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ABSTRACT 

In this work, we propose a simple yet effective approach for classifying short road traffic video clips into car accident and 
normal scenes. From each clip 8 frames are uniformly sampled across the sequence to ensure that key events are preserved even in 
longer videos. Based on the Farnebäck optical flow map, an adaptive fragment selection is performed, where the patch size 
(eight/sixteen/thirty-two pixels) is determined for each region of the base grid. Smaller patches are used in areas with intensive 
motion (to capture finer details), while larger patches are used in static regions (to reduce computations). The selected fragments are 
non-overlapping, resized to a uniform scale, and converted into feature vectors. The architecture operates in two stages. First, a 
spatial transformer processes each frame independently; attending only to the selected fragments this drastically reduces the number 

of feature tokens. Second, a temporal transformer processes the sequence of classify tokens (compact per-frame representations), 
aggregating temporal dynamics across frames. This space-to-time factorization significantly lowers computational cost and memory 
consumption while maintaining high informativeness in motion-intensive regions. To address class imbalance, we employ a weighted 
cross-entropy loss (or focal loss emphasizing hard examples) and weighted random sampling during training. Optical flow maps and 
fragment lists are precomputed and cached on disk, which accelerates training epochs even on CPUs without specialized hardware. 
Evaluation was conducted on the Car Crash Dataset (one thousand and five hundred accident and three thousand normal videos) 
using an eighty to twenty percent train-test split with preserved class proportions. The proposed method achieved Accuracy = 0.864 
and Macro-F1 = 0.851. Preliminary comparisons show that our approach outperforms both the baseline uniform-patch Vision 
Transformers and traditional temporal aggregation schemes. The key advantage of the method lies in combining motion-guided 

feature reduction with a two-stage spatial-temporal processing pipeline, making the model suitable for realistic computational 
constraints (CPU-level inference) while maintaining high sensitivity to short and localized accident events. The approach is easily 
scalable and can be integrated with self-supervised pertaining techniques (e.g., masked video reconstruction). All experimental 
conditions, hyperparameters, and configurations are documented to ensure full reproducibility. 
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INTRODUCTION 

Artificial intelligence (AI) and computer vision 

are rapidly transforming the way traffic 

environments are monitored, analyzed, and 

understood. In recent years, intelligent traffic 
systems have become a cornerstone of modern smart 

city infrastructure, enabling automated accident 

detection, vehicle tracking, congestion analysis, and 
overall road safety management. The ability to 

automatically abnormal situations in real time, such 

as traffic collisions or near-miss incidents is 
particularly critical because it allows for immediate 

response and can significantly reduce the severity of 

consequences. 

Traditionally, traffic video analysis has relied 
on handcrafted feature extraction and conventional 

machine learning techniques such as background 
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subtraction, motion history analysis, or Support 
Vector Machines. However, these approaches are 

highly sensitive to lighting conditions, occlusions, 

and camera viewpoints, which limits their robustness 

in real-world deployments. With the advent of deep 
learning, Convolutional Neural Networks (CNNs) 

and 3D Convolutional Neural Networks (3D CNNs) 

have become the dominant tools for video 
understanding tasks, including accident detection. 

These models are capable of automatically learning 

spatio-temporal features directly from data, 
eliminating the need for manual feature engineering. 

Despite their success, most existing deep 

learning-based solutions process the entire video 

frame in a uniform manner, frame by frame or as a 
3D volume. Such exhaustive processing leads to 

high computational and memory demands, 

especially for high-resolution video streams. The 
high dimensionality of video data results in models 

with tens or hundreds of millions of parameters, 
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which require powerful GPUs and large-scale 

infrastructure to operate efficiently. As a result, 

these systems are often impractical for CPU-based 

environments or real-time applications, such as 

traffic monitoring from roadside cameras or 

embedded systems in vehicles. Moreover, redundant 

processing of static background regions wastes 

resources without contributing valuable information 

to the classification process. 

In this work, we aim to address these 

limitations by introducing an adaptive and motion-

aware approach to video representation. Instead of 

processing all regions of a frame equally, we 

propose to reduce unnecessary computation by 

selectively extracting fragments (patches) based on 

the intensity of motion detected between consecutive 

frames. Regions with high motion speed are 

represented by smaller fragments, which preserve 

detailed spatial information, while low-motion 

regions are represented by larger fragments, 

reducing the total number of tokens passed through 

the model. This strategy allows the model to focus 

its attention on dynamic and informative areas such 

as moving vehicles or potential collisions while 

ignoring large portions of static background like the 

road surface or sky, which are less relevant for 

accident detection. 

