Normatova T. V., Mashtalir S. V. / Herald of Advanced Information Technology
2025; VVol.8 No.4: 464-475

DOI: https://doi.org/10.15276/hait.08.2025.29
UDC 004:83

Road traffic accident classification using a sparse video
transformer and adaptive fragmentation

Tetiana V. Normatova®

ORCID: https://orcid.org/0009-0004-3503-6350; tetiana.normatova@nure.ua

Sergii V. Mashtalir®

ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author ID: 36183980100
D Kharkiv National University of Radio Electronic, 14 Nauky Ave. Kharkiv, 61166, Ukraine

ABSTRACT

In this work, we propose a simple yet effective approach for classifying short road traffic video clips into car accident and
normal scenes. From each clip 8 frames are uniformly sampled across the sequence to ensure that key events are preserved even in
longer videos. Based on the Farnebéck optical flow map, an adaptive fragment selection is performed, where the patch size
(eight/sixteen/thirty-two pixels) is determined for each region of the base grid. Smaller patches are used in areas with intensive
motion (to capture finer details), while larger patches are used in static regions (to reduce computations). The selected fragments are
non-overlapping, resized to a uniform scale, and converted into feature vectors. The architecture operates in two stages. First, a
spatial transformer processes each frame independently; attending only to the selected fragments this drastically reduces the number
of feature tokens. Second, a temporal transformer processes the sequence of classify tokens (compact per-frame representations),
aggregating temporal dynamics across frames. This space-to-time factorization significantly lowers computational cost and memory
consumption while maintaining high informativeness in motion-intensive regions. To address class imbalance, we employ a weighted
cross-entropy loss (or focal loss emphasizing hard examples) and weighted random sampling during training. Optical flow maps and
fragment lists are precomputed and cached on disk, which accelerates training epochs even on CPUs without specialized hardware.
Evaluation was conducted on the Car Crash Dataset (one thousand and five hundred accident and three thousand normal videos)
using an eighty to twenty percent train-test split with preserved class proportions. The proposed method achieved Accuracy = 0.864
and Macro-F1 = 0.851. Preliminary comparisons show that our approach outperforms both the baseline uniform-patch Vision
Transformers and traditional temporal aggregation schemes. The key advantage of the method lies in combining motion-guided
feature reduction with a two-stage spatial-temporal processing pipeline, making the model suitable for realistic computational
constraints (CPU-level inference) while maintaining high sensitivity to short and localized accident events. The approach is easily
scalable and can be integrated with self-supervised pertaining techniques (e.g., masked video reconstruction). All experimental
conditions, hyperparameters, and configurations are documented to ensure full reproducibility.
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INTRODUCTION subtraction, motion history analysis, or Support
Vector Machines. However, these approaches are
highly sensitive to lighting conditions, occlusions,
and camera viewpoints, which limits their robustness
in real-world deployments. With the advent of deep
learning, Convolutional Neural Networks (CNNSs)
and 3D Convolutional Neural Networks (3D CNNs)
have become the dominant tools for video
understanding tasks, including accident detection.
These models are capable of automatically learning
spatio-temporal  features directly from data,
eliminating the need for manual feature engineering.

Despite their success, most existing deep
learning-based solutions process the entire video
frame in a uniform manner, frame by frame or as a
3D volume. Such exhaustive processing leads to
high computational and memory demands,
especially for high-resolution video streams. The
high dimensionality of video data results in models

Artificial intelligence (Al) and computer vision
are rapidly transforming the way traffic
environments are monitored, analyzed, and
understood. In recent years, intelligent traffic
systems have become a cornerstone of modern smart
city infrastructure, enabling automated accident
detection, vehicle tracking, congestion analysis, and
overall road safety management. The ability to
automatically abnormal situations in real time, such
as traffic collisions or near-miss incidents is
particularly critical because it allows for immediate
response and can significantly reduce the severity of
consequences.

Traditionally, traffic video analysis has relied
on handcrafted feature extraction and conventional
machine learning techniques such as background
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which require powerful GPUs and large-scale
infrastructure to operate efficiently. As a result,
these systems are often impractical for CPU-based
environments or real-time applications, such as
traffic monitoring from roadside cameras or
embedded systems in vehicles. Moreover, redundant
processing of static background regions wastes
resources without contributing valuable information
to the classification process.

In this work, we aim to address these
limitations by introducing an adaptive and motion-
aware approach to video representation. Instead of
processing all regions of a frame equally, we
propose to reduce unnecessary computation by
selectively extracting fragments (patches) based on
the intensity of motion detected between consecutive
frames. Regions with high motion speed are
represented by smaller fragments, which preserve
detailed spatial information, while low-motion
regions are represented by larger fragments,
reducing the total number of tokens passed through
the model. This strategy allows the model to focus
its attention on dynamic and informative areas such
as moving vehicles or potential collisions while
ignoring large portions of static background like the
road surface or sky, which are less relevant for
accident detection.

