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ABSTRACT

This study proposes a hybrid chaotic-deterministic method for controlling a swarm of unmanned aerial vehicles, integrating
social interactions such as separation, cohesion, alignment, and binding with an attraction-driven search strategy. The two-level anti-
stagnation system operates at the level of individual agents (‘micro’) and the collective swarm (‘macro’) to prevent local minima and
maintain controlled trajectory smoothing. The method uses double course conditioning to balance smooth trajectories with stochastic
exploration. Meanwhile, an attractiveness function evaluates potential movement directions quantitatively based on territory novelty,
distance factors and course stability. Social interaction forces — repulsion, cohesion, alignment and centroid binding — ensure swarm
stability and collision avoidance throughout mission execution.

Comparative experimental validation was conducted through multiple simulation launches for each method in irregular
polygonal territories. Both the chaotic and deterministic waypoint-based approaches demonstrated exceptional mission reliability,
achieving a target coverage threshold in all trials, thereby confirming complete success rates. In terms of coverage efficiency, the
chaotic method achieved superior average territory completeness compared to the deterministic approach, representing a measurable
improvement. However, this enhanced coverage precision comes at a significant computational time cost: the chaotic method required
substantially longer average mission duration compared to the optimized waypoint method. The chaotic approach also exhibited
notably higher variability in results, reflecting the inherently stochastic nature of exploration-based methods. Thus, while the chaotic
method demonstrates superior coverage efficiency, it exhibits inferior time efficiency compared to the deterministic baseline.

These findings quantify the fundamental trade-off between thorough exploration and time efficiency in unmanned aerial vehicle
swarm operations, providing empirical evidence to inform mission-critical deployment decisions. The results suggest that chaotic
methods are best suited to scenarios that prioritize comprehensive coverage and adaptability, such as search and rescue operations
where undetected casualties would be a critical failure, while deterministic approaches are more effective in time-sensitive missions
with predictable environments. The reliability of both methodologies, combined with the quantification of performance differences,
enables the selection of methods based on evidence, aligned with specific operational requirements, mission constraints and acceptable
risk-time-accuracy trade-off parameters.
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INTRODUCTION In light of the substantial consequences that
emergencies can entail, the deployment of a group of
drones, or a swarm of drones, is frequently
employed. The utilization of unmanned aerial
vehicle swarms in emergency situations has
exhibited substantial practical advantages in a
multitude of real-world scenarios, thereby

The development of territory scanning
technologies has been and remains relevant to this
day. In the event of a diverse range of emergencies,
including but not limited to floods, earthquakes and
wars, there is often a necessity to undertake the
§earch for victims or the assessment of damage. _The substantiating the imperative for advanced
mvolvemgnt .o.f huma_m operatqrs in such operations - tsnomous coordination algorithms.
poses a significant risk to their personal safety, as The 2011 Fukushima nuclear disaster
the aforementioned areas are often inaccessible and  gemonstrated the limitations of human intervention
difficult to reach. The utilization of unmanned aerial i hazardous environments, where radiation

vehicles (UAVs) for scanning such areas has been @ exposure prevented direct assessment of reactor

practice for many years [1], [2]. damage [3].
Unmanned aerial vehicle (UAV) systems have
© Kozlov M., Malakhov E., Shvets Y., 2025 been demonstrated to provide significant benefits in
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the realm of aerial reconnaissance, enabling
engineers to formulate effective recovery strategies
without compromising the safety of human life
[4], [5].

However, the initial deployment of UAVs
revealed coordination issues when multiple aircraft
operated simultaneously in confined airspace,
emphasizing the necessity for enhanced collision
avoidance and area coverage algorithms [6].

During the 2019-2020 bushfire crisis in
Australia, coordinated swarms of UAVs proved
essential for monitoring bushfires and searching for
victims in smoke-filled areas [7]. Conventional
single-UAV operations were plagued by limited
coverage and protracted mission durations, while the
uncoordinated deployment of multiple UAVs gave
rise to excessive scanning and communication
interference.

The application of coordinated UAV swarms
can be extended to multiple disaster scenarios with
varying operational requirements. For example, in
urban search and rescue operations following
earthquakes, swarm systems must navigate complex
three-dimensional environments comprising
collapsed structures, unstable rubble and narrow
passages, which would impede the operations of
individual UAVs. The Fukushima incident further
demonstrated the necessity for radiation-resistant
autonomous  systems that can operate in
environments where human presence poses fatal
risks. Swarm coordination enables a comprehensive
assessment of damage across multiple reactor sites
simultaneously [3], [4]. Avalanche rescue operations
in mountainous regions present unique temporal and
environmental constraints. Buried victims face
critical survival windows, so there is a need for rapid
area coverage capabilities, which only coordinated
swarm systems can provide. This is because the
terrain is characterized by unstable snow conditions,
limited accessibility and complex human recognition
challenges. Maritime rescue operations present
further challenges. Swarms must contend with
dynamic sea conditions and limited communication
range over water. They must also provide rapid area
coverage in  time-critical  scenarios  where
hypothermia or drowning threatens survival [1], [7].

These operational limitations underscored the
critical importance of intelligent swarm coordination
algorithms that could optimize coverage while
minimizing the risks of overlap and collision [8], [9].

TECHNICAL CHALLENGES IN SEARCH
OPERATIONS

Search and rescue operations present distinctive
algorithmic challenges that differentiate them from

conventional UAV applications [9]. In scenarios
where time is of the essence, it is imperative to
swiftly cover the area while maintaining adequate
resolution to detect casualties. The heterogeneous
nature of emergency situations, including urban
rubble, forest canopies, and flooded areas,
necessitates the development of adaptive motion
algorithms capable of adjusting to varying visibility
and obstacle density conditions [11].

Contemporary  deterministic
predicated on waypoints, while engendering
predictable coverage patterns, frequently prove
inadequate for dynamic emergency scenarios,
wherein the optimal routes cannot be ascertained in
advance. It is evident that obstacles in the
environment, areas of no communication, and
equipment malfunctions require real-time adaptation
capabilities that traditional fixed-route algorithms
are incapable of providing [1]. Moreover, the
necessity for redundant coverage in critical areas,
with a view to averting potential casualties, appears
to be at odds with the pursuit of efficiency
optimization in deterministic systems.

Energy management constitutes a further
critical constraint in emergency operations, wherein
UAV swarms must maximize uptime whilst
ensuring sufficient battery reserve to return to base.
The issue is further exacerbated in heterogeneous
swarms comprising diverse drone types, each
exhibiting distinct energy profiles, communication
ranges, and sensor capabilities [12]. The
coordination of such heterogeneous systems
necessitates the implementation of sophisticated
algorithms that can dynamically balance the
objectives of coverage with the constraints of energy
across the entire swarm.

Real-world operational limitations encompass
multiple technical and environmental constraints that
challenge the effectiveness of autonomous swarms.
Poor visibility conditions, including smoke, fog, dust
and darkness, significantly degrade sensor
performance, compromising both obstacle detection
and victim identification capabilities [7], [12]. Urban
environments introduce dense obstacle fields
comprising vertical structures, power lines and
debris, necessitating sophisticated three-dimensional
collision avoidance systems that go beyond simple
waypoint navigation [10]. Terrain complexity
further compounds operational challenges: forest
canopies obscure ground-level casualties; flooded
areas cause GPS signal degradation and
communication blackouts; and mountainous regions
generate unpredictable wind patterns that affect
flight stability [1], [12]. Damage to communication

methodologies,
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infrastructure during disasters creates intermittent
connectivity, forcing swarms to operate with
degraded coordination or autonomous decision-

making capabilities when centralized control
becomes unavailable [12]. These real-world
constraints  highlight the need for adaptive

algorithms that can maintain mission effectiveness
despite  partial  system  degradation  and
environmental unpredictability.