In this work, we propose reducing unnecessary 

computations by selectively extracting fragments 

from each frame: regions with high motion speed are 

represented by smaller fragments, while regions with 

low motion speed use larger ones. 

This approach allows the network to focus its 

attention on dynamic areas, which are the most 

critical for accident detection. 

The architecture of the proposed method 

includes a two-stage Sparse-ViT. The spatial 

attention block operates on image fragments within 

each frame, while the temporal block processes the 

sequence of classification tokens (CLS) that 

summarize frame-level information. Before 

vectorization, a non-overlapping tiled adaptive 

fragmentation is performed, guided by the optical 

flow: for each base grid cell, the magnitude of the 

flow vector is compared with quantile thresholds 

(q₁/q₂), and the fragment size is selected (e.g., 

8/16/32 pixels). The fragments are then cropped 

without overlap, resized to a base size, and 

converted into feature vectors. This selection 

reduces redundant features and focuses 

computations on regions with motion, improving 

both spatial frame analysis and temporal information 

aggregation. 

1. RELATED WORKS 

There are several approaches for segmentation 

in video streams, which can be grouped as follows:  

– transformer-based approaches for video: 

Vision Transformers (ViT) [1], [2] laid the 

foundation for representing images as a sequence of 

small patches, each transformed into a feature vector. 

TimeSformer [3] separates attention into spatial and 

temporal components [4], [5]. Video Vision 

Transformers (ViViT) [6] factorizes spatio-temporal 

attention by applying separate blocks for per-frame 

patch processing and temporal aggregation. Video 

Swin Transformer [7] introduces hierarchical shifted 

windows, while Multiscale Vision Transformers 

(MViT) [8] builds multi-level representations. These 

lines of work demonstrate that separating space and 

time, as well as using multi-scale representations, 

improves efficiency. However, the quadratic 

computational cost of applying full attention over 

the entire sequence of features remains a bottleneck; 

– sparse and efficient attention for long 

sequences: models such as Sparse Transformer [9], 

Longformer [10], and BigBird [11] reduce 

computational complexity by employing local and 

random attention patterns. Selective attention with 

learned biases has shown that attending to a small 

number of the most relevant key elements can 

effectively replace full global attention. For video 

tasks, this is particularly important when processing 

long clips. In the approach described in this work, 

“sparsity” is achieved not by modifying the internal 

attention mechanism, but by reducing the number of 

sequence elements beforehand: only frame patches 

with high motion saliency are retained, so the 

sequence length is shortened even before being 

processed by the transformer; 

– optical flow and two-stream signals: 

FlowNet2 [12], PWC-Net [13], and Recurrent All-

Pairs Field Transforms (RAFT) [14] have made 

optical flow a reliable source of motion features. 

Motion is useful both as a separate input branch 

(two-stream) and as a cue for spatial selection and 

feature masking. In the implementation described 

here, classical Farnebäck flow is used as an 

“importance map” that guides adaptive patching, 

providing a significant speedup on CPU while 

maintaining acceptable quality;  

– token selection and representation reduction: 

to avoid processing all frame patches, the 

TokenLearner [15] method dynamically aggregates a 

small subset of the most informative patches, while 

DynamicViT learns to skip less important patches 

during inference. For video, motion-guided 
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approaches have been proposed (e.g., ViViT variants, 

MotionFormer), as well as methods focusing on 

salient regions (AdaFocus), which enhance 

resolution in critical areas. The approach in this 

work follows this line: adaptive patch selection is 

applied, where the window size (8/16/32 pixels) is 

determined by quantile thresholds of optical flow 

magnitude. Patches are extracted without overlap 

and resized to a base size, which significantly 

reduces the number of processed representations 

while preserving regions with pronounced motion;  

– class imbalance: common approaches include 

balanced cross-entropy loss or reweighting; Focal 

Loss is a specialized loss function [16]; 

oversampling can be performed using 

WeightedRandomSampler. For video tasks, 

temporal segmentation methods such as Temporal 

Segment Networks (TSN) [17] are also applied to 

avoid overrepresentation of long normal segments. 

In the implementation described here, loss 

reweighting and weighted random sampling in the 

data loader are already employed; Focal Loss and 

TSN-style segmentation can be enabled if needed; 

– pretraining and masked modeling 

(perspective): MAE [18] and VideoMAE [19] have 

shown that masking patches followed by 

reconstruction significantly improves feature 

robustness, especially when labeled data are limited. 