In this work, we propose reducing unnecessary
computations by selectively extracting fragments
from each frame: regions with high motion speed are
represented by smaller fragments, while regions with
low motion speed use larger ones.

This approach allows the network to focus its
attention on dynamic areas, which are the most
critical for accident detection.

The architecture of the proposed method
includes a two-stage Sparse-ViT. The spatial
attention block operates on image fragments within
each frame, while the temporal block processes the
sequence of classification tokens (CLS) that
summarize  frame-level information.  Before
vectorization, a non-overlapping tiled adaptive
fragmentation is performed, guided by the optical
flow: for each base grid cell, the magnitude of the
flow vector is compared with quantile thresholds
(q1/q2), and the fragment size is selected (e.g.,
8/16/32 pixels). The fragments are then cropped
without overlap, resized to a base size, and
converted into feature vectors. This selection
reduces  redundant  features and  focuses
computations on regions with motion, improving
both spatial frame analysis and temporal information
aggregation.

1. RELATED WORKS

There are several approaches for segmentation
in video streams, which can be grouped as follows:

— transformer-based approaches for video:
Vision Transformers (ViT) [1], [2] laid the
foundation for representing images as a sequence of
small patches, each transformed into a feature vector.
TimeSformer [3] separates attention into spatial and
temporal components [4], [5]. Video Vision
Transformers (ViViT) [6] factorizes spatio-temporal
attention by applying separate blocks for per-frame
patch processing and temporal aggregation. Video
Swin Transformer [7] introduces hierarchical shifted
windows, while Multiscale Vision Transformers
(MVIiT) [8] builds multi-level representations. These
lines of work demonstrate that separating space and
time, as well as using multi-scale representations,
improves efficiency. However, the quadratic
computational cost of applying full attention over
the entire sequence of features remains a bottleneck;

—sparse and efficient attention for long
sequences: models such as Sparse Transformer [9],
Longformer [10], and BigBird [11] reduce
computational complexity by employing local and
random attention patterns. Selective attention with
learned biases has shown that attending to a small
number of the most relevant key elements can
effectively replace full global attention. For video
tasks, this is particularly important when processing
long clips. In the approach described in this work,
“sparsity” is achieved not by modifying the internal
attention mechanism, but by reducing the number of
sequence elements beforehand: only frame patches
with high motion saliency are retained, so the
sequence length is shortened even before being
processed by the transformer;

—optical flow and two-stream signals:
FlowNet2 [12], PWC-Net [13], and Recurrent All-
Pairs Field Transforms (RAFT) [14] have made
optical flow a reliable source of motion features.
Motion is useful both as a separate input branch
(two-stream) and as a cue for spatial selection and
feature masking. In the implementation described
here, classical Farnebdack flow is used as an
“importance map” that guides adaptive patching,
providing a significant speedup on CPU while
maintaining acceptable quality;

—token selection and representation reduction:
to avoid processing all frame patches, the
TokenLearner [15] method dynamically aggregates a
small subset of the most informative patches, while
DynamicViT learns to skip less important patches
during inference. For video, motion-guided
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approaches have been proposed (e.g., ViViT variants,
MotionFormer), as well as methods focusing on
salient regions (AdaFocus), which enhance
resolution in critical areas. The approach in this
work follows this line: adaptive patch selection is
applied, where the window size (8/16/32 pixels) is
determined by quantile thresholds of optical flow
magnitude. Patches are extracted without overlap
and resized to a base size, which significantly
reduces the number of processed representations
while preserving regions with pronounced motion;

— class imbalance: common approaches include
balanced cross-entropy loss or reweighting; Focal

Loss is a specialized loss function [16];
oversampling can  be  performed  using
WeightedRandomSampler.  For  video  tasks,

temporal segmentation methods such as Temporal
Segment Networks (TSN) [17] are also applied to
avoid overrepresentation of long normal segments.
In the implementation described here, loss
reweighting and weighted random sampling in the
data loader are already employed; Focal Loss and
TSN-style segmentation can be enabled if needed;

— pretraining and masked modeling
(perspective): MAE [18] and VideoMAE [19] have
shown that masking patches followed by
reconstruction  significantly  improves feature
robustness, especially when labeled data are limited.
In this work, the MAE approach has not yet been
applied in the presented experiments; however, it is
fully compatible with the frame patch generation and
selection module used here and represents a logical
next step;

— positioning summary: unlike approaches that
focus on improving the attention mechanism itself,
the present work reduces computational cost through
motion-based patch selection and a two-stage
processing pipeline: the spatial stage operates on the
selected patches of each frame, while the temporal
stage aggregates only the per-frame CLS tokens
[20]. This design yields a compact, CPU-friendly
configuration without overly complex components
and with moderate requirements for computational
resources and data volume.

