑖
̂  is normalized local exploration 

vector; 𝐹𝑠𝑜𝑐𝑖𝑎𝑙,𝑖
̂  is normalized total vector of social 

power; 𝛽ϵ[0, 1]  is the balance between individual 

exploration and social harmony. 

The vector described above 𝑉𝑙𝑜𝑐𝑎𝑙,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ defines the 

basic movement of the drone in normal mode. 

However, to avoid “local minima”, there are 

exception mechanisms that can temporarily override 

this movement. They operate on two levels. 

ANTI-STAGNATION MECHANISMS OF 

AGENTS 

The fundamental compromise between 

exploration and exploitation is central to the 

execution of autonomous environment exploration 

tasks utilizing swarm complexes. The employment 

of controlled chaotic motion facilitates the 

maximization of territory coverage, a consequence 

of the stochastic nature of trajectories. However, this 

approach gives rise to the issue of local minima, or 

“local minima”. Agents may become entrapped 

within configuration spaces, such as already 

explored areas, ravines, and enclosed spaces. In 

these environments, their chaotic movement does 

not result in the discovery of new areas; rather, it 

leads only to the repetition of scanning already 

known areas. 

One proposed solution to this problem is the 

implementation of a two-level anti-stagnation 

system that functions at the level of individual 

agents (micro level) and at the level of the entire 

swarm (macro level). This approach would generate 

a synthetic effect and ensure the robustness of the 

system. 

To circumvent stagnation at the micro level, 

each agent is endowed with the capacity for self-

diagnosis of its own effectiveness. The basis of this 

mechanism, termed per-drone stuck-detection, is 

continuous monitoring of the dynamics of its own 

movement. 

To quantitatively assess movement 

performance, the drone’s position changes over the 

last 𝑇𝑠  steps are recorded and the relative 

displacement 𝛥𝑝(𝑡)is calculated: 

Δ𝑝(𝑡) =
1

𝑇𝑠
∑|

𝑇𝑠

𝑖=1

𝑝(𝑡 − 𝑖) − 𝑝(𝑡 − 𝑖 − 1)|, 

where: 𝑝(𝑡) is drone coordinates at a given moment 

in time t; 𝑇𝑠  is depth of the time horizon of the 

analysis. 

If 𝛥𝑝(𝑡) < 𝜖𝑠, where 𝜖𝑠 is the minimum change 

for classifying movement as effective, quantified as 

the number of unique grid cells visited by the agent 

(set to 4 cells). If this condition is met, the agent is 

considered “stuck” and activates the adaptive 

angular correction mechanism: 

𝑎new = 𝑎current + 𝜃𝑠 ⋅ 𝑅(−1,1), 

where 𝑎new is the resulting angle of movement that 

the drone will take in the next step to exit the state of 

stagnation; 𝑎current  is the angle at which the drone 

was moving until the protocol was activated; 𝜃𝑠  is 

maximum turning angle for escaping the trap; 

𝑅(−1,1) is random value within the range [−1,1]. 
This mechanism enables the drone to adaptively 

adjust its trajectory, thereby reducing the probability 

of becoming immobilized while preserving a state of 

controlled chaos. It is also noteworthy that the 

system does not entirely discard prior experience 

when utilizing the current direction angle; rather, it 

makes corrections to it. 

The primary benefit of this approach is the 

rejection of deterministic maneuvers. Should the 

system invariably respond to stagnation in a uniform 

manner, there would be a risk of falling into yet 

another, more complex cyclical trap. The 

incorporation of a stochastic factor 𝑅(−1,1) ensures 

that each attempt to escape the trap is unique. 
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Consequently, rather than executing the same 

command in a mechanistic manner, the drone 

engages in a process of improvisation, thereby 

significantly enhancing its probability of identifying 

a trajectory that leads to previously unexplored 

territory. 