The intricacy of contemporary emergency
response scenarios necessitates the implementation
of UAV swarm algorithms that are capable of
performing multiple tasks in a simultaneous manner.
These include the comprehensive coverage of the
designated territory, collision avoidance, energy
optimization, and adaptation to environmental
changes in real time. Conventional methodologies
predicated on predefined waypoints or elementary
rule-based coordination prove inadequate in
addressing the dynamic and unpredictable nature of
emergency situations [13], [14].

The present study focuses on the chaotic motion
algorithm as a promising alternative to deterministic
approaches, offering improved adaptability and
coverage characteristics in unstructured
environments [8]. The algorithm in question draws
inspiration from the natural behavior of swarms and
chaos theory, thereby providing the requisite
flexibility to respond to emergencies while
maintaining the coordination necessary for effective
multi-agent operations.

The development of such sophisticated
algorithms represents a significant advancement in
the field of UAV swarm systems, paving the way for
the creation of fully autonomous systems capable of
independent operation in emergency scenarios. This
advancement is crucial in disaster situations where
rapid response is imperative for survival, as it has
been demonstrated that even a few minutes can
make a substantial difference in the outcome.

RELATED WORKS

The application of chaotic dynamics in rotor
robotics and unmanned aerial vehicle systems has
emerged as a promising paradigm for overcoming
the limitations of deterministic algorithms [15].
Conventional approaches rely on predefined
trajectories or rule-based coordination. In contrast,
chaotic algorithms exploit the characteristics
inherent in deterministic chaos, namely aperiodic
bounded behavior and extreme sensitivity to initial
conditions, in order to create more adaptive and
efficient exploration models. This section provides a
review of recent developments in chaotic swarm

algorithms,  analyzing  their  methodologies,
performance characteristics, and relevance to
autonomous territory scanning applications.

The primary challenge in the field of swarm
robotics pertains to the formulation of exploration
strategies for robots with constrained resources that
are devoid of advanced sensory, localization, or
computational capabilities [16], [17]. Conventional
methodologies, predicated on random wandering,
while exhibiting computational simplicity, are
encumbered by suboptimal  parameterization
requirements and constrained adaptability to
environmental variability. Recent studies have
demonstrated that chaotic dynamics and dynamics at
the edge of chaos can significantly enhance
exploration performance in such minimalistic
systems.

Sartorio et al. conducted a study into the use of
random Boolean networks (RBNSs) as controllers for
Kilobot swarms performing target search tasks.
RBNs are autonomous systems with discrete states
and discrete time, originally developed to model
gene regulation processes. These systems are
characterized by nodes with Boolean states, which
are connected by directed edges. The state of each
node is determined by a logical function that acts on
the input states of the nodes, thereby creating
complex nonlinear  dynamics. The  study
demonstrated that RBNs operating at the edge of
chaos — a transitional regime between orderly and
chaotic behavior — create research models that
outperform traditional Lévy-modulated correlated
random walks (LMCRWs).

The experimental methodology employed
realistic ~ simulations of Kilobot platforms,
incorporating individual variability in course
deviation and movement characteristics. This
heterogeneity, which is often considered problematic
in swarm systems, was explicitly exploited as a
useful feature rather than an artefact to be corrected.
The RBN of each robot was employed to regulate
the turn angles and step lengths of the robots by
extracting binary state templates from the network
and converting them into motion parameters. The
network evolved autonomously according to
synchronous update rules, and the resulting
dynamics determined the robot’s exploration
trajectory.

The performance evaluation was centered on
the average first-pass time, defined as the duration
for a robot to locate a randomly positioned target
within a confined circular arena. The findings
demonstrated that RBNs with suitable network sizes
(notably, N = 20 nodes) attained a search time of
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approximately 1300 seconds, in comparison to 988
seconds for the optimally parameterized LMCRW
baseline. However, the critical conclusion was not
only the equivalence of performance, but also the
relationship  between network dynamics and
exploration efficiency.

Quantitative analysis of chaotic properties
employed sensitivity to initial conditions as the
primary metric. The dynamic regime of each
controller was characterized by the introduction of
small perturbations to network states and the
subsequent measurement of the evolution of
Hamming distances over time. Networks that
exhibited positive sensitivity values demonstrated
divergence of perturbed trajectories, indicating
chaotic dynamics or dynamics on the edge of chaos.
Correlation analysis revealed a strong negative
correlation between sensitivity to perturbations and
first-pass time for networks with corresponding size
constraints. This suggests that higher chaotic
sensitivity corresponds to more efficient exploration.

Subsequent refinement using evolutionary
robotics techniques resulted in the development of
evolutionary Boolean networks (EBNSs), which
retained chaotic dynamics while optimizing
connection patterns and logical functions. A genetic
algorithm incorporating a tournament selection,
simulated binary crossover and polynomial mutation
was utilized to evolve populations of 40 networks
over 700 generations. The optimal EBN
configuration attained a first-pass duration of 913
seconds, representing a 7.6 % enhancement over
LMCRW, while preserving dynamics on the
periphery of chaos, characterized by A values
ranging from 0.2 to 0.4. This finding indicates that
evolutionary optimization does not necessitate the
compromise of advantageous chaotic properties to
attain performance enhancements.

Network activation patterns within the study
were analyzed, revealing different modes of behavior.
It was observed that networks with excessive step
length ranges (N > 28) generated trajectories that
exceeded the size of the arena, resulting in frequent
collisions with walls and degraded performance. This
limitation was addressed by evolution, which directed
such networks towards ordered modes (low A values)
that maintained smaller, more controllable step
lengths. Conversely, networks of an appropriate size
(N = 20-22) enabled evolution to exploit chaotic
dynamics fully, as maximum stride lengths remained
commensurate with the scale of the environment [18].

Whilst the focus of RBN-based approaches is
on minimalist local control,  bio-inspired
metaheuristic algorithms offer additional

opportunities for global trajectory optimization in
complex environments [19]. The present study
investigates the application of particle swarm
optimization (PSO), a technique inspired by the
collective behavior of flocks of birds, in the planning
of the trajectory of UAVs. However, classical PSO
implementations are susceptible to premature
convergence to local optima, slow convergence
rates, and sensitivity to parameter settings. These
constraints are particularly pronounced in high-
dimensional optimization problems with constraints
[20].

Chu et al. developed the Improved Chaotic-
VAINDIWPSO (IC-VAINDIWPSO) algorithm,
which integrates chaos theory into several
components of the PSO structure with a view to
overcoming the shortcomings identified in the
existing literature. This approach was tested on
three-dimensional trajectory planning for an
unmanned aerial vehicle in complex terrain with
multiple  cylindrical threat zones, requiring
simultaneous optimization of trajectory length,
threat avoidance, altitude constraints, and trajectory
smoothness. The algorithm introduces three main
innovations.

Firstly, improved nonlinear dynamic inertial
weights (INDIW) replace the standard linear decay
strategy.