2. PROBLEM STATEMENT

Traffic accident detection from surveillance
streams is a challenging problem due to the high
dimensionality of video, scene variability (weather,
lighting, camera angle), and class imbalance
accidents occur far less frequently than normal
traffic. In addition, real-world deployments are often
constrained by latency and limited hardware

resources (edge devices, CPU-only servers).
Therefore, a practical approach must achieve a
balance between accuracy, computational efficiency,
and robustness while maintaining sensitivity to
short, safety-critical events.

The aim of this work is to develop a lightweight
yet accurate method for binary video classification
determining whether a given video clip depicts an
accident or a normal situation that can operate
effectively under real-time or CPU-based conditions.

The main tasks of the study are as follows.

1. To design an adaptive fragment selection
mechanism that dynamically adjusts spatial
resolution according to motion intensity, preserving
details in dynamic regions while reducing
redundancy in static areas.

2. To implement a two-stage Sparse Video
Transformer architecture that first extracts spatial
features within individual frames and then
aggregates temporal dependencies across frames
using CLS tokens.

3. To optimize the model for limited-memory
environments by reducing the number of tokens
processed per frame by approximately 30-60%,
depending on scene complexity.

4. To evaluate the proposed approach against
conventional baselines such as uniform-patch ViT
and 3D CNN-based models in terms of accuracy,
macro-F1, precision, recall, and inference speed on
both CPU and GPU.

5. To analyze the impact of class imbalance
and introduce techniques such as weighted loss
functions and sampling strategies to improve the
model’s sensitivity to rare accident events.

The proposed method relies on optical flow
estimation (Farneback algorithm) to detect motion-
salient regions and guide patch size selection (8x8,
16x16, or 32x32 pixels). Smaller patches are
assigned to high-motion areas, while larger patches
cover static backgrounds. The selected non-
overlapping patches are embedded and processed by
the spatial transformer block to produce frame-level
representations. These CLS tokens are then passed
to a temporal transformer that captures inter-frame
dynamics and outputs the final classification result.

The approach assumes the presence of visible
motion cues associated with accident dynamics (e.g.,
rapid deceleration, collision, sudden trajectory
change). In scenes with very subtle or absent
motion, the quality of optical flow estimation
becomes the Ilimiting factor. Additionally,
precomputing optical flow maps introduces
moderate preprocessing overhead. However, due to
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the quantile-based thresholding mechanism, patch
selection remains adaptive across scenes with
varying motion magnitudes.

In summary, the study aims to achieve efficient
clip-level classification of road traffic accidents
under realistic computational constraints by
combining motion-guided adaptive fragmentation
with a sparse transformer architecture. The resulting
framework selectively allocates computational
capacity to the most informative regions,
maintaining accuracy while substantially reducing
computational cost and inference time.

3. PROPOSED METHOD

The proposed method introduces an adaptive
motion-aware  video transformer  architecture
designed to efficiently detect traffic accidents in
surveillance  streams. Like classical Vision
Transformer (ViT) architectures, our model is
composed of two main stages: a spatial transformer
block and a temporal transformer block preceded by
a motion-guided adaptive patch selection module.
The goal of the framework is to allocate
computational resources dynamically, focusing the
model’s attention on regions exhibiting high motion
activity, which are more likely to contain critical
events such as collisions, lane departures, or abrupt
stops.

Each video clip is uniformly sampled to 8
frames from the original video stream to provide a
reasonable trade-off between temporal context and
processing speed. Uniform sampling ensures that the
model receives frames that represent the temporal
dynamics of the event without introducing
redundancy. All frames are resized to a fixed spatial
resolution (128x128 px) and converted to grayscale
copies for optical flow computation, while the RGB
versions are retained for subsequent patch
embedding in the transformer.

To identify motion-relevant regions, we use the
Farnebdck dense optical flow algorithm, which
estimates  per-pixel motion vectors between
consecutive frames. Let X, € RH*W*3 pe the RGB
frame at time t. We compute a dense Farnebéck
optical flow (1) between consecutive frames (X,
X¢41) and form the flow-magnitude map M, (x,y)

Mc(x,y) = Juc (6 9)? +ve (6% (1)

where u,, v, are the horizontal and vertical flow
components.

These magnitude maps serve as the foundation
for adaptive fragmentation, allowing the model to
identify areas with high, medium, and low motion

intensity. Unlike sparse or feature-based flow
methods, the Farneb&dck approach provides dense
motion fields, which are particularly suitable for
low-texture traffic scenes and surveillance videos.