Therefore, when the drone detects individual 

stagnation (𝛥𝑝(𝑡) < 𝜖(𝑠)), its desired direction 𝑎new 

is generated randomly, disregarding the base vector 

𝑉local, i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  at that particular moment. This novel 

approach subsequently becomes the prevailing 

direction of movement. 

At the swarm level, a macro anti-stagnation 

strategy is implemented, which is initiated when the 

majority of agents remain in already scanned areas. 

At this level, the overall state of the swarm is 

analyzed by introducing an integral indicator, the 

swarm stagnation coefficient (𝐽).  
       This coefficient is a quantitative metric of the 

“health” of the entire system and is calculated using 

the following formula: 

𝐽 =
1

𝑁
∑1{Δ𝑝𝑖<𝜖𝑠},

𝑁

𝑖=1

 

where 𝑁 is the number of drones in the swarm; 

1{Δ𝑝𝑖<𝜖𝑠}  is stagnation indicator (1  if the drone is 

stationary, 0  otherwise); 𝜖𝑠  is stagnation sensitivity 

threshold (or minimum effective displacement 

threshold). 

If 𝐽 > 𝐽th, where 𝐽th is the threshold value, this 

signals that local efforts are insufficient and the 

swarm needs global coordination. 

In this case, a global redirection vector (𝑉global
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

is formed for the swarm: 

𝑉global
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝑤𝑖

𝑁

𝑖=1

 𝑑𝑖, 

where 𝑑𝑖 is direction to the nearest unscanned areas 

for the i-th drone; 𝑤𝑖  is weight coefficient, which 

depends on the local “novelty” of the territory. 

The final step is to integrate both control levels 

into a single hybrid model. The motion vector of the 

i-th drone is defined as the weighted sum of its local 

motion vector 𝑉local, i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the global swarm 

redirection vector (𝑉global
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗): 

𝑉final,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = α𝑉local, i

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (1 − α)𝑉global
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 

where 𝛼 ∈ [0,1] is a coefficient that determines the 

balance between local exploration and global 

redirection. 

Upon activation of the global mechanism, the 

desired direction 𝑎new  is strictly derived from the 

resulting hybrid vector 𝑉final,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . This vector possesses 

the highest priority within the decision-making 

hierarchy, effectively overriding and suppressing 

both the baseline local movement vector 𝑉local,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

any stochastic correction angles 𝑎new. generated by 

individual anti-jamming protocols. By enforcing 

such a centralized redirection, the system ensures 

that the collective behavior temporarily supersedes 

individual autonomy to resolve critical deadlocks. 

This hierarchical approach is specifically 

designed to address the challenges posed by 

simultaneous individual and collective stagnation, 

thereby facilitating the continuous expansion of the 

explored territory and ensuring the optimal 

distribution of computational and energetic 

resources within the multi-agent system. 

DOUBLE COURSE CONDITIONING AND 

STABILIZATION 

Double course conditioning represents a pivotal 

element of the swarm stabilization system, aiming to 

maintain a balance between the inherently chaotic 

nature of local exploration and the requisite 

smoothness of drone trajectories. In the course of 

exploring the territory, each agent perpetually 

adjusts its direction of movement in response to 

local factors (randomness, social forces, obstacles). 

These factors can result in variations in course, 

substantial turbulence, and energy dissipation. In 

order to circumvent the aforementioned effects, the 

proposed method implements a two-tiered 

conditioning system that incorporates inertial 

smoothing and adaptive stabilization. 

In the initial phase of stabilization, the current 

direction of movement is smoothed using a first-

order filter. This filter is designed to simulate the 

effect of inertia.  

The new course angle 𝑎𝑡  is determined as the 

weighted sum of the previous angle 𝑎𝑡−1  and the 

new desired direction 𝑎𝑛𝑒𝑤: 

𝑎𝑡  =  λ𝑎𝑡−1  +  (1 −  λ)𝑎𝑛𝑒𝑤, 

where 𝑎𝑡−1  is angle of movement in the previous 

step; 𝑎𝑛𝑒𝑤  is desired direction (angle) obtained at 

the previous stage, i.e., the angle from 𝑉local, i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑉final,i

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

or the correction anew ; 𝜆 ∈ [0, 1]  is inertial 

smoothing coefficient. 