In this work, the MAE approach has not yet been 

applied in the presented experiments; however, it is 

fully compatible with the frame patch generation and 

selection module used here and represents a logical 

next step; 

– positioning summary: unlike approaches that 

focus on improving the attention mechanism itself, 

the present work reduces computational cost through 

motion-based patch selection and a two-stage 

processing pipeline: the spatial stage operates on the 

selected patches of each frame, while the temporal 

stage aggregates only the per-frame CLS tokens 

[20]. This design yields a compact, CPU-friendly 

configuration without overly complex components 

and with moderate requirements for computational 

resources and data volume. 

2. PROBLEM STATEMENT 

Traffic accident detection from surveillance 

streams is a challenging problem due to the high 

dimensionality of video, scene variability (weather, 

lighting, camera angle), and class imbalance 

accidents occur far less frequently than normal 

traffic. In addition, real-world deployments are often 

constrained by latency and limited hardware 

resources (edge devices, CPU-only servers). 

Therefore, a practical approach must achieve a 

balance between accuracy, computational efficiency, 

and robustness while maintaining sensitivity to 

short, safety-critical events. 

The aim of this work is to develop a lightweight 

yet accurate method for binary video classification 

determining whether a given video clip depicts an 

accident or a normal situation that can operate 

effectively under real-time or CPU-based conditions. 

The main tasks of the study are as follows. 

1. To design an adaptive fragment selection 

mechanism that dynamically adjusts spatial 

resolution according to motion intensity, preserving 

details in dynamic regions while reducing 

redundancy in static areas. 

2. To implement a two-stage Sparse Video 

Transformer architecture that first extracts spatial 

features within individual frames and then 

aggregates temporal dependencies across frames 

using CLS tokens. 

3. To optimize the model for limited-memory 

environments by reducing the number of tokens 

processed per frame by approximately 30–60%, 

depending on scene complexity. 

4. To evaluate the proposed approach against 

conventional baselines such as uniform-patch ViT 

and 3D CNN-based models in terms of accuracy, 

macro-F1, precision, recall, and inference speed on 

both CPU and GPU. 

5. To analyze the impact of class imbalance 

and introduce techniques such as weighted loss 

functions and sampling strategies to improve the 

model’s sensitivity to rare accident events. 

The proposed method relies on optical flow 

estimation (Farnebäck algorithm) to detect motion-

salient regions and guide patch size selection (8×8, 

16×16, or 32×32 pixels). Smaller patches are 

assigned to high-motion areas, while larger patches 

cover static backgrounds. The selected non-

overlapping patches are embedded and processed by 

the spatial transformer block to produce frame-level 

representations. These CLS tokens are then passed 

to a temporal transformer that captures inter-frame 

dynamics and outputs the final classification result. 

The approach assumes the presence of visible 

motion cues associated with accident dynamics (e.g., 

rapid deceleration, collision, sudden trajectory 

change). In scenes with very subtle or absent 

motion, the quality of optical flow estimation 

becomes the limiting factor. Additionally, 

precomputing optical flow maps introduces 

moderate preprocessing overhead. However, due to 
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the quantile-based thresholding mechanism, patch 

selection remains adaptive across scenes with 

varying motion magnitudes. 

In summary, the study aims to achieve efficient 

clip-level classification of road traffic accidents 

under realistic computational constraints by 

combining motion-guided adaptive fragmentation 

with a sparse transformer architecture. The resulting 

framework selectively allocates computational 

capacity to the most informative regions, 

maintaining accuracy while substantially reducing 

computational cost and inference time. 

3. PROPOSED METHOD 

The proposed method introduces an adaptive 

motion-aware video transformer architecture 

designed to efficiently detect traffic accidents in 

surveillance streams. Like classical Vision 

Transformer (ViT) architectures, our model is 

composed of two main stages: a spatial transformer 

block and a temporal transformer block preceded by 

a motion-guided adaptive patch selection module. 

The goal of the framework is to allocate 

computational resources dynamically, focusing the 

model’s attention on regions exhibiting high motion 

activity, which are more likely to contain critical 

events such as collisions, lane departures, or abrupt 

stops.  

Each video clip is uniformly sampled to 8 

frames from the original video stream to provide a 

reasonable trade-off between temporal context and 

processing speed. Uniform sampling ensures that the 

model receives frames that represent the temporal 

dynamics of the event without introducing 

redundancy. All frames are resized to a fixed spatial 

resolution (128×128 px) and converted to grayscale 

copies for optical flow computation, while the RGB 

versions are retained for subsequent patch 

embedding in the transformer. 