The decision thresholds qi, g. are computed
over non-zero values of M, (we use the 33% and
66% quantiles).

We tile the frame with a base grid of step b
(typically b=8); the number of base cells is (2)

B3] @

and any remainder at the frame border is discarded.

For each base cell ¢ we compute a robust
motion-intensity estimate using a top-k average M,
inside the cell (3):

— 1

M: = 3 Zeyetop-kio Me (0, ), k=10.25b%], (3)

The fragment (patch) size for cell ¢ is chosen by
comparing M, to the quantile thresholds (4):

Npase =

Mc = q,=>Sc=b,
q1 < M. < q = sc = 2b, 4)
M. < q, = s. = 4b.

Thus, high-motion regions receive finer
patches, while static areas are summarized with
larger patches, forming the adaptive, motion-guided
set of tokens used by the subsequent transformer
blocks.

In the spatial stage, multi-head self-attention is
applied only to the selected patches of a single
frame. The resulting CLS token serves as a compact
per-frame representation. These CLS tokens from all
frames are passed to the temporal stage, where a
second transformer aggregates temporal
dependencies and produces a classification output
(accident or normal scene).

Unlike uniform patch-based ViT, this approach
adaptively reduces the number of tokens by ~ 30-
60%, depending on the scene, which significantly
lowers computational cost and memory footprint. In
addition, class-weighted loss and weighted random
sampling are used during training to address class
imbalance between accident and normal clips.

The proposed approach combines motion-
guided spatial selection with factorized space-time
architecture, achieving higher macro-F1 [21] and
accuracy [22] compared to uniform patching or TSN
baselines while maintaining CPU-friendly inference
speed. Fig. 1 describes the proposed method.
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Fig. 1. Proposed method scheme
Source: compiled by the authors

4. POST-PROCESSING

After obtaining the CLS token representations
for all sampled frames, the model proceeds to the
temporal aggregation stage. At this stage, the
sequence of frame-level embeddings is passed
through a lightweight temporal transformer that
captures inter-frame dependencies, modeling both
short-term and long-term temporal relations between
consecutive frames. The transformer outputs a single
compact video-level representation that summarizes
the overall motion and contextual information within
the clip.

This final representation is then passed to a
classification head composed of a linear projection
layer followed by a softmax activation function [23].
The softmax layer converts the learned features into
a probability distribution over the two classes
“accident” and “normal”. The predicted output
corresponds to the likelihood of the current video
segment containing an accident event.

To improve stability and handle dataset
imbalance  [24], additional  post-processing
operations are applied. First, class-specific
thresholds are introduced to compensate for the
predominance of normal samples in traffic datasets.
These thresholds are empirically tuned on the
validation set, ensuring that the model maintains

high recall for accident cases while suppressing false
positives in normal traffic scenes.

Furthermore, temporal smoothing is employed
to refine the output sequence. Instead of treating
each clip prediction independently, a temporal
moving-average filter or exponential decay function
can be applied to consecutive outputs, reducing
abrupt fluctuations in classification results. This
helps stabilize the prediction stream, particularly
near the boundaries of accident segments, where
motion patterns may partially overlap with normal
driving behavior.

In practical deployment scenarios, such post-
processing proves especially valuable. It enhances
robustness against sensor noise, varying frame rates,
and visual artifacts (e.g., motion blur or
compression). As a result, the final decision
becomes more consistent and interpretable, allowing
the system to achieve higher reliability in real-world
traffic monitoring environments. Overall, this stage
ensures that the detection process remains both
sensitive to short accident events and resilient to
transient anomalies, keeping the false alarm rate low
while preserving timely response capability.

5. TRAINING

The model was trained from scratch using the
AdamW optimizer [25] with an initial learning rate
of 3e-4. A cosine learning rate scheduler with
warmup was applied for the first 5 epochs, followed
by gradual decay until convergence. The batch size
was set to 32 due to CPU memory constraints.

Class-weighted cross-entropy loss was used as
the main objective function to handle the imbalance
between accident  and normal classes.
WeightedRandomSampler was applied to the
training data to ensure a balanced representation of
both classes within each mini-batch. The model was
trained for 50 epochs with validation after each
epoch, fix random seeds for reproducibility, and use
an 80/20 train/validation split that preserves the
original class distribution, and with early stopping
based on the macro-F1 score on the validation set to
prevent overfitting.

Input data were uniformly sampled to obtain 8
frames per clip resized to 118x118 and normalized
per channel. Data augmentation included random
horizontal flipping and moderate brightness/contrast
adjustments to improve generalization.