The value 𝜆  determines the degree of 

“memory” of the drone. Primary conditioning acts as 

a low-frequency filter that dampens sudden changes 

in direction.  
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The second level of stabilization incorporates 

not only its own previous course but also the average 

orientation of the local environment. The drone 

adjusts its direction in accordance with the collective 

movement of its neighbors, thereby reducing chaotic 

fluctuations within the microgroup.  

Adaptive stabilization can be expressed as 

follows: 

𝑎𝑡 = 𝑎𝑡−1 + 𝜇(𝑎𝑁𝑖
̅̅ ̅̅ −  𝑎𝑡), 

where 𝑎𝑁𝑖
 is average direction of movement 

(average angle) of neighbors of drone i; 𝜇 ∈ [0, 1] is 

stabilization coefficient. 

The parameter μ  regulates the degree of 

influence of social orientation. Adaptive 

stabilization provides dynamic alignment of 

directions within a local group. 

Double conditioning reduces the dispersion of 

direction angles within a group of drones without 

reducing it to zero, which preserves the necessary 

level of stochasticity.  

Formally, if we denote the root mean square 

deviation of directions as 𝜎𝑎
2, then the following is 

true: 

𝜎𝑎
2  =  (1 − λ − μ) σ𝑎

2 , 

where reduced 𝜎𝑎
2  means stabilization, but not 

complete synchronization. The method maintains a 

balance between stability of movement and chaotic 

variability necessary for effective exploration. 

It is important to note that adaptive stabilization 

and alignment do not duplicate each other. 

Alignment is a vector force that influences the 

choice of the desired direction (it is part of 𝐹social,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). 

Stabilization is a scalar filter that smooths the 

selected angle, 𝑎𝑡 , to make the movement more 

coherent and physically smoother. Alignment and 

stabilisation operate at different stages of the 

computational process: alignment influences the 

initial direction selection, while stabilisation refines 

the final angular output. 

COMBINED STABILIZED CONTROL 

Combined stabilized control represents the 

culminating stage of the drone’s computational 

cycle, wherein all previously delineated mechanisms 

comprising social forces, local exploration, anti-

stagnation protocols, and conditioning are integrated 

into a unified, physically executable movement  

(Fig. 1). 

The decision-making process is characterized 

by a clear prioritization of objectives. At each step, 

the method first determines the “desired direction” 

(𝑎𝑛𝑒𝑤) based on the current state of the agent. In the 

event that the swarm is in a state of global stagnation 

(𝐽 > 𝐽th), the desired direction is calculated from the 

hybrid vector 𝑉final,i
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , which has the highest priority. 

In the event that only individual stagnation is active 

(𝛥𝑝(𝑡) < 𝜖(𝑠), )  the desired direction 𝑎𝑛𝑒𝑤  is 

generated on a stochastic basis to facilitate the 

process of escaping the trap. In all other ordinary 

cases, the desired direction 𝑎𝑛𝑒𝑤 is calculated from 

the base vector 𝑉𝑙𝑜𝑐𝑎𝑙,𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  This vector combines 

individual exploration and total social force. 

The resulting desired direction 𝑎𝑛𝑒𝑤, 
irrespective of its provenance, is not implemented 

immediately. Conversely, the information is 

transmitted to the input of the “Double 

Conditioning” system, which functions as a final 

filter to ensure smooth and coherent movement. 

Initially, the angle undergoes inertial smoothing 

(first-order filter), which prevents sharp fluctuations, 

according to the formula: 

𝑎𝑡  =  λ𝑎𝑡−1  + (1 −  λ)𝑎𝑛𝑒𝑤. 