Secondly, adaptive velocity control alters the
behavior of particle updates in accordance with
fitness evolution. In the event of an improvement in
a particle’s fitness between successive iterations, its
velocity is updated in accordance with standard PSO
equations, thus enabling it to continue moving in the
direction of promising regions. Conversely, when
fitness deteriorates, the particle retains its previous
velocity, thereby preventing counterproductive
changes in direction.

Thirdly, chaotic initialization employs logistic
maps to generate uniformly distributed initial
populations, as opposed to purely random
initialization. The initialization process involves the
generation of 1,000 candidate particles, the
evaluation of their fitness, and the selection of the
500 most fit individuals as the initial population.
This approach provides a more extensive overview
of the solution space and reduces initialization bias
towards suboptimal regions.

Furthermore, during the course of evolution,
when the rate of fitness change (FCR) falls below a
certain threshold and less than two-thirds of the
maximum number of iterations have elapsed, the
global best particle undergoes a chaotic mutation.
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This mechanism employs the ergodic properties
of chaos theory to circumvent local optima, thereby
progressively enhancing the search as it approaches
convergence.

The experimental validation employed a digital
terrain model of Christmas Island, Australia, with
Unmanned Aircraft Vehicle missions necessitating
navigation from initial to final coordinates,
circumventing cylindrical threat zones with
predetermined radii and safety margins. The cost
function integrated path length, penalties for
proximity to threats, altitude violations, and
smoothness metrics based on turn and climb angles.

A comparative analysis with the standard PSO
and an intermediate variant of VAINDIWPSO
(including only INDIW and speed disturbances)
revealed a significant improvement in performance.
In the seven-threat scenario, IC-VAINDIWPSO
achieved average fitness values of 5575.78, in
comparison to 7350.46 for PSO and 6704.68 for
VAINDIWPSO. Convergence occurred in 20
iterations for the present study, in comparison to 449
for PSO and 250 for VAINDIWPSO, representing a
reduction in the number of iterations by 95.5 % and
92 %, respectively. The initialization time was
reduced to 0.644 seconds, which is 86.35 % faster
than the 4.745 seconds required by PSO.

A scalability analysis was conducted in
environments with varying threat densities (1-7
obstacles), which demonstrated that the advantages
of IC-VAINDIWPSO become more pronounced as
the complexity of the environment increases. In
scenarios involving three threats, all algorithms
demonstrated a capacity to achieve near-optimal
solutions. However, with five threats, the average
fitness of IC-VAINDIWPSO, which was 5229.18,
significantly  outperformed PSO, which was
6058.12. Further reliability testing was conducted on
ten random threat configurations, the results of
which confirmed a stable advantage in both fitness
and convergence speed values.

A visual analysis of the generated trajectories
demonstrated that IC-VAINDIWPSO generates
smoother, flyable trajectories that maintain an
appropriate flight altitude above the terrain, thereby
effectively avoiding threat zones. In contrast, PSO
trajectories exhibited uneven turn angles and
suboptimal altitude profiles, indicating local optima
entrapment [22].

COMPARATIVE CONTEXT AND
ALGORITHMIC DIFFERENCES

RBN-based methods operate at the level of
individual agents without global coordination

(suitable for limited resources), while chaotic PSO
operates at the population level for pre-flight
mission planning. RBNs leverage dynamics at the
edge of chaos to derive direct benefits from
exploration, while chaotic PSO employs chaos to
circumvent local optima. It is evident that none of
the studies under review have considered
heterogeneous swarms, which represent a pivotal
aspect of the proposed algorithm. These findings
serve to corroborate the efficacy of chaos theory.
RBNs correspond to optimally tuned baselines, and
chaotic PSO reduced iterations by more than 95 %.
The hypothesis of evolutionary optimization with
chaos preservation suggests that automatic design
methods have the capacity to discover effective
controllers for complex swarm tasks.

PROBLEM STATEMENT

The primary objective of this study is to
develop a hybrid chaotic-deterministic method for
autonomous coverage of a territory by a swarm of
UAVs. This approach is informed by an analysis of
existing approaches and an identification of the
limitations of deterministic methods in emergency
response scenarios. The proposed method aims to
address the fundamental trade-off between the
thoroughness of reconnaissance and the time of
mission execution.

The method builds upon a previously
established multi-level control architecture [9], [12]
that integrates social interaction forces (repulsion,
cohesion, alignment, centroid binding) with chaotic
exploration  mechanisms.  This  architectural
foundation ensures both swarm stability and
adaptive coverage behavior in irregular polygonal
territories, providing the structural basis for the
following specific research objectives.

The specific research objectives are formulated
as follows.

1. Design a multi-criteria direction selection
function that incorporates unscanned area bias,
heading continuity and social force integration.
Formulate an attractiveness function for directional
decision-making that can quantitatively evaluate
candidate movement directions during chaotic
exploration.

This function should integrate the following:

— territory novelty assessment through
counting unscanned cells within directional
sampling cones;

— heading preference weighting to favor
continuation of the current trajectory and minimize
turn energy;
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— distance-decay factors to evaluate target
reachability;

— social force contributions from separation,
cohesion and alignment with neighboring agents.

This multi-objective function should enable
rational exploration under chaotic conditions,
favoring direction selection towards unexplored
areas while maintaining swarm cohesion and
energy-efficient trajectories.

2. Development of a two-level anti-stagnation
system that integrates micro-level agent escape
mechanisms and macro-level swarm redirection. A
level-layer anti-stagnation architecture must be
implemented to prevent confinement to local
minimums during chaotic exploration. At the micro
level, individual agents require stuck detection at a
per-drone level, based on scan cell revisitation
patterns.  This triggers autonomous escape
maneuvers towards distant, unscanned targets. At
the macro level, the system must be able to detect
when a critical proportion of agents are operating
within  already-scanned areas and initiate
coordinated redirection towards a shared global
target in unexplored territory. The system must
maintain the stochastic characteristics of chaotic
movement while ensuring progressive area coverage
through individual initiative and collective
coordination mechanisms.

3. Implementing double-course
mechanism. A double-course
mechanism must be established to balance
randomness in exploration with stability in
movement. This involves implementing exponential
moving average (EMA) filtering of desired heading
angles at the agent level and applying bounded turn
rate constraints to prevent excessive angular
acceleration. The smoothing parameters must be
calibrated to minimize oscillatory behavior and
energy consumption resulting from rapid direction
changes, while ensuring sufficient stochastic
variability for thorough territory exploration. The
system  should incorporate  self-propulsion
adjustment to maintain normal speed targets and
minimize unnecessary velocity fluctuations during
chaotic scanning operations.

4. A rigorous comparative experiment must be
conducted to quantify the differences in performance
between chaotic and deterministic (waypoint-based)
approaches, measuring coverage efficiency,
temporal performance, result stability and mission
reliability.

5. The experimental protocol should employ
multiple simulation runs (n > 10) for each method
and measure the following:

conditioning
conditioning

— the percentage of coverage achieved within
fixed time intervals;

— the time taken to reach target coverage
thresholds (> 95 %);

— the coefficient of variation in completion
times across replications to assess result stability;

— the  mission  success rate  under
heterogeneous swarm conditions with agent loss
scenarios.

Statistical analysis should include mean values,
standard deviations, confidence intervals and
significance testing in order to provide empirical
evidence of the performance characteristics of the
methods.