To identify motion-relevant regions, we use the 

Farnebäck dense optical flow algorithm, which 

estimates per-pixel motion vectors between 

consecutive frames. Let 𝑋𝑡 ∈  RH×W×3 be the RGB 

frame at time t. We compute a dense Farnebäck 

optical flow (1) between consecutive frames (𝑋t , 

𝑋𝑡+1) and form the flow-magnitude map  𝑀𝑡(𝑥, 𝑦)  

   𝑀𝑡(𝑥, 𝑦) =  √𝑢𝑡(𝑥, 𝑦)2 + 𝑣𝑡(𝑥, 𝑦)2,    (1)       

where 𝑢𝑡 , 𝑣𝑡 are the horizontal and vertical flow 

components.  

These magnitude maps serve as the foundation 

for adaptive fragmentation, allowing the model to 

identify areas with high, medium, and low motion 

intensity. Unlike sparse or feature-based flow 

methods, the Farnebäck approach provides dense 

motion fields, which are particularly suitable for 

low-texture traffic scenes and surveillance videos. 

The decision thresholds q1, q2  are computed 

over non-zero values of  𝑀𝑡  (we use the 33% and 

66% quantiles).  

We tile the frame with a base grid of step b 

(typically b=8); the number of base cells is (2) 

𝑁𝑏𝑎𝑠𝑒 =  ⌊
𝐻

𝑏
⌋ ∙ ⌊

𝑊

𝑏
⌋,    (2) 

and any remainder at the frame border is discarded. 

For each base cell c we compute a robust 

motion-intensity estimate using a top-k average 𝑀̅𝑐 

inside the cell (3):  

𝑀̅𝑐 =  
1

𝑘
∑ 𝑀𝑡(𝑥, 𝑦)(x,y)∈top−k(c) , k = ⌊0.25𝑏2⌋,  (3) 

The fragment (patch) size for cell c is chosen by 

comparing 𝑀̅𝑐 to the quantile thresholds (4): 

{

𝑀̅𝑐 ≥  𝑞2 ⇒ 𝑠𝑐 = 𝑏,

𝑞1 ≤ 𝑀̅𝑐  <  𝑞2 ⇒ 𝑠𝑐 = 2𝑏,

𝑀̅𝑐 <  𝑞1 ⇒ 𝑠𝑐 = 4𝑏.

   (4)  

Thus, high-motion regions receive finer 

patches, while static areas are summarized with 

larger patches, forming the adaptive, motion-guided 

set of tokens used by the subsequent transformer 

blocks. 

In the spatial stage, multi-head self-attention is 

applied only to the selected patches of a single 

frame. The resulting CLS token serves as a compact 

per-frame representation. These CLS tokens from all 

frames are passed to the temporal stage, where a 

second transformer aggregates temporal 

dependencies and produces a classification output 

(accident or normal scene). 

Unlike uniform patch-based ViT, this approach 

adaptively reduces the number of tokens by ~ 30-

60%, depending on the scene, which significantly 

lowers computational cost and memory footprint. In 

addition, class-weighted loss and weighted random 

sampling are used during training to address class 

imbalance between accident and normal clips. 

The proposed approach combines motion-

guided spatial selection with factorized space-time 

architecture, achieving higher macro-F1 [21] and 

accuracy [22] compared to uniform patching or TSN 

baselines while maintaining CPU-friendly inference 

speed. Fig. 1 describes the proposed method.  
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Fig. 1. Proposed method scheme 
Source: compiled by the authors 

4. POST-PROCESSING 

After obtaining the CLS token representations 

for all sampled frames, the model proceeds to the 
temporal aggregation stage. At this stage, the 

sequence of frame-level embeddings is passed 

through a lightweight temporal transformer that  

captures inter-frame dependencies, modeling both 
short-term and long-term temporal relations between 

consecutive frames. The transformer outputs a single 

compact video-level representation that summarizes 
the overall motion and contextual information within 

the clip.  

This final representation is then passed to a 
classification head composed of a linear projection 

layer followed by a softmax activation function [23]. 

The softmax layer converts the learned features into 

a probability distribution over the two classes 
“accident” and “normal”. The predicted output 

corresponds to the likelihood of the current video 

segment containing an accident event.  
To improve stability and handle dataset 

imbalance [24], additional post-processing 

operations are applied. First, class-specific 

thresholds are introduced to compensate for the 
predominance of normal samples in traffic datasets. 

These thresholds are empirically tuned on the 

validation set, ensuring that the model maintains 

high recall for accident cases while suppressing false 

positives in normal traffic scenes. 

Furthermore, temporal smoothing is employed 
to refine the output sequence. Instead of treating 

each clip prediction independently, a temporal 

moving-average filter or exponential decay function 
can be applied to consecutive outputs, reducing 

abrupt fluctuations in classification results. This 

helps stabilize the prediction stream, particularly 
near the boundaries of accident segments, where 

motion patterns may partially overlap with normal 

driving behavior. 