For motion cues, Farneback dense optical flow
is computed between consecutive frames; flow
magnitudes are converted to quantile thresholds
q1 = 33 %, g, = 66 %to drive adaptive patch sizing
with base step b=8. To accelerate training, optical-
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flow maps and selected-patch lists are precomputed
and cached, providing a 3x — 5% per-epoch speed-up
on CPU.

This setup (weighted loss + balanced sampling
+ light regularization + cached motion cues) enables
learning discriminative space-time patterns while
keeping the pipeline efficient and CPU-friendly.

6. EXPERIMENTS

For training and evaluation, the Car Crash
Dataset (CCD) 1500 dataset [26] was selected,
which contains 1500 accident and 3000 normal
video clips. This dataset is particularly well-suited
for accident detection research because it includes a
wide range of traffic conditions, illumination levels,
camera viewpoints, and accident types, such as rear-
end collisions, side impacts, and pedestrian-related
events. The average clip duration is 8-12 seconds,
which makes it appropriate for short-term temporal
modeling.

The dataset was split into 80 % training and
20% validation subsets while preserving the class
distribution. Each clip was uniformly sampled to
extract 8 representative frames, ensuring coverage of
both pre-accident and post-accident moments while
maintaining temporal consistency. Frames were
resized to 118x118 pixels and normalized before
further processing.

During evaluation, we compared our proposed
Adaptive-Sparse-ViT model with two baselines:

1. Uniform-patch ViT — the same architecture
but with a fixed grid of 16x16 patches (no motion
guidance).

2. TSN (ResNet-18) — a conventional
temporal segment network widely used in video
classification tasks.

All  models were trained under identical
conditions using the AdamW optimizer, cosine
learning-rate schedule, and early stopping based on
the macro-F1 score on the validation set.

During the training process, the proposed
Adaptive-Sparse-ViT model demonstrated stable
convergence and faster performance improvement
compared to both baselines. Fig. 2 and Fig. 3
presents the evolution of validation accuracy and
macro-F1 score over 50 epochs for all evaluated
models. The Adaptive-Sparse-ViT consistently
outperformed both the Uniform-patch VIiT and TSN
(ResNet-18) throughout the entire training process.

In the early epochs (0-10), the adaptive model
shows a steeper growth curve, indicating more
efficient learning from motion-guided patches. This
suggests that the model quickly focuses on the most
informative regions of each frame, improving

generalization even with fewer tokens. By the end of
training, Adaptive-Sparse-ViT reached
approximately 0.86 accuracy and 0.85 macro-Fl1,
surpassing Uniform-patch ViT (=0.83/0.8) and TSN
(=0.82/0.78). The smaller variance band around the
Adaptive-Sparse-ViT curves also indicates higher
training stability and lower sensitivity to random
initialization.

Overall, these results confirm that the adaptive
fragment selection strategy not only reduces
computational cost but also accelerates convergence
and improves classification consistency across
accident and normal scenes.

Accuracy over epochs

0.90

0.85r

Accuracy

— Adaptive-Sparse-ViT (our method)
0.50 1 Uniform-patch ViT (no motion)
—— TSN (ResNet-18)

0.45 0 10 20 30 40 50
Epoch

Fig. 2. Validation accuracy over training epochs
between Adaptive-Sparse-ViT, Uniform-patch ViT
and TSN (ResNet-18).

Source: compiled by the authors

Macro-F1 over epochs

Macro-F1

—— Adaptive-Sparse-ViT (our method)
0.501 Uniform-patch ViT (no motion)
= TSN (ResNet-18)

6 1ID ZIO 30 4‘0 5‘0
Epoch
Fig. 3. Validation macro-F1 score over training

epoepochs between Adaptive-Sparse-ViT, Uniform-
patch ViT and TSN (ResNet-18)

Source: compiled by the authors
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The comparison was performed in terms of
efficiency and accuracy metrics, including:

e number of processed patches per frame,

 total parameter count,

e frames-per-second (FPS) on CPU and GPU,

 classification accuracy, macro-F1, precision,
and recall.

The CPU setup used an Intel Xeon @ 2.20 GHz
(2 vCPUs, 12 GB RAM), while GPU experiments
were conducted on an NVIDIA Tesla T4 (16 GB).

Our method significantly reduced the number of
tokens per frame approximately 30-60% fewer than
in the uniform ViT baseline which resulted in higher
throughput and lower memory usage. Specifically,
Adaptive-Sparse-ViT achieved ~12-18 FPS on CPU
and ~220-280 FPS on GPU, compared to ~8-12
FPS (CPU) and =160-220 FPS (GPU) for the
baselines (see Table 1). Despite processing fewer
tokens, the model reached higher accuracy (0.864)
and macro-F1 (0.851) compared to both Uniform-
patch ViT (0.83 / 0.80) and TSN (0.82 / 0.78) as
shown in Table 2.