6. A guantitative analysis of the relationship
between coverage and time in chaotic versus
deterministic scanning methodologies is required to
inform mission planning decisions. This analysis
must systematically evaluate the inherent trade-off
between coverage thoroughness and mission
duration.

The analysis should quantify the following:

— coverage efficiency curves showing the area
scanned as a function of elapsed time for both
approaches;

— redundancy metrics measuring overlap and
re-scanning frequency;

— energy consumption profiles relative to
coverage achieved;

— adaptive behavior in response to dynamic
environmental changes or agent failures.

This empirical evidence will inform the
selection of methods for specific scenarios,
determining when thoroughness-prioritized chaotic
exploration outweighs time-critical deterministic
path-following, particularly in emergency response
applications where either rapid reconnaissance or
comprehensive damage assessment may be
paramount.

The study is constrained to two-dimensional
scanning of the territory in a simulation
environment, with a focus on the algorithmic and
coordination aspects of swarm behavior.

CHAOTIC-DETERMINISTIC METHOD

The proposed chaotic method of controlling a
swarm of drones can be described as follows:

1) local agent behavior:

— each drone maintains an individual map of
the territory, tracking scanned and unscanned areas;

— movement directions are determined by an
attractiveness function that evaluates potential
angles based on territory novelty, distance factors
and course stability;
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— direction selection combines deterministic
prioritization of promising areas with controlled
randomness, choosing from the highest-ranked
candidate directions;

2) micro-level anti-stagnation:

— individual drones continuously track their
movement over recent time steps;

— when movement falls below an efficiency
threshold,  adaptive angular  correction s
automatically activated;

— stochastic rotation allows escape from local
traps by applying random directional perturbations;

— this mechanism prevents the immobilization
of individual agents in confined or already explored
areas;

3) social interaction forces:

— the repulsion force prevents collisions by
pushing drones away when they approach a critical
distance;

— the cohesion force attracts agents to local
neighboring centroids, maintaining the structural
integrity of the group;

— alignment synchronizes speeds within local
groups, reducing chaotic trajectory fluctuations;

— centroid binding connects agents to the
global center of the swarm, preventing excessive
dispersion and fragmentation;

— these forces combine into a single social
vector that ensures swarm stability and prevents
collisions;

4) anti-stagnation at the macro level:

— the global swarm stagnation coefficient
continuously monitors the collective efficiency of all
agents;

— when this coefficient exceeds a threshold
that indicates widespread stagnation, global
redirection is activated:;

— the system then forms a common area vector
that directs the entire swarm towards unexplored
areas, thereby preventing collective traps in which
most agents remain confined to areas that have
already been scanned,;

5) double-course conditioning:

— first-level inertia smoothing acts as a low-
pass filter, dampening sudden directional changes
through weighted averaging of previous and new
angles;

— second-level adaptive stabilization aligns
individual movement with the average orientation of
local neighbors;

— this two-level filtering provides smooth,
energy-efficient trajectories while preserving the

stochastic effective
exploration;

6) combined stabilized control:

— the method hierarchically prioritizes goals:
global reorientation has the highest priority,
followed by individual escape protocols and then
normal exploration;

— the desired direction passes through a double
conditioning filter before physical execution;

— the final motion vector integrates
exploration goals, social constraints and stability
requirements;

— the system maintains a balance between
chaotic exploration and coordinated swarm behavior
throughout the mission.

This sequence provides adaptive dispersion,
coordinated congestion resolution and controlled
trajectory  randomness, effectively combining
exploration of new areas with the use of
accumulated coverage information.

SOCIAL INTERACTION IN A SWARM

Social interaction between agents constitutes a
fundamental component of the proposed chaotic
method, thereby ensuring swarm stability, collision
avoidance, and coordinated movement. The model is
predicated on the principles of Swarm Chemistry,
whereby the behavior of each drone is formed as a
result of the superposition of several interaction
vectors, namely repulsion, cohesion, alignment, and
binding to the group's centroid. These forces provide
a balance between individual autonomy and
collective coordination.

The repulsion force F,,p,s0, IS initiated when
the drones approach a critical distance from each
other, thereby preventing collisions. This is
calculated as a vector directed away from
neighboring agents, with a force that decreases
proportionally to the square of the distance between
them:

variability necessary for

Frepulsion,l = ZjEN,- ky #,
where N; is set of i-th drone neighbors; k., is
coefficient of repulsion; e is small stabilizing
parameter to avoid division by O; p, is position
vector (coordinates) of the current drone i (the drone
for which the repulsive force is currently being
calculated); p, position vector (coordinates) of
neighboring drone j (the drone that creates the
repulsive effect).

Cohesion, in turn, plays a pivotal role in
maintaining the structural integrity of the system.
This component is responsible for ensuring the
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cohesion of the drone population within the group,
thereby preventing excessive dispersion and
fragmentation of the swarm. The cohesion vector

Feonesion, 1S defined as an attractive force directed
towards the average position (centroid) of the
nearest neighbors:

—
Fcohesion,l = kc (pavg,i - pl)i

where k. is cohesion coefficient, which regulates the
force of attraction; a p,,,; is the average position of
neighbors, calculated as:

_ 1 —
pavg,i - MZjENipj'

This mechanism ensures that individual agents
do not deviate excessively from their local group,
thereby preserving the requisite local cohesion of the
swarm.

The subsequent critical vector is alignment,
which ensures that the movement of drones within a
local group is coordinated. This synchronization of
trajectories has been shown to significantly
contribute to the stability of the swarm as a whole
dynamic system, thereby minimizing chaotic
fluctuations in the trajectories of individual agents.

The alignment force directs the agent toward the
average velocity vector of its neighbors:

Falign,l = ka(vavg,l -7),
where k, is equalization factor, v, is velocity vector
of the current i-th drone and v,,,, is the average
velocity vector of neighbors, defined as:

v —Lz v,
CEL N | Lajen;

where v is this is the velocity vector of the
neighbouring drone j.

This enables drones to synchronize their
movement directions, ensuring smooth transitions
between zones and effectively avoiding collisions
caused by unsynchronized movement.

In order to impede both excessive expansion
and fragmentation of the swarm at the global level,
an additional vector is introduced. This vector is a

link to the centroid (F.eniroiq)- This force binds
agents to the global center of mass (centroid) of the
entire system, ensuring macroscopic cohesion:

Fcentroid,L = kg (pcentroid - pl)!

where kg, is centripetal force and peenyoia 1S
coordinates of the swarm center, calculated as:

1 —

— N
Pcentroid = N &i=1 P

where N is total number of drones. This component
is critical for maintaining swarm integrity even
under conditions of asymmetric agent distribution or
global redirection maneuvers.

All of the above components of social

interaction — repulsion  ( Fyusion ), COhesion
( Feonesion )» alignment (F;.,,) and binding to the

centroid (F,..,.,.iq) — integrate into a single aggregate
vector of social power:

Fsocial,l = Frepulsion,l + Fcohesion,l + Falign, 1 + Fcentroid,t'

This resulting vector Fy,.,;, serves as the basis
for calculating the final direction of the drone's
movement.

MULTI-CRITERIA DIRECTION
SELECTION

Local behavior constitutes the foundation for
each drone's unique dynamics, thereby ensuring the
flexibility and stability of the swarm in its entirety.
At this level, each agent possesses a map of the
territory, including information regarding scanned
and unscanned areas. Concurrently, data pertaining
to its own status contributes to the decision-making
process.