In practical deployment scenarios, such post-
processing proves especially valuable. It enhances 

robustness against sensor noise, varying frame rates, 

and visual artifacts (e.g., motion blur or 
compression). As a result, the final decision 

becomes more consistent and interpretable, allowing 

the system to achieve higher reliability in real-world 

traffic monitoring environments. Overall, this stage 
ensures that the detection process remains both 

sensitive to short accident events and resilient to 

transient anomalies, keeping the false alarm rate low 
while preserving timely response capability. 

5. TRAINING 

The model was trained from scratch using the 
AdamW optimizer [25] with an initial learning rate 

of 3e-4. A cosine learning rate scheduler with 

warmup was applied for the first 5 epochs, followed 

by gradual decay until convergence. The batch size 
was set to 32 due to CPU memory constraints.  

Class-weighted cross-entropy loss was used as 

the main objective function to handle the imbalance 
between accident and normal classes. 

WeightedRandomSampler was applied to the 

training data to ensure a balanced representation of 
both classes within each mini-batch. The model was 

trained for 50 epochs with validation after each 

epoch, fix random seeds for reproducibility, and use 

an 80/20 train/validation split that preserves the 
original class distribution, and with early stopping 

based on the macro-F1 score on the validation set to 

prevent overfitting. 
Input data were uniformly sampled to obtain 8 

frames per clip resized to 118×118 and normalized 

per channel. Data augmentation included random 

horizontal flipping and moderate brightness/contrast 
adjustments to improve generalization. 

For motion cues, Farnebäck dense optical flow 

is computed between consecutive frames; flow 
magnitudes are converted to quantile thresholds 

𝑞1 = 33 %, 𝑞2 = 66 %to drive adaptive patch sizing 

with base step b=8. To accelerate training, optical-
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flow maps and selected-patch lists are precomputed 

and cached, providing a 3× – 5× per-epoch speed-up 

on CPU. 
This setup (weighted loss + balanced sampling 

+ light regularization + cached motion cues) enables 

learning discriminative space–time patterns while 
keeping the pipeline efficient and CPU-friendly. 

6. EXPERIMENTS 

For training and evaluation, the Car Crash 
Dataset (CCD) 1500 dataset [26] was selected, 

which contains 1500 accident and 3000 normal 

video clips. This dataset is particularly well-suited 

for accident detection research because it includes a 
wide range of traffic conditions, illumination levels, 

camera viewpoints, and accident types, such as rear-

end collisions, side impacts, and pedestrian-related 
events. The average clip duration is 8-12 seconds, 

which makes it appropriate for short-term temporal 

modeling. 

The dataset was split into 80 % training and 
20% validation subsets while preserving the class 

distribution. Each clip was uniformly sampled to 

extract 8 representative frames, ensuring coverage of 
both pre-accident and post-accident moments while 

maintaining temporal consistency. Frames were 

resized to 118×118 pixels and normalized before 
further processing. 

During evaluation, we compared our proposed 

Adaptive-Sparse-ViT model with two baselines: 

1. Uniform-patch ViT  the same architecture 

but with a fixed grid of 16×16 patches (no motion 
guidance). 

2. TSN (ResNet-18)  a conventional 

temporal segment network widely used in video 

classification tasks. 

All models were trained under identical 
conditions using the AdamW optimizer, cosine 

learning-rate schedule, and early stopping based on 

the macro-F1 score on the validation set. 
During the training process, the proposed 

Adaptive-Sparse-ViT model demonstrated stable 

convergence and faster performance improvement 

compared to both baselines. Fig. 2 and Fig. 3 
presents the evolution of validation accuracy and 

macro-F1 score over 50 epochs for all evaluated 

models. The Adaptive-Sparse-ViT consistently 
outperformed both the Uniform-patch ViT and TSN 

(ResNet-18) throughout the entire training process. 

In the early epochs (0–10), the adaptive model 

shows a steeper growth curve, indicating more 
efficient learning from motion-guided patches. This 

suggests that the model quickly focuses on the most 

informative regions of each frame, improving 

generalization even with fewer tokens. By the end of 

training, Adaptive-Sparse-ViT reached 

approximately 0.86 accuracy and 0.85 macro-F1, 
surpassing Uniform-patch ViT (≈0.83/0.8) and TSN 

(≈0.82/0.78). The smaller variance band around the 

Adaptive-Sparse-ViT curves also indicates higher 
training stability and lower sensitivity to random 

initialization. 