Then, the smoothed angle at is further adjusted 

relative to the average direction of neighbors (𝑎𝑁𝑖
), 

which enhances the local consistency of the swarm:  

𝑎𝑡 = 𝑎𝑡 + μ(𝑎𝑁𝑖
̅̅ ̅̅ −  𝑎𝑡−1). 

The final adjusted angle constitutes the drone's 

final target direction. The subsequent physical 

movement of the agent is executed in the 

aforementioned direction, contingent upon genuine 

physical limitations such as maximum turning 

velocity and responsive control accuracy. The 

method is designed to maintain a stable equilibrium 

by preserving the chaotic variability necessary for 

effective exploration while ensuring that movement 

remains smooth, stable, and fully consistent with the 

coordinated actions of neighboring agents. 

COMPUTATIONAL COMPLEXITY 

Understanding the computational complexity of 

swarm algorithms is crucial for assessing their 

scalability in larger deployments. In the case of the 

chaotic method, the most computationally expensive 

operation at each time step is neighbor detection, 

whereby each drone scans all 𝑛  agents to identify 

those within communication range. This results in 

𝑂(𝑛) complexity per agent. Social force calculations 

are then repeated for 𝑘 neighbours, resulting in 𝑂(𝑘) 

operations where 𝑘 ≤  𝑛. Direction selection using 

the attraction function selects a fixed number of 

candidates (typically 10), resulting in constant 

complexity of 𝑂(1). Periodic scanning of the grid 

for unscanned areas requires 𝑂(𝑊 ×  𝐻) operations  
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Fig. 1. Flowchart of the Chaotic-Deterministic swarm movement method 
Source: compiled by the authors 

and is performed at 1.5-second intervals. Summing 

these components, the complexity per step for a 

single drone is 𝑂(𝑛) and for the entire swarm it is 

𝑂(𝑛²) , since each of the 𝑛  drones perform 𝑂(𝑛) 

operations. Over the course of a mission requiring 𝑆 

time steps (approximately 351 iterations in 35.13 

seconds), the total complexity is 𝑂(𝑛² ×  𝑆) . The 

deterministic method exhibits similar 𝑂(𝑛²) 

complexity, but with reduced constant factors.  

Thus, both methods scale quadratically with 

swarm size due to pairwise neighbor detection. 

However, spatial indexing structures (k-d trees and 

grid-based hashing) can reduce neighbor detection to 

𝑂(𝑛 𝑙𝑜𝑔 𝑛)  or 𝑂(𝑛) , enabling scalability to 

hundreds of agents. 

For moderate-sized swarms (n ≤ 50), trajectory 

optimization is the most effective way to improve 

efficiency. As the size of the swarm increases, the 

quadratic increase in complexity requires the 

algorithms to be optimized, specifically by using 

spatial indexing for neighbor detection and 

boundary-based tracking to replace 𝑂(𝑊 ×  𝐻) grid 

scanning. This is necessary in order to maintain real-

time performance when deploying more than 50-100 

agents. 

EXPERIMENTS 

A series of computational simulations were 

conducted for the purpose of validating and 

empirically evaluating the performance of the 

proposed chaotic method. The implementation of all 

calculations, modeling, and analysis of results was 

conducted using the Python 3.13.7 programming 

language. Essential core libraries, such as numpy for 

numerical array operations and shapely for handling 

polygonal boundaries and spatial analysis, were 

utilized. The simulation was containerized using a 

Docker environment. 

The model was implemented on a territory 

defined as a complex irregular polygon, which 

simulates realistic conditions with uneven 

boundaries. The specific scan area boundary was 

defined by an irregular 5-vertex contour. The 

simulation space was discretized into a grid of 

34×23 cells (782 total cells), with the grid cell size 

set to 20 units. 

Specific thresholds were implemented to 

govern the anti-stagnation and movement control 

mechanisms. For classifying local stagnation, the 

drone was considered stuck if it visited no more than 

3 unique cells. The escape protocol was triggered 

only after 3 consecutive detections. Furthermore, the 

maximum turn rate was constrained to per step, and 

a minimum turn threshold of was enforced to 

stabilize the movement. 