The fundamental objective is to harmonize
adherence to social norms with one’s personal
aspirations, namely, the exploration of uncharted
territory. The drone’s navigation strategy entails the
pursuit of areas that have not been previously
scanned, while concurrently evading excessive
regularity, a tactic that facilitates more equitable
coverage of the territory.

In order to implement local exploration, it is
necessary for the drone to possess a mechanism that
enables it to select its direction of movement not
only randomly, but also taking into account the
value of specific areas for exploration. In essence,
even in situations involving chaotic movement, a
discernible “rationality” emerges. The agent exhibits
a propensity to maneuver towards areas where it can
maximally contribute to the coverage of the
territory, while eschewing superfluous alterations in
course and the repetition of scanning the same
regions.

For this purpose, the attractiveness function
S(a) is calculated for each possible deflection angle
a

S(a) =E(a) - (1 +yD(a)) -H(a),

where E(a) is assessment of the potential novelty of
the area, taking into account the number of
unscanned cells in the selected direction; D(a) is the
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distance factor to the target, which encourages the
drone to move to more remote areas and prevents
excessive concentration of agents within already
explored boundaries; H(a) is a bonus of stability,
which reduces the likelihood of sudden changes in
direction and makes the trajectory smoother; y is
weight coefficient that determines the significance
of the distance factor.

Following the calculation of S(a) values for all
candidates, the direction is selected at random from
the top 80 % of options. This decision enables the
synthesis of a deterministic emphasis on innovation
with an element of randomness.

Consequently, the drone does not invariably
select the optimal direction in the strict sense, but
rather generates a movement that is adequately
directed to circumvent superfluous repetitions, while
simultaneously being sufficiently random to avert
the consequences of symmetry and mass
accumulation.

The direction that proves successful is denoted

by a vector dexpiore . The formation of the agent’s

local movement vector V,.4,, entails the integration
of individual objectives (i.e., exploration) and
collective constraints (i.e., social forces):

Vlocal,l = ﬁ : dexplore,l + (1 - B) ' Fsoczal,u

where dexpiore, 1S normalized local exploration
Vector; Fgoeq, is normalized total vector of social
power; Be[0,1] is the balance between individual
exploration and social harmony.

The vector described above V.4, defines the
basic movement of the drone in normal mode.
However, to avoid “local minima”, there are
exception mechanisms that can temporarily override
this movement. They operate on two levels.

ANTI-STAGNATION MECHANISMS OF

AGENTS
The fundamental compromise  between
exploration and exploitation is central to the

execution of autonomous environment exploration
tasks utilizing swarm complexes. The employment
of controlled chaotic motion facilitates the
maximization of territory coverage, a consequence
of the stochastic nature of trajectories. However, this
approach gives rise to the issue of local minima, or
“local minima”. Agents may become entrapped
within  configuration spaces, such as already
explored areas, ravines, and enclosed spaces. In
these environments, their chaotic movement does
not result in the discovery of new areas; rather, it

leads only to the repetition of scanning already
known areas.

One proposed solution to this problem is the
implementation of a two-level anti-stagnation
system that functions at the level of individual
agents (micro level) and at the level of the entire
swarm (macro level). This approach would generate
a synthetic effect and ensure the robustness of the
system.

To circumvent stagnation at the micro level,
each agent is endowed with the capacity for self-
diagnosis of its own effectiveness. The basis of this
mechanism, termed per-drone stuck-detection, is
continuous monitoring of the dynamics of its own
movement.

To guantitatively assess movement
performance, the drone’s position changes over the
last T, steps are recorded and the relative
displacement Ap(t)is calculated:

Ts
1
ap(0) == ) Ip(t =) —p(t—i =1,
$i=1

where: p(t) is drone coordinates at a given moment
in time t; T, is depth of the time horizon of the
analysis.

If Ap(t) < €5, Where €, is the minimum change
for classifying movement as effective, quantified as
the number of unique grid cells visited by the agent
(set to 4 cells). If this condition is met, the agent is
considered “stuck” and activates the adaptive
angular correction mechanism:

= Acurrent T 95 : R(—l,l),

where a,,,,, is the resulting angle of movement that
the drone will take in the next step to exit the state of
stagnation; a.,,..,; IS the angle at which the drone
was moving until the protocol was activated; 6, is
maximum turning angle for escaping the trap;
R(—1,1) is random value within the range [—1,1].

This mechanism enables the drone to adaptively
adjust its trajectory, thereby reducing the probability
of becoming immobilized while preserving a state of
controlled chaos. It is also noteworthy that the
system does not entirely discard prior experience
when utilizing the current direction angle; rather, it
makes corrections to it.

The primary benefit of this approach is the
rejection of deterministic maneuvers. Should the
system invariably respond to stagnation in a uniform
manner, there would be a risk of falling into yet
another, more complex cyclical trap. The
incorporation of a stochastic factor R(—1,1) ensures
that each attempt to escape the trap is unique.

anew
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Consequently, rather than executing the same
command in a mechanistic manner, the drone
engages in a process of improvisation, thereby
significantly enhancing its probability of identifying
a trajectory that leads to previously unexplored
territory.

Therefore, when the drone detects individual
stagnation (Ap(t) < €(s)), its desired direction a,,,,
is generated randomly, disregarding the base vector

Vieca ; @t that particular moment. This novel
approach subsequently becomes the prevailing
direction of movement.

At the swarm level, a macro anti-stagnation
strategy is implemented, which is initiated when the
majority of agents remain in already scanned areas.
At this level, the overall state of the swarm is
analyzed by introducing an integral indicator, the
swarm stagnation coefficient (/).

This coefficient is a quantitative metric of the
“health” of the entire system and is calculated using
the following formula:

N
1
J= NZ Lapi<es),
i=1

where N is the number of drones in the swarm;
Liap;<e,} I stagnation indicator (1 if the drone is
stationary, 0 otherwise); €, is stagnation sensitivity
threshold (or minimum effective displacement
threshold).

If ] > J,, where ], is the threshold value, this
signals that local efforts are insufficient and the
swarm needs global coordination.

In this case, a global redirection vector (Vy;op,1)
is formed for the swarm:

N
Velobal = Z w; d;,
=1

where d; is direction to the nearest unscanned areas
for the i-th drone; w; is weight coefficient, which
depends on the local “novelty” of the territory.

The final step is to integrate both control levels
into a single hybrid model. The motion vector of the
i-th drone is defined as the weighted sum of its local
motion vector m and the global swarm

redirection vector (Vgsopa):

Vﬁnal,i = aVlocal, i + (1 - a)Vglobal!

where a € [0,1] is a coefficient that determines the

Upon activation of the global mechanism, the
desired direction a,,,,, is strictly derived from the

resulting hybrid vector Vj,,;;. This vector possesses

the highest priority within the decision-making
hierarchy, effectively overriding and suppressing
both the baseline local movement vector V., ; and
any stochastic correction angles a,,,,,. generated by
individual anti-jamming protocols. By enforcing
such a centralized redirection, the system ensures
that the collective behavior temporarily supersedes
individual autonomy to resolve critical deadlocks.