Table 1. Methods complexity and efficiency
metrics (where N4 denotes the number of
uniform 8x8 patches per frame
(112x112 — 196 patches)

We compared our method with existing
Uniform-patch ViT (no motion) and TSN (RestNet-
18) (Table 1, 2).

Table 2. Methods classification metrics

Method | Accu- |Macro-F1| Preci- | Recall
racy sion

Adaptive- 0.864 0.851 0.845 | 0.860
Sparse-ViT

(our method)

Uniform- 0.83 0.80 0.80 0.78
patch ViT

(no motion)
TSN 0.82 0.78 0.81 0.79
(ResNet-18)

Method Patches per | Number of | Frames per
frame (b=8, |parameters,| second
112x112) millions | (CPU/GPU)
Adaptive- ~80-120 ~1.2-15 | =12-18/
Sparse-ViT | (<0.6-N_base)* ~220-280
(our method)
Uniform- 196 (=N_base) | ~1.0-1.2 ~8-12/
patch ViT ~160-220
(no motion)
TSN - ~11.0-12.0| =8-12/
(ResNet-18) ~160-220

Source: compiled by the authors

These results demonstrate that the proposed
adaptive  fragment selection improves both
computational efficiency and detection sensitivity to
short, motion-heavy accident events. Fig. 6
illustrates an example of motion-guided adaptive
patching, where small patches are allocated around
moving vehicles, while static regions are covered by
larger patches. This strategy enables the model to
focus attention on dynamic, informative regions and
avoid unnecessary computations on the background.

Furthermore, visual inspection of classification
results shows that Adaptive-Sparse-ViT reacts faster
to sudden motion changes and maintains stable
predictions in scenes with partial occlusions or
camera shake, highlighting the robustness of motion-
driven attention in real-world surveillance scenarios.

Source: compiled by the authors

We compared the inference speed (frames per
second, FPS) of all methods on both CPU and GPU
devices. Average FPS values (computed from Table
1) are reported, along with patch counts per frame.
As illustrated in Fig. 4, the Adaptive-Sparse-ViT
achieved the highest overall performance,
processing approximately 15 FPS on CPU and 250
FPS on GPU, while requiring only 80-120 adaptive
patches per frame. In contrast, the Uniform-patch
ViT and TSN (ResNet-18) models reached about 10
FPS on CPU and 190 FPS on GPU, both relying on
a fixed grid of 196 patches per frame.

This improvement in throughput demonstrates
the advantage of the adaptive fragment selection
strategy: by focusing computation on motion-
relevant areas, the model significantly reduces
redundant token processing while maintaining high
accuracy. The results indicate that Adaptive-Sparse-
VIiT achieves a favorable trade-off between speed
and accuracy, making it more suitable for real-time
accident detection in traffic surveillance systems.

250
250 . CPU
GPU

N
o
=]

i}

3

5]

=
«
o

~80-120 patches

-
o
=]

196 patches

Frames per second (FPS)

v
o

= 10 10

oI —— —,
Adaptive-Sparse-ViT Uniform-patch ViT TSN
(our method) (no motion) (ResNet-18)

Fig. 4. Inference speed comparison of Adaptive-
Sparse-ViT, Uniform-patch ViT, and TSN (ResNet-18)
on CPU and GPU

Source: compiled by the authors
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7. RESULTS AND DISCUSSIONS

This section presents the intermediate results of
the proposed Adaptive-Sparse-ViT model, focusing
on the visualization of optical flow maps and
adaptive motion-guided patch selection. These
examples illustrate how motion cues guide the
model to allocate smaller patches in dynamic regions
while using larger patches in static areas, thereby
reducing computational cost without losing critical
information.

Fig. 5 shows the optical flow magnitude [27]
overlaid on the input frame. The color coding
reflects both the magnitude and the direction of
motion: green and cyan areas correspond to vehicles
moving at moderate speed, while purple and blue
indicate stronger motion intensity. Static background
regions are largely suppressed, which demonstrates
that optical flow effectively isolates the dynamic
areas relevant for accident detection.

Fig. 5. Optical flow visualization for a traffic scene
Source: compiled by the authors

Fig. 6 presents the same frame after adaptive
patch merging. Here, small patches - green (8x8)
concentrate around moving vehicles to capture fine-
grained details of motion, while medium - yellow
(16x16) and large — red (32x32) patches cover static
road and background areas. This adaptive allocation
ensures that the model processes only motion-salient
tokens, discarding redundant static information.