Overall, these results confirm that the adaptive 
fragment selection strategy not only reduces 

computational cost but also accelerates convergence 

and improves classification consistency across 

accident and normal scenes. 

 

Fig. 2. Validation accuracy over training epochs 

between Adaptive-Sparse-ViT, Uniform-patch ViT 

and TSN (ResNet-18). 
Source: compiled by the authors 

 

Fig. 3. Validation macro-F1 score over training 

epoepochs between Adaptive-Sparse-ViT, Uniform-

patch ViT and TSN (ResNet-18) 
Source: compiled by the authors 



Normatova T. V., Mashtalir S. V.       /       Herald of Advanced Information Technology 

                                                                                     2025; Vol.8 No.4: 464–475 

470 Theoretical aspects of computer science,  

programming and data analysis 

ISSN 2663-0176 (Print) 

ISSN 2663-7731 (Online) 
 

The comparison was performed in terms of 

efficiency and accuracy metrics, including: 

 number of processed patches per frame, 
 total parameter count, 

 frames-per-second (FPS) on CPU and GPU, 

 classification accuracy, macro-F1, precision, 
and recall. 

The CPU setup used an Intel Xeon @ 2.20 GHz 

(2 vCPUs, 12 GB RAM), while GPU experiments 
were conducted on an NVIDIA Tesla T4 (16 GB). 

Our method significantly reduced the number of 

tokens per frame approximately 30–60% fewer than 

in the uniform ViT baseline which resulted in higher 
throughput and lower memory usage. Specifically, 

Adaptive-Sparse-ViT achieved ≈12–18 FPS on CPU 

and ≈220–280 FPS on GPU, compared to ≈8–12 
FPS (CPU) and ≈160–220 FPS (GPU) for the 

baselines (see Table 1). Despite processing fewer 

tokens, the model reached higher accuracy (0.864) 

and macro-F1 (0.851) compared to both Uniform-
patch ViT (0.83 / 0.80) and TSN (0.82 / 0.78) as 

shown in Table 2. 

Table 1. Methods complexity and efficiency 

metrics (where 𝑵𝒃𝒂𝒔𝒆 denotes the number of 

uniform 8×8 patches per frame  

(112×112 → 196 patches) 

Method Patches per 

frame (b=8, 

112×112) 

Number of 

parameters, 

millions 

Frames per 

second 

(CPU/GPU) 

Adaptive-

Sparse-ViT 

(our method) 

~80–120 

(≤0.6·N_base)* 

~1.2–1.5 ≈12–18 / 

≈220–280 

Uniform-

patch ViT  

(no motion) 

196 (=N_base) ~1.0–1.2 ≈8–12 / 

≈160–220 

TSN  

(ResNet-18) 
 ~11.0–12.0 ≈8–12 / 

≈160–220 
Source: compiled by the authors 

These results demonstrate that the proposed 
adaptive fragment selection improves both 

computational efficiency and detection sensitivity to 

short, motion-heavy accident events. Fig. 6 

illustrates an example of motion-guided adaptive 
patching, where small patches are allocated around 

moving vehicles, while static regions are covered by 

larger patches. This strategy enables the model to 
focus attention on dynamic, informative regions and 

avoid unnecessary computations on the background. 

Furthermore, visual inspection of classification 

results shows that Adaptive-Sparse-ViT reacts faster 
to sudden motion changes and maintains stable 

predictions in scenes with partial occlusions or 

camera shake, highlighting the robustness of motion-
driven attention in real-world surveillance scenarios. 

We compared our method with existing 

Uniform-patch ViT (no motion) and TSN (RestNet-

18) (Table 1, 2).  

Table 2. Methods classification metrics 

Method Accu-
racy 

Macro-F1 Preci-
sion 

Recall 

Adaptive-

Sparse-ViT 

(our method) 

0.864 0.851 0.845 0.860 

Uniform-
patch ViT 

(no motion) 

0.83 0.80 0.80 0.78 

TSN 

(ResNet-18) 

0.82 0.78 0.81 0.79 

Source: compiled by the authors 

We compared the inference speed (frames per 

second, FPS) of all methods on both CPU and GPU 

devices. Average FPS values (computed from Table 
1) are reported, along with patch counts per frame. 

As illustrated in Fig. 4, the Adaptive-Sparse-ViT 

achieved the highest overall performance, 
processing approximately 15 FPS on CPU and 250 

FPS on GPU, while requiring only 80-120 adaptive 

patches per frame. In contrast, the Uniform-patch 

ViT and TSN (ResNet-18) models reached about 10 
FPS on CPU and 190 FPS on GPU, both relying on 

a fixed grid of 196 patches per frame.  