In consideration of the high sensitivity 

exhibited by chaotic systems to initial conditions and 

control parameters (Table 1), a preliminary 

optimization stage was initiated prior to conducting 

the primary experiments. The objective of this stage 

was to automatically determine the optimal set of 

hyperparameters that provides the best balance 

between speed and coverage quality. This process is 

an iterative pipeline that repeatedly executes a full 

simulation cycle. Subsequent to each iteration, the 

“fitness” of the configuration is appraised. 

According to the findings of this evaluation, 

stochastic mutations are applied to the parameters, 

and the process is repeated. 

The key coefficients governing the three main 

aspects of swarm behavior were optimized: 

1) social interactions: cohesion strength and 

alignment strength; 
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Table 1. Parameters and their range 

Parameter Range Sensitivity 

𝑘𝑐 [0.5, 10.0] Very high 

𝑘𝑔 [0.2, 5.0] High 

𝑘𝑎 [0.0, 3.0] Average 

𝐽𝑡ℎ [0.1, 0.9] High 

𝜃𝑠 [5.0, 90.0] High 

𝜆 [0.1, 1.0] Average 

𝜇 [0.1, 1.0] High 

𝐻𝛼 [0.0, 0.5] Low 

ϵs [1.0, 10.0] High 

Source: Compiled by authors 

2) the exploration aggressiveness is determined 

by the priority coefficient of unexplored areas; 

3) the concept of anti-stagnation sensitivity 

pertains to the thresholds that determine the 

activation of both individual and global escape 

mechanisms. 

A scan was considered successful if it achieved 

a coverage level of at least 95 %. Following the 

optimization phase, the optimal set of 

hyperparameters was documented and used to run 

the main simulations.  

The final coefficient values obtained from this 

convergence process reflect the adaptation of swarm 

kinematics to the polygon topology. Specifically, to 

ensure a balance between maneuverability and 

trajectory smoothness, the inertial smoothing and 

adaptive stabilization coefficients were fixed at 𝜆 =
 0.4  and 𝜇 =  0.3 , respectively. This allows the 

system to act as a low-pass filter, cutting off 

stochastic decision “noise”, while the maximum turn 

angle 𝜃𝑠 was limited to 30° to prevent oscillations. 

Regarding the anti-stagnation settings, the 

individual stagnation threshold (𝜖𝑠) was defined at 4 

unique cells, minimizing false positives during dense 

maneuvering. The global threshold 𝐽𝑡ℎ  was set at 

0.45, activating collective redirect only when nearly 

half the swarm becomes unproductive. The critical 

balance between exploration and integrity was 

achieved by setting a high priority for unexplored 

zones (2.03), compensated by enhanced cohesion 

( 𝑘𝑐 = 3.5 ), which prevents group fragmentation 

during rapid expansion. 

Each experimental trial began with the swarm 

selecting a random initial trajectory to ensure 

unbiased starting conditions. During mission 

execution, the swarm navigated the territory 

autonomously, systematically covering designated 

areas. Once the coverage level in the current area 

reached the set threshold, the swarm proceeded to 

the nearest unscanned area. To assess relative 

effectiveness and establish performance 

benchmarks, the results of the chaotic approach were 

compared with those of an alternative, deterministic 

method: Waypoint Collision Avoidance [8]. 

RESULTS 

During the experiment, 20 simulation launches 

were performed for each method. The two 

approaches exhibited a high degree of reliability, 

attaining a target coverage rate of ≥ 95 % in all 

cases. It is noteworthy that no catastrophic failures 

were recorded, thereby validating the efficacy of 

both approaches for critical missions. 

The primary distinctions were observed in the 

areas of coverage stability and time efficiency. 