Fig. 7 presents different normal scenes with
corresponding optical flow visualization and
adaptive patching. Left: optical flow magnitude
highlighting regions of motion intensity. Right:
adaptive patch selection smaller green patches
correspond to areas of high motion, medium yellow
to moderate motion, and large red to static regions.

Fig. 8 shows the adaptive fragmentation for the
accident scene. From left to right: the original frame
(zoomed for better vision), optical flow

visualization, and adaptive patch generation (green-
high motion, yellow-medium motion, red-static
regions).

'
I 1%
\
e
i

Fig. 6. Adaptive patch grid based on motion intensity
Source: compiled by the authors

Fig. 7. Examples of adaptive frame

fragmentation guided by optical flow
Source: compiled by the authors

To gain a deeper understanding of how the
proposed model interprets video frames during
inference, we conducted a qualitative analysis of
attention distribution [28].
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Fig. 8. Example of the adaptive fragment

selection process for accident scenes
Source: compiled by the authors

The visualizations in Fig. 9 and Fig. 10
illustrate how  Adaptive-Sparse-ViT  allocates
attention across different regions in both accident
and normal traffic scenes.

It can be clearly observed that the model
prioritizes motion-related regions, confirming the
effectiveness of the adaptive fragment selection
strategy and complementing the quantitative results
presented earlier.

Original accident scene

Accident scene attention map

Fig. 9. Visualization of the attention map for an

accident scene
Source: compiled by the authors

In the accident scenario (Fig. 9), the model’s
attention is concentrated around the interaction area
between vehicles particularly the headlights and
intersecting trajectories effectively highlighting
potential collision zones. In contrast, during a
normal traffic scene (Fig. 10), the attention map is
more evenly distributed across moving vehicles
without strong localized peaks, reflecting the
absence of abnormal motion patterns or risk

indicators such motion-aware sampling leads to a
reduction of 30-60 % in the number of patches
compared to uniform grid partitioning, directly
translating into lower computational cost. At the
same time, the method retains temporal and spatial
details necessary for detecting short and rare
accident events.

The qualitative results confirm the effectiveness
of the proposed selection strategy:

o optical flow highlights motion regions with
clear contrast between moving vehicles and static
background;

e patch merging adapts patch sizes to the
spatial distribution of motion, preserving details in
critical regions.

e reduced token count improves inference
speed while maintaining accuracy and sensitivity.

Normal scene attention map

Fig. 10. Visualization of the attention map for a

normal traffic scene
Source: compiled by the authors

CONCLUSIONS AND PROSPECTS OF
FURTHER RESEARCH

This paper presents a lightweight and efficient
classification method based on architecture,
Adaptive-Sparse-ViT, designed for accident
detection in traffic video streams. The proposed
method combines motion-guided patch selection
based on optical flow with a two-stage Vision
Transformer that separately processes spatial and
temporal dependencies.
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The key aim was to focus computational effort
on motion-relevant areas of the frame while
avoiding uniform processing of the entire image.
Through the use of quantile-based motion thresholds
derived from Farnebdack optical flow, the model
dynamically adjusts patch sizes (8x8, 16x16, 32x32
pixels) to balance detail preservation and efficiency.
This adaptive fragment selection reduced the
number of processed tokens by 30-60% per frame
without compromising the accuracy of accident
recognition. Experimental results on the CCD1500
dataset demonstrate superior performance compared
to baseline models (TSN and Uniform-patch ViT) in
terms of both accuracy and macro-F1 score, while
maintaining near real-time inference speeds on CPU.

The obtained results confirm that adaptive
motion-driven token selection is an effective method
for balancing accuracy and efficiency in video
understanding tasks. The method is particularly
suitable for CPU-based or embedded systems where
computational resources are limited.

Despite its advantages, several limitations
remain. The method depends on the quality of

optical flow estimation in scenes with subtle or
minimal motion; the effectiveness of patch selection
may decrease. Additionally, precomputing flow
maps introduces a moderate preprocessing overhead.

Future research should focus on integrating
faster and more robust optical flow algorithms (e.g.,
RAFT, LiteFlowNet [29]), exploring end-to-end
training where motion features are learned directly
within the model, and optimizing the architecture for
mobile and real-time applications.  Further
improvements may also include expanding the
dataset to more complex conditions (night scenes,
adverse weather) and applying hybrid attention
strategies to enhance sensitivity to short and rare
accident events.
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Knacugikanisi 10poXKHBO-TPAHCIIOPTHUX NMPHUTOJ i3 BUKOPUCTAHHAM
poO3piaxkeHoro Bizeorpancpopmepa Ta aJanTUBHOI (PparMmeHTawil
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AHOTALIA