This hierarchical approach is specifically
designed to address the challenges posed by
simultaneous individual and collective stagnation,
thereby facilitating the continuous expansion of the
explored territory and ensuring the optimal
distribution of computational and energetic
resources within the multi-agent system.

DOUBLE COURSE CONDITIONING AND
STABILIZATION

Double course conditioning represents a pivotal
element of the swarm stabilization system, aiming to
maintain a balance between the inherently chaotic
nature of local exploration and the requisite
smoothness of drone trajectories. In the course of
exploring the territory, each agent perpetually
adjusts its direction of movement in response to
local factors (randomness, social forces, obstacles).
These factors can result in variations in course,
substantial turbulence, and energy dissipation. In
order to circumvent the aforementioned effects, the
proposed method implements a two-tiered
conditioning system that incorporates inertial
smoothing and adaptive stabilization.

In the initial phase of stabilization, the current
direction of movement is smoothed using a first-
order filter. This filter is designed to simulate the
effect of inertia.

The new course angle a; is determined as the
weighted sum of the previous angle a;_, and the
new desired direction a, -

a; = Mg + (1= Dapew,
where a;_, is angle of movement in the previous
step; an,ey IS desired direction (angle) obtained at
the previous stage, i.e., the angle from Vipea, 1, Vinars
or the correction ajew ; A €[0,1] is inertial

smoothing coefficient.

The wvalue A determines the degree of

balance between local exploration and global “memory” of the drone. Primary conditioning acts as

redirection. a low-frequency filter that dampens sudden changes
in direction.
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The second level of stabilization incorporates
not only its own previous course but also the average
orientation of the local environment. The drone
adjusts its direction in accordance with the collective
movement of its neighbors, thereby reducing chaotic
fluctuations within the microgroup.

Adaptive stabilization can be expressed as
follows:

ar = a;_1 + p(@y, — ap),

where ay, is average direction of movement
(average angle) of neighbors of drone i; u € [0,1] is
stabilization coefficient.

The parameter p regulates the degree of
influence of social orientation.  Adaptive
stabilization provides dynamic alignment of
directions within a local group.

Double conditioning reduces the dispersion of
direction angles within a group of drones without
reducing it to zero, which preserves the necessary
level of stochasticity.

Formally, if we denote the root mean square
deviation of directions as g2, then the following is
true:

7 = -2-w o,

where reduced o2 means stabilization, but not
complete synchronization. The method maintains a
balance between stability of movement and chaotic
variability necessary for effective exploration.

It is important to note that adaptive stabilization
and alignment do not duplicate each other.
Alignment is a vector force that influences the

choice of the desired direction (it is part of Fy,.;,;,).
Stabilization is a scalar filter that smooths the
selected angle, a;, to make the movement more
coherent and physically smoother. Alignment and
stabilisation operate at different stages of the
computational process: alignment influences the
initial direction selection, while stabilisation refines
the final angular output.

COMBINED STABILIZED CONTROL

Combined stabilized control represents the
culminating stage of the drone’s computational
cycle, wherein all previously delineated mechanisms
comprising social forces, local exploration, anti-
stagnation protocols, and conditioning are integrated
into a unified, physically executable movement
(Fig. 1).

The decision-making process is characterized
by a clear prioritization of objectives. At each step,
the method first determines the “desired direction”
(anew) based on the current state of the agent. In the

event that the swarm is in a state of global stagnation
(J > J.1), the desired direction is calculated from the
hybrid vector m which has the highest priority.
In the event that only individual stagnation is active
(Ap(t) < €(s),) the desired direction aye, Iis
generated on a stochastic basis to facilitate the
process of escaping the trap. In all other ordinary
cases, the desired direction a,,,, is calculated from

the base vector Vj,cq;,. This vector combines
individual exploration and total social force.

The resulting desired direction  a,ey,
irrespective of its provenance, is not implemented
immediately. Conversely, the information is
transmitted to the input of the “Double
Conditioning” system, which functions as a final
filter to ensure smooth and coherent movement.
Initially, the angle undergoes inertial smoothing
(first-order filter), which prevents sharp fluctuations,
according to the formula:

a; = Aae_; + (1 — Dayen-

Then, the smoothed angle a; is further adjusted
relative to the average direction of neighbors (ay;,),
which enhances the local consistency of the swarm:

ar = a; + W@y, — ar-1)

The final adjusted angle constitutes the drone's
final target direction. The subsequent physical
movement of the agent is executed in the
aforementioned direction, contingent upon genuine
physical limitations such as maximum turning
velocity and responsive control accuracy. The
method is designed to maintain a stable equilibrium
by preserving the chaotic variability necessary for
effective exploration while ensuring that movement
remains smooth, stable, and fully consistent with the
coordinated actions of neighboring agents.

COMPUTATIONAL COMPLEXITY

Understanding the computational complexity of
swarm algorithms is crucial for assessing their
scalability in larger deployments. In the case of the
chaotic method, the most computationally expensive
operation at each time step is neighbor detection,
whereby each drone scans all n agents to identify
those within communication range. This results in
0(n) complexity per agent. Social force calculations
are then repeated for k neighbours, resulting in 0 (k)
operations where k < n. Direction selection using
the attraction function selects a fixed number of
candidates (typically 10), resulting in constant
complexity of 0(1). Periodic scanning of the grid
for unscanned areas requires O(W X H) operations
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Fig. 1. Flowchart of the Chaotic-Deterministic swarm movement method
Source: compiled by the authors

and is performed at 1.5-second intervals. Summing
these components, the complexity per step for a
single drone is O(n) and for the entire swarm it is
0(n?*), since each of the n drones perform 0(n)
operations. Over the course of a mission requiring S
time steps (approximately 351 iterations in 35.13
seconds), the total complexity is O(n® x S). The
deterministic method exhibits similar 0(n?%)
complexity, but with reduced constant factors.

Thus, both methods scale quadratically with
swarm size due to pairwise neighbor detection.
However, spatial indexing structures (k-d trees and
grid-based hashing) can reduce neighbor detection to
O(nlogn) or 0O(n) , enabling scalability to
hundreds of agents.

For moderate-sized swarms (n < 50), trajectory
optimization is the most effective way to improve
efficiency. As the size of the swarm increases, the
quadratic increase in complexity requires the
algorithms to be optimized, specifically by using
spatial indexing for neighbor detection and
boundary-based tracking to replace O(W x H) grid
scanning. This is necessary in order to maintain real-
time performance when deploying more than 50-100
agents.

EXPERIMENTS

A series of computational simulations were
conducted for the purpose of validating and
empirically evaluating the performance of the
proposed chaotic method. The implementation of all
calculations, modeling, and analysis of results was
conducted using the Python 3.13.7 programming
language. Essential core libraries, such as numpy for
numerical array operations and shapely for handling
polygonal boundaries and spatial analysis, were

utilized. The simulation was containerized using a
Docker environment.

The model was implemented on a territory
defined as a complex irregular polygon, which
simulates realistic  conditions with  uneven
boundaries. The specific scan area boundary was
defined by an irregular 5-vertex contour. The
simulation space was discretized into a grid of
34x23 cells (782 total cells), with the grid cell size
set to 20 units.

Specific thresholds were implemented to
govern the anti-stagnation and movement control
mechanisms. For classifying local stagnation, the
drone was considered stuck if it visited no more than
3 unique cells. The escape protocol was triggered
only after 3 consecutive detections. Furthermore, the
maximum turn rate was constrained to per step, and
a minimum turn threshold of was enforced to
stabilize the movement.