When analyzing coverage efficiency, the Chaotic 

method demonstrated a marginally higher mean 

coverage percentage (96.12 % ± 0.88 %) in 

comparison to the Waypoint method (95.46 % ± 

0.24 %). However, this 0.66 % advantage is 

accompanied by a substantial decline in stability.  

The Chaotic approach demonstrated 3.6 times 

higher variability (coefficient of variation 0.91 % vs. 

0.25 %) and a wider range of results (95.20 % - 

97.93 %) compared to the deterministic method 

(95.20 % - 95.87 %). This underscores the inherently 

probabilistic and exploratory nature of chaotic 

motion, in contrast to the highly predictable 

outcomes associated with optimized waypoints. 

The most significant discrepancy was identified 

in time efficiency. The Waypoint method 

demonstrated a 2.5-fold increase in efficiency, 

completing the mission in an average of 13.82 

seconds, while the Chaotic method required an 

average of 35.13 seconds. This discrepancy is also 

evident in the “Coverage per Minute” metric, where 

the deterministic, optimization-based (CRO) 

approach exhibited 2.5 times higher throughput 

(4.18 % per minute vs. 1.66 %). 

The experiment yielded a discernible trade-off: 

the chaotic method exhibited marginally higher 

mean coverage (96.12 %) but was accompanied by 

increased unpredictability and a substantially 

prolonged execution time. The method with 

predetermined paths, in turn, guarantees high speed 

and exceptional stability of results, which is better 

for time-critical operations. 

CONCLUSIONS 

This paper explores the technological 

framework for reconfiguring UAV swarm 

complexes. The reconfiguration process is informed 

by a social interaction model and a multilevel 

chaotic exploration method. These components have 
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become pivotal in ensuring adaptability and 

comprehensive coverage of the territory. The 

proposed model of social forces provides 

fundamental dynamic interactions between agents – 

repulsion, cohesion, alignment, and centroid binding 

– that allow them to form coordinated collective 

behavior patterns. 

The chaotic method functions as a mechanism 

of stochastic exploration, guided by the 

attractiveness function. This phenomenon enables 

drones to make informed decisions regarding their 

trajectory, prioritizing exploration of unexplored 

regions and mitigating the effects of symmetry and 

mass accumulation. 

A two-level system of counteracting stagnation 

(micro and macro levels) played a special role, 

ensuring that agents could escape from “local traps”. 

This, in conjunction with a zonal approach to 

scanning, facilitated the assurance of comprehensive 

and systematic coverage of the complex terrain. 

The simulation results confirmed the high 

reliability of the proposed technology. In a series of 

twenty experimental trials, the method exhibited a 

100 % success rate in attaining a target coverage of 

≥ 95 %. A comparison of the chaotic approach with 

the deterministic method (Waypoint Collision 

Avoidance) reveals that the former achieved a higher 

average coverage (96.12 %). 

Conversely, this enhanced precision comes at 

the cost of temporal efficiency, as evidenced by the 

observation that the average mission duration was 

35.13 seconds, which is 2.5 times longer than the 

optimized deterministic approach (13.82 seconds). A 

considerably higher variability of results was also 

documented (coefficient of variation 0.91 % vs. 0.25 

%), which is an inherent property of stochastic 

exploration, in contrast to the high predictability of 

optimized waypoints. 

The computational complexity analysis 

revealed both methods scale quadratically with 

swarm size (𝑂(𝑛²)  per timestep due to neighbor 

detection), with the primary bottleneck being naive 

pairwise distance calculations. Spatial indexing 

techniques (k-d trees, quadtrees) can reduce 

complexity to O (n log n), enabling practical scaling 

to 50-100 drones. The critical scalability threshold 

for unoptimized implementations is approximately n 

≈ 30-40 drones on standard hardware. 

The experimental findings establish clear 

selection criteria for deployment scenarios. The 

chaotic method is optimal for coverage-critical 

missions in irregular complex territories where 

thoroughness outweighs speed (search-and-rescue, 

radiation mapping, unknown environments), 

particularly with small-to-moderate swarms (n ≤ 20). 