This improvement in throughput demonstrates 
the advantage of the adaptive fragment selection 

strategy: by focusing computation on motion-

relevant areas, the model significantly reduces 
redundant token processing while maintaining high 

accuracy. The results indicate that Adaptive-Sparse-

ViT achieves a favorable trade-off between speed 

and accuracy, making it more suitable for real-time 
accident detection in traffic surveillance systems. 

 

Fig. 4. Inference speed comparison of Adaptive-

Sparse-ViT, Uniform-patch ViT, and TSN (ResNet-18) 

on CPU and GPU 
Source: compiled by the authors 
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7. RESULTS AND DISCUSSIONS 

This section presents the intermediate results of 

the proposed Adaptive-Sparse-ViT model, focusing 
on the visualization of optical flow maps and 

adaptive motion-guided patch selection. These 

examples illustrate how motion cues guide the 
model to allocate smaller patches in dynamic regions 

while using larger patches in static areas, thereby 

reducing computational cost without losing critical 
information. 

Fig. 5 shows the optical flow magnitude [27] 

overlaid on the input frame. The color coding 

reflects both the magnitude and the direction of 
motion: green and cyan areas correspond to vehicles 

moving at moderate speed, while purple and blue 

indicate stronger motion intensity. Static background 
regions are largely suppressed, which demonstrates 

that optical flow effectively isolates the dynamic 

areas relevant for accident detection. 

 

Fig. 5. Optical flow visualization for a traffic scene 
Source: compiled by the authors 

Fig. 6 presents the same frame after adaptive 

patch merging. Here, small patches - green (8×8) 
concentrate around moving vehicles to capture fine-

grained details of motion, while medium - yellow 

(16×16) and large – red (32×32) patches cover static 

road and background areas. This adaptive allocation 
ensures that the model processes only motion-salient 

tokens, discarding redundant static information.  

Fig. 7 presents different normal scenes with 
corresponding optical flow visualization and 

adaptive patching. Left: optical flow magnitude 

highlighting regions of motion intensity. Right: 

adaptive patch selection smaller green patches 
correspond to areas of high motion, medium yellow 

to moderate motion, and large red to static regions. 

Fig. 8 shows the adaptive fragmentation for the 
accident scene. From left to right: the original frame 

(zoomed for better vision), optical flow 

visualization, and adaptive patch generation (green- 

high motion, yellow-medium motion, red-static 

regions). 

 

Fig. 6. Adaptive patch grid based on motion intensity 
Source: compiled by the authors 

 

Fig. 7. Examples of adaptive frame 

fragmentation guided by optical flow 
Source: compiled by the authors 

To gain a deeper understanding of how the 
proposed model interprets video frames during 
inference, we conducted a qualitative analysis of 
attention distribution [28].  
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Fig. 8. Example of the adaptive fragment  

selection process for accident scenes 
Source: compiled by the authors 

The visualizations in Fig. 9 and Fig. 10 
illustrate how Adaptive-Sparse-ViT allocates 
attention across different regions in both accident 
and normal traffic scenes.  

It can be clearly observed that the model 
prioritizes motion-related regions, confirming the 
effectiveness of the adaptive fragment selection 
strategy and complementing the quantitative results 
presented earlier. 

 
Fig. 9. Visualization of the attention map for an 

accident scene 
Source: compiled by the authors 

In the accident scenario (Fig. 9), the model’s 
attention is concentrated around the interaction area 
between vehicles particularly the headlights and 
intersecting trajectories effectively highlighting 
potential collision zones. In contrast, during a 
normal traffic scene (Fig. 10), the attention map is 
more evenly distributed across moving vehicles 
without strong localized peaks, reflecting the 
absence of abnormal motion patterns or risk 

indicators such motion-aware sampling leads to a 
reduction of 30-60 % in the number of patches 
compared to uniform grid partitioning, directly 
translating into lower computational cost. At the 
same time, the method retains temporal and spatial 
details necessary for detecting short and rare 
accident events. 

The qualitative results confirm the effectiveness 
of the proposed selection strategy: 

 optical flow highlights motion regions with 
clear contrast between moving vehicles and static 
background; 

 patch merging adapts patch sizes to the 
spatial distribution of motion, preserving details in 
critical regions.  

 reduced token count improves inference 
speed while maintaining accuracy and sensitivity.  