In consideration of the high sensitivity
exhibited by chaotic systems to initial conditions and
control parameters (Table 1), a preliminary
optimization stage was initiated prior to conducting
the primary experiments. The objective of this stage
was to automatically determine the optimal set of
hyperparameters that provides the best balance
between speed and coverage quality. This process is
an iterative pipeline that repeatedly executes a full
simulation cycle. Subsequent to each iteration, the
“fitness” of the configuration is appraised.
According to the findings of this evaluation,
stochastic mutations are applied to the parameters,
and the process is repeated.

The key coefficients governing the three main
aspects of swarm behavior were optimized:

1) social interactions: cohesion strength and
alignment strength;
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Table 1. Parameters and their range

Parameter Range Sensitivity
k. [0.5, 10.0] Very high
kg [0.2,5.0] High
k, [0.0, 3.0] Average
Jin [0.1,0.9] High
O [5.0, 90.0] High
A [0.1,1.0] Average
U [0.1,1.0] High
H, [0.0, 0.5] Low
€5 [1.0,10.0] High

Source: Compiled by authors

2) the exploration aggressiveness is determined
by the priority coefficient of unexplored areas;

3) the concept of anti-stagnation sensitivity
pertains to the thresholds that determine the
activation of both individual and global escape
mechanisms.

A scan was considered successful if it achieved
a coverage level of at least 95 %. Following the
optimization  phase, the optimal set of
hyperparameters was documented and used to run
the main simulations.

The final coefficient values obtained from this
convergence process reflect the adaptation of swarm
kinematics to the polygon topology. Specifically, to
ensure a balance between maneuverability and
trajectory smoothness, the inertial smoothing and
adaptive stabilization coefficients were fixed at A =
0.4 and u = 0.3, respectively. This allows the
system to act as a low-pass filter, cutting off
stochastic decision “noise”, while the maximum turn
angle 6, was limited to 30° to prevent oscillations.

Regarding the anti-stagnation settings, the
individual stagnation threshold (es) was defined at 4
unique cells, minimizing false positives during dense
maneuvering. The global threshold J;, was set at
0.45, activating collective redirect only when nearly
half the swarm becomes unproductive. The critical
balance between exploration and integrity was
achieved by setting a high priority for unexplored
zones (2.03), compensated by enhanced cohesion
(k. =3.5), which prevents group fragmentation
during rapid expansion.

Each experimental trial began with the swarm
selecting a random initial trajectory to ensure
unbiased starting conditions. During mission
execution, the swarm navigated the territory
autonomously, systematically covering designated
areas. Once the coverage level in the current area
reached the set threshold, the swarm proceeded to
the nearest unscanned area. To assess relative

effectiveness and establish performance
benchmarks, the results of the chaotic approach were
compared with those of an alternative, deterministic
method: Waypoint Collision Avoidance [8].

RESULTS

During the experiment, 20 simulation launches
were performed for each method. The two
approaches exhibited a high degree of reliability,
attaining a target coverage rate of > 95 % in all
cases. It is noteworthy that no catastrophic failures
were recorded, thereby validating the efficacy of
both approaches for critical missions.

The primary distinctions were observed in the
areas of coverage stability and time efficiency.
When analyzing coverage efficiency, the Chaotic
method demonstrated a marginally higher mean
coverage percentage (96.12 % + 0.88 %) in
comparison to the Waypoint method (95.46 % +
0.24 %). However, this 0.66 % advantage is
accompanied by a substantial decline in stability.

The Chaotic approach demonstrated 3.6 times
higher variability (coefficient of variation 0.91 % vs.
0.25 %) and a wider range of results (95.20 % -
97.93 %) compared to the deterministic method
(95.20 % - 95.87 %). This underscores the inherently
probabilistic and exploratory nature of chaotic
motion, in contrast to the highly predictable
outcomes associated with optimized waypoints.

The most significant discrepancy was identified
in time efficiency. The Waypoint method
demonstrated a 2.5-fold increase in efficiency,
completing the mission in an average of 13.82
seconds, while the Chaotic method required an
average of 35.13 seconds. This discrepancy is also
evident in the “Coverage per Minute” metric, where
the  deterministic,  optimization-based (CRO)
approach exhibited 2.5 times higher throughput
(4.18 % per minute vs. 1.66 %).

The experiment yielded a discernible trade-off:
the chaotic method exhibited marginally higher
mean coverage (96.12 %) but was accompanied by
increased unpredictability and a substantially
prolonged execution time. The method with
predetermined paths, in turn, guarantees high speed
and exceptional stability of results, which is better
for time-critical operations.

CONCLUSIONS

This  paper explores the technological
framework for reconfiguring UAV  swarm
complexes. The reconfiguration process is informed
by a social interaction model and a multilevel
chaotic exploration method. These components have
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become pivotal in ensuring adaptability and
comprehensive coverage of the territory. The
proposed model of social forces provides
fundamental dynamic interactions between agents —
repulsion, cohesion, alignment, and centroid binding
— that allow them to form coordinated collective
behavior patterns.

The chaotic method functions as a mechanism
of stochastic exploration, guided by the
attractiveness function. This phenomenon enables
drones to make informed decisions regarding their
trajectory, prioritizing exploration of unexplored
regions and mitigating the effects of symmetry and
mass accumulation.

A two-level system of counteracting stagnation
(micro and macro levels) played a special role,
ensuring that agents could escape from “local traps”.
This, in conjunction with a zonal approach to
scanning, facilitated the assurance of comprehensive
and systematic coverage of the complex terrain.

The simulation results confirmed the high
reliability of the proposed technology. In a series of
twenty experimental trials, the method exhibited a
100 % success rate in attaining a target coverage of
> 95 %. A comparison of the chaotic approach with
the deterministic method (Waypoint Collision
Avoidance) reveals that the former achieved a higher
average coverage (96.12 %).

Conversely, this enhanced precision comes at
the cost of temporal efficiency, as evidenced by the
observation that the average mission duration was
35.13 seconds, which is 2.5 times longer than the
optimized deterministic approach (13.82 seconds). A
considerably higher variability of results was also
documented (coefficient of variation 0.91 % vs. 0.25
%), which is an inherent property of stochastic
exploration, in contrast to the high predictability of

swarm size (0O(n?) per timestep due to neighbor
detection), with the primary bottleneck being naive
pairwise distance calculations. Spatial indexing
techniques (k-d trees, quadtrees) can reduce
complexity to O (n log n), enabling practical scaling
to 50-100 drones. The critical scalability threshold
for unoptimized implementations is approximately n
~ 30-40 drones on standard hardware.

The experimental findings establish clear
selection criteria for deployment scenarios. The
chaotic method is optimal for coverage-critical
missions in irregular complex territories where
thoroughness outweighs speed (search-and-rescue,
radiation  mapping, unknown  environments),
particularly with small-to-moderate swarms (n < 20).
However, its limitations include 2.5 x longer
mission duration, 3.6 x higher result variability, and
13  sensitive  tunable parameters requiring
optimization. Conversely, the deterministic approach
excels in time-critical operations (industrial
accidents, tactical reconnaissance), predictable
mapped environments, and large swarms (n > 50)
where computational simplicity is essential, though
it suffers from adaptability deficits in dynamic
conditions and systematic coverage gaps in irregular
geometries.