However, its limitations include 2.5 × longer 

mission duration, 3.6 × higher result variability, and 

13 sensitive tunable parameters requiring 

optimization. Conversely, the deterministic approach 

excels in time-critical operations (industrial 

accidents, tactical reconnaissance), predictable 

mapped environments, and large swarms (n > 50) 

where computational simplicity is essential, though 

it suffers from adaptability deficits in dynamic 

conditions and systematic coverage gaps in irregular 

geometries. 

In the future, the technology has significant 

potential for development through the possible 

introduction of reinforcement learning methods [23], 

[24], [25]. This will enable agents to acquire 

knowledge from prior experiences, adapt their 

behavior to novel conditions, and automatically 

enhance their strategies based on feedback. The 

integration of social interaction mechanisms, chaotic 

attractors, and machine learning is projected to 

establish the foundation for a completely adaptive, 

self-learning swarm that is capable of functioning in 

intricate and evolving environments.
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АНОТАЦІЯ 

У даному дослідженні пропонується гібридний хаотично-детермінований метод управління роєм безпілотних 

літальних апаратів (БПЛА), що інтегрує соціальні взаємодії, такі як відокремлення, згуртованість, вирівнювання та 

зв'язування, із стратегією пошуку, що базується на притяганні. Дворівнева антистагнаційна система працює на рівні 

окремих агентів («мікро») та колективного рою («макро») для запобігання локальним мінімумам та підтримання 

контрольованого згладжування траєкторії. Метод використовує подвійне кондиціонування курсу для збалансування 

плавних траєкторій зі стохастичним дослідженням. Тим часом функція привабливості кількісно оцінює потенційні 

напрямки руху на основі новизни території, факторів відстані та стабільності курсу. Сили соціальної взаємодії – 

відштовхування, згуртованість, вирівнювання та зв'язування центроїдів – забезпечують стабільність рою та уникнення 

зіткнень протягом виконання місії. 

Порівняльна експериментальна валідація була проведена шляхом багаторазового запуску симуляцій для кожного 

методу на нерегулярних багатокутних територіях. Як хаотичний, так і детермінований підходи на основі контрольних точок 

продемонстрували виняткову надійність місії, досягнувши порогового значення покриття цілі у всіх випробуваннях, тим 

самим підтвердивши повний успіх. З точки зору ефективності покриття, хаотичний метод досяг вищої середньої повноти 

території в порівнянні з детермінованим підходом, що є помітним поліпшенням. Однак ця підвищена точність покриття 

супроводжується значними витратами обчислювального часу: хаотичний метод вимагав значно довшої середньої тривалості 

місії в порівнянні з оптимізованим методом контрольних точок. Хаотичний підхід також продемонстрував значно вищу 
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мінливість результатів, що відображає стохастичну природу методів, заснованих на дослідженні. Таким чином, хоча 

хаотичний алгоритм демонструє вищу ефективність покриття, він має нижчу часову ефективність порівняно з 

детермінованою базовою лінією. 

Ці висновки кількісно оцінюють фундаментальний компроміс між ретельним дослідженням та ефективністю за часом 

в операціях з використанням автономних безпілотних літальних апаратів (БПЛА), надаючи емпіричні докази для прийняття  

критично важливих рішень щодо розгортання. Результати свідчать, що хаотичні методи найкраще підходять для сценаріїв, в 

яких пріоритетом є всебічне покриття та адаптивність, таких як пошуково-рятувальні операції, де невиявлені жертви 

можуть стати критичною помилкою, тоді як детерміновані підходи є більш ефективними в місіях, де час має вирішальне 

значення, а середовище є передбачуваним. Надійність обох методологій у поєднанні з кількісним вираженням відмінностей 

у продуктивності дозволяє вибирати методи на основі доказів, відповідно до конкретних операційних вимог, обмежень місії 

та прийнятних параметрів компромісу між ризиком, часом і точністю. 
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