 
Fig. 10. Visualization of the attention map for a 

normal traffic scene 
Source: compiled by the authors 

CONCLUSIONS AND PROSPECTS OF 

FURTHER RESEARCH 

This paper presents a lightweight and efficient 

classification method based on architecture, 
Adaptive-Sparse-ViT, designed for accident 

detection in traffic video streams. The proposed 

method combines motion-guided patch selection 
based on optical flow with a two-stage Vision 

Transformer that separately processes spatial and 

temporal dependencies.  
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The key aim was to focus computational effort 
on motion-relevant areas of the frame while 
avoiding uniform processing of the entire image. 
Through the use of quantile-based motion thresholds 
derived from Farnebäck optical flow, the model 
dynamically adjusts patch sizes (8×8, 16×16, 32×32 
pixels) to balance detail preservation and efficiency. 
This adaptive fragment selection reduced the 
number of processed tokens by 30–60% per frame 
without compromising the accuracy of accident 
recognition. Experimental results on the CCD1500 
dataset demonstrate superior performance compared 
to baseline models (TSN and Uniform-patch ViT) in 
terms of both accuracy and macro-F1 score, while 
maintaining near real-time inference speeds on CPU. 

The obtained results confirm that adaptive 
motion-driven token selection is an effective method 
for balancing accuracy and efficiency in video 
understanding tasks. The method is particularly 
suitable for CPU-based or embedded systems where 
computational resources are limited. 

Despite its advantages, several limitations 
remain. The method depends on the quality of 

optical flow estimation in scenes with subtle or 
minimal motion; the effectiveness of patch selection 
may decrease. Additionally, precomputing flow 
maps introduces a moderate preprocessing overhead.  

Future research should focus on integrating 
faster and more robust optical flow algorithms (e.g., 
RAFT, LiteFlowNet [29]), exploring end-to-end 
training where motion features are learned directly 
within the model, and optimizing the architecture for 
mobile and real-time applications. Further 
improvements may also include expanding the 
dataset to more complex conditions (night scenes, 
adverse weather) and applying hybrid attention 
strategies to enhance sensitivity to short and rare 
accident events. 
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АНОТАЦІЯ 

У роботі запропоновано простий у реалізації та дієвий підхід до класифікації коротких відеофрагментів на аварійні та 
нормальні сцени. З кожного кліпу рівномірно відбираємо вісім кадрів базової сітки, далі на базі карти оптичного потоку 
Farnebäck обираємо розмір фрагментів (вісім/шістнадцять/тридцять два пікселів). У зонах з інтенсивним рухом 
використовуються дрібніші патчі (вища деталізація), у статичних - більші (менші обчислення). Відібрані фрагменти не 
перекриваються, масштабуються до базового розміру та перетворюються на векторні ознаки. Архітектура методу 
складається з двох етапів. Спершу просторовий трансформер працює в межах одного кадру лише над відібраними 
фрагментами — це різко зменшує кількість ознакових одиниць. Потім часовий трансформер обробляє послідовність CLS-
токенів (коротких підсумкових представлень кадрів), агрегуючи динаміку у часі. Така факторизація «простір → час» знижує 

обчислювальні витрати й потребу в пам’яті без втрати інформативності в рухомих регіонах. Для подолання дисбалансу 
класів застосовано зважену крос-ентропійну втрату ентропійну (або «втрату з фокусуванням на важких прикладах») та 
зважене випадкове вибіркування під час навчання. Оптичний потік і списки вибраних фрагментів попередньо зберігаються 
на диск, що пришвидшує епохи на процесорі без спеціального обладнання. Оцінювання проводили на датасеті 
автомобільних аварій (тисяча п'ятсот аварійних і три тисячі нормальних відео) зі стандартним поділом вісімдесят на 
двадцять зі збереженням пропорцій класів. Отримані метрики: Accuracy = 0.864, Macro-F1 = 0.851. За попереднім 
порівнянням запропонований підхід перевершує базову рівномірну розбивку кадру та класичні схеми з простим часовим 
агрегуванням. Ключова перевага методу - це поєднання «рух-керованого» скорочення кількості ознак з двоетапною 

обробкою, що робить модель придатною до реалістичних обмежень за часом і ресурсами (при процесорній обробці) і 
водночас зберігає високу чутливість до коротких і локальних аварійних подій. Підхід можна легко масштабувати та 
поєднати з попереднім навчанням (наприклад, маскованим відновленням відео). У роботі також зафіксовано умови 
експериментів, відкриті налаштування і кроки, необхідні для повної відтворюваності. 

Ключові слова: відеокласифікація; нейронні мережі; згортеові нейронні мережі; класифікація об’єктів; аналіз 
відеопотоків: класифікація даних; обробка фрагментів зображення 
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