In the future, the technology has significant
potential for development through the possible
introduction of reinforcement learning methods [23],
[24], [25]. This will enable agents to acquire
knowledge from prior experiences, adapt their
behavior to novel conditions, and automatically
enhance their strategies based on feedback. The
integration of social interaction mechanisms, chaotic
attractors, and machine learning is projected to
establish the foundation for a completely adaptive,
self-learning swarm that is capable of functioning in

optimized waypoints. intricate and evolving environments.
The computational complexity analysis
revealed both methods scale quadratically with
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AHOTALIA

Y nmaHOMy IOCHTIDKEHHI MPOMOHYETHCS TiOPUAHUN XaOTHYHO-IETEPMIHOBAHMHA METOJ[ YIPABIiHHS POEM OE3MIIOTHUX
nmitaneHux anapariB (BITJIA), mo iHTerpye comiambHi B3aeMoOJil, Taki SK BiZOKPEMJIEHHs, 3TypTOBaHICTb, BHUPIBHIOBAaHHS Ta
3B'I3YBaHHS, 13 CTpATETI€0 IMOMYKYy, M0 0a3yeTbcs HAa MpUTSTaHHI. J[BOpiBHEBa aHTHCTarHalliifHa CHCTeMa IPAIlIOE Ha PiBHI
OKPEMHX AareHTiB («MIKpO») Ta KOJEKTHBHOTO DO («Makpo») s 3alo0iraHHs JOKAIFHHNM MiHIMyMam Ta ITiITPUMAaHHI
KOHTPOJIbOBAHOTO 3IJIa[DKYBaHHS TPaekTopili. MeToj BHUKOPUCTOBYE MOJBiIHE KOHIMI[IOHYBaHHS Kypcy Uil 30ajgaHCyBaHHS
IUTABHUX TPAEKTOPil 31 CTOXaCTUYHUM MJOCTIDKCHHSAM. TWM dYacoM (YHKIS TPHBAOIMBOCTI KUIBKICHO OIIHIOE MOTEHIIHHI
HaNpsSIMKH PyXy Ha OCHOBI HOBHM3HH TepuTOpii, (akTopiB BincraHi Ta crtabimpHOCTI Kypcy. Cuiam comiambHOI B3aeMomii —
BIJIIITOBXYBaHHS, 3TypTOBAaHICTb, BUPIBHIOBaHHSA Ta 3B'SI3yBaHHS LEHTPOiAiB — 3a0e€3MeuyioTh CTAOLIBHICTh PO Ta YHUKHEHHS
3iTKHEHb MPOTIrOM BUKOHAHHS Micii.

INopiBHsIBHA eKCIEpHMEHTalbHA Bajlijamis Oylla IpOBeNeHA HUIIXOM 0araTopa3oBOTO 3aIllyCKy CHUMYJALI Uil KOJKHOTO
METOJIy Ha HEPEeTyIIPHUX 0araTOKYTHUX TEPUTOPIsAX. SIK XaOTHIHUM, TaK 1 JeTepMiHOBaHMII MTiXOIU HAa OCHOBI KOHTPOJIBHUX TOUOK
HPOJEMOHCTPYBAJI BUHITKOBY HaJilHICTh MICii, JOCSATHYBIIN MOPOrOBOrO 3HA4YEHHS MOKPUTTS LI y BCIX BUOPOOYBAHHSX, THM
CaMHUM MiITBEPMBIIN MMOBHUH YCMiX. 3 TOYKHU 30py €PEKTHBHOCTI MOKPUTTS, XAOTHYHMI METOJ JOCST BHIIOI CEPEIHBOI TTOBHOTH
TepUTOpPii B TMOPIBHAHHI 3 JETEPMIHOBAHHUM ITXOIOM, IO € MOMITHHM HominmeHHIM. OIHAK I MiJBHINEHA TOYHICTh HOKPUTTS
CYNPOBOJDKYETHCSI 3HAYHUMH BUTPAaTaMH OOUYHCITIOBAILHOTO Yacy: XaOTHYHUI METO]] BUMAaraB 3Ha4HO JOBLIOT CEpeHBOI TPHUBAIOCTI
Micii B MOPIiBHSAHHI 3 ONTUMIi30BaHMM METOJOM KOHTPOJIBHHX TOYOK. XaOTHYHMI MigXiJ TaKoX MPOJEMOHCTPYBaB 3HAUHO BHIIY
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MIHJIUBICTh PE3YNBTATIB, L0 BiZOOpa’ka€ CTOXAaCTUYHY MPHUPOAY METOIIB, 3aCHOBAaHMX Ha JAOCHI/KCHHI. TakuM 4YMHOM, XO4a
XaOTHYHHI alNrOpuTM JEMOHCTpYe BHIIY e(EeKTHBHICTh IIOKPUTTS, BiH Ma€ HIKIY YacoBy e(EKTHBHICTh IIOPIBHSHO 3
JIETePMiHOBaHOIO 0A30BOIO JIHIEIO.

11i BHCHOBKH KiJIbKiCHO OLIHIOIOTH (pyHIaMEHTAIbHHH KOMIIPOMIC MiXK PETENbHUM JOCTIIKSHHIM Ta e()eKTHBHICTIO 32 4acOM
B ONEpAIisIX 3 BHKOPUCTAHHSIM aBTOHOMHHUX O€3MIJIOTHUX JiTanbHUX anapartiB (BI1JIA), Hagatouu eMImipH9Hi TOKa3¥ IS IPUHHSITTS
KPUTHYHO BRKJIMBHX PIllIeHb MO0 PO3ropTaHHs. Pe3ynbraT cBig4aTh, 10 XaOTHYIHI METOI HaWKpalle MiAX0oAITh AN CIeHapiiB, B
SIKHX IPIOPUTETOM € BceOiuHE MOKPHUTTS Ta AJaNTHBHICTh, TAKUX SIK IMOLIYKOBO-PATYBAJIBHI omepalii, ¢ HEBUSBICHI XEPTBU
MOXYTh CTAaTH KPUTHYHOIO MOMHJIKOIO, TOAI SIK IeTepPMiHOBaHI Miaxoau € Oiabll e()eKTHBHUMHU B MICIsIX, J€ Yac Ma€ BHpILIalbHEe
3HAYCHHSI, a CEPEIOBHIIIEC € TependoauyBaHuM. HaiifHicTh 000X METOIONOTIH Y MOEHAHHI 3 KITbKICHUM BHPaXXCHHSAM BiJIMiHHOCTCH
Y IIPOYKTHBHOCTI JO3BOJISIE BUOUPATH METOIH Ha OCHOBI JIOKa3iB, BIAMIOBITHO 1O KOHKPETHHX OIEpaliifHUX BUMOT, OOMEKEeHb MicCil
Ta NIPUHHATHUX [TapaMeTpiB KOMIIPOMICY MK PU3HKOM, YaCOM 1 TOYHICTIO.

Kumiouosi cioBa: iHhopMaliliHi TEXHOJIOTIT; pOHOBHIl IHTENEKT; XaOTHYHUH aNTOPUTM; MYJIbTHAT€HTHI CHCTEMH; ONITHMI3allis
CKaHyBaHHS; COLIaJIbHI B3a€MOJIT pOI0; METOJI MPOTHU LT CTarHAIil; ONTHMI3aLis TPaeKTOpii poro
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