VY po6oTi 3armporoHoBaHO MPOCTHI y peartizamii Ta JieBUH MiaXia 10 Kiacu(ikalii KOpOTKUX BigeodparMeHTIB Ha aBapiliHi Ta
HOpPMaJIbHI CLEHHU. 3 KOKHOTO KJIITy piBHOMIpHO BisOupaeMo BiciM KajpiB 0a30Boi ciTku, nayi Ha 6a3i KapTH ONTHYHOTO IOTOKY
Farnebdck o6upaemo posmip ¢parmentiB (BiciM/UIiCTHAIUATH/TPUALIATG JBa TIKCETiB). Y 30HAX 3 IHTCHCHBHUM PYXOM
BHUKOPUCTOBYIOTBCSI NIPiOHIIN maTdi (BUIA JAeTanizallis), y CTaTUYHHX - Oinpln (MeHmi oOuncneHHs). BiniOpani ¢gparmeHtn He
MEPEKPUBAIOTECS, MAcIITa0ylOThCAd 10 0a30BOro po3Mipy Ta II€PETBOPIOIOTBCS HA BEKTOPHI O3HAKU. ApXITEKTypa METOXLY
CKIajaeTbcs 3 ABOX eramiB. Crepiry mpocTopoBHil TpaHcopMep Ipalioe B Mexax OAHOI0 Kaapy JMIIe Hajx BixiOpaHumu
(parMeHTaMl — Iie Pi3KO 3MEHIIIye KiIbKICTh 03HAKOBUX OAWHUIIL. [1oTiM yacoBuid Tpancdopmep odpobdisic mocmigoBHicts CLS-
TOKEHIB (KOPOTKHX ITiICYMKOBHX MPEICTAaBICHb KaAPiB), arperyloun TMHAMIKy y daci. Taka hakTopusawis «pocTip — yacy 3HIWKYE
OOYMCITIOBANIBHI BUTpaTH i moTpeOy B mam’sTi 6e3 BTpaTH iHGOPMATHUBHOCTI B pyXOMHUX perioHax. J{ims momonaHHs AucOaiIaHCy
KJIaciB 3aCTOCOBAHO 3Ba)KCHY KPOC-EHTPOIIHHY BTpaTy eHTpOmHiiHy (200 «BTpaTy 3 (POKYCYBaHHSAM Ha BaXKHX NPHKIANax») Ta
3Ba)KCHE BHITAJIKOBE BHOIPKYBaHHS ITiJ] 4ac HaBuaHHsA. ONTUYHMH TOTIK 1 CIIMCKH BHOpaHUX ()pParMeHTIB MOMEPeTHbO 30epiraroThes
Ha JAWCK, IO MPUIIBHIUIYE €MOXM Ha mpouecopi Oe3 chewianbHOoro oonagxaHHsA. OILHIOBaHHSA TIPOBOJWIM Ha JaraceTi
aBTOMOOUIBPHUX aBapiii (THCsYa M'ITCOT aBapifiHUX i TPU THUCAYi HOPMAIBHHX Bi/eO) 31 CTaHTAPTHHUM MOIJIOM BiciMIecsT Ha
IBaIUATh 31 30epexkeHHsM nponopiii knaciB. Ortpumani metpuku: Accuracy = 0.864, Macro-F1 = 0.851. 3a mnomepentim
MOPIBHSHHSM 3aIlPONOHOBAHUI MiJIXiZ mepeBepilye 0a30By piBHOMipHY PO3OMBKY Kaapy Ta KJIACHYHI CXEMH 3 IPOCTHM YaCOBHM
arperyBaHHsaM. KitouoBa mnepeBara METOHy - Lie INOEJHAHHA «PYX-KEPOBAHOI0» CKOPOYEHHS KIJIBKOCTI O3HAK 3 JBOETAITHONO
00po0KO0, 110 POOUTH MOJENb MPUAATHOK JI0 PEANICTHYHHX OOMEXEHb 3a 4acoM i pecypcamu (IpH MpOIECOpHii 06polmi) i
BoJHOYAC 30epirae BHCOKY YYTJIHBICTh 10 KOPOTKHX 1 JIOKaJdbHHX aBapiitHux mnopidl. [ligxix MoxkHa Jerko macimiraOyBaTd Ta
MOEJHATH 3 TONEPeAHIM HaBUaHHAM (HANPHUKIIAJ, MAacKOBAHMM BiJHOBJCHHAM Bifeo). Y poboTi Takoxk 3a)ikKCOBAHO YMOBHU
€KCIIePUMEHTIB, BiJKPUTI HANAIITYBAHHS 1 KPOKH, HEOOXIiIHI AJIsl TOBHOI BiATBOPIOBAHOCTI.
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BiJICOMOTOKIB: Kiacuikaiist JaHux; 00podka GpparMeHTiB 300paxeHHs
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