Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology
2024; Vol. 7 No.2: 147-157

DOI: https://doi.org/10.15276/hait.07.2024.10
UDC 004.942

Modeling and automation of the process for detecting
duplicate objects in memory snapshots

Nikolay Y. Mitikov"

ORCID: https://orcid.org/0009-0002-1297-5676; mitikov.m22@fpm.dnu.edu.ua. Scopus Author ID: 59005016500
Natalia A. Guk?

ORCID: https://orcid.org/0000-0001-7937-1039; huk n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900

D Oles Honchar Dnipro National University, 72, Science Avenue. Dnipro, 49010, Ukraine

ABSTRACT

The paper is devoted to the problem of detecting increased memory usage by software applications. The modern software
development cycle is focused on functionality and often overlooks aspects of optimal resource utilization. Limited physical
scalability sets an upper limit on the system's capacity to handle requests. The presence of immutable objects with identical
information indicates increased memory consumption. Avoiding duplicates of objects in memory allows for more rational use of
existing resources and increases the volumes of processed information. Existing scientific publications focus on investigating
memory leaks, limiting attention to excessive memory use due to the lack of a unified model for finding excessive memory use. It
should be noted that existing programming patterns include the “object pool” pattern, but leave the decision on its implementation to
engineers without providing mathematical grounding. This paper presents the development of a mathematical model for the process
of detecting duplicates of immutable String type objects in a memory snapshot. Industrial systems that require hundreds of gigabytes
of random-access memory to operate and contain millions of objects in memory have been analyzed. At such data scales, there is a
need to optimize specifically the process of finding duplicates. The research method is the analysis of memory snapshots of high-load
systems using software code developed on.NET technology and the ClrMD library. A memory snapshot reflects the state of the
process under investigation at a particular moment in time, containing all objects, threads, and operations being performed. The
CIrMD library allows programmatic exploration of objects, their types, obtaining field values, and constructing graphs of
relationships between objects. The series of experiments was conducted on Windows-backed machines, although similar results can
be obtained on Linux thanks to cross-platform object memory layout pattern. The results of the study proposed an optimization that
allows speeding up the process of finding duplicates several times. The scientific contribution of the research lies in the creation of a
mathematically substantiated approach that significantly reduces memory resource use and optimizes computational processes. The
practical utility of the model is confirmed by the optimization results achieved thanks to the obtained recommendations, reducing
hosting costs (which provides greater economic efficiency in the deployment and use of software systems in industrial conditions),
and increasing the volumes of processed data.

Keywords: Optimization; algorithm; performance; memory snapshot; duplication; string

For citation: Mitikov N. Y., Guk N. A. “Modeling and automation of the process for detecting duplicate objects in memory snapshots”. Herald
of Advanced Information Technology. 2024; Vol. 7 No. 2: 147-157. DOI: https://doi.org/10.15276/hait.07.2024.10

INTRODUCTION scale the computing system to the next tier, which is
at least twice as expensive as the previous one
(considering the amount of processing power).
Optimizing the memory usage of a software
application requires a deep understanding of the
system's operating algorithms [20] and access to the
development process, which also makes this method
complex and economically unjustifiable given the
option to scale the computing system. Scaling
computational capacities is cost-effective at small
sizes but becomes progressively less economically
viable with each subsequent increase in the memory
size of the virtual machine.

It is worth noting that modern development
methodologies are based on having multiple
environments for testing before releasing a software
application into public access [4] and having a

The rapid development of information
technologies facilitates the comprehensive
application of software applications in many areas.
The need to process significant volumes of
information can be compensated by increasing the
computational power of computing systems [1] or
optimizing existing software implementations [2].
Considering the linear growth in the cost per unit of
RAM in cloud hosting [3], there is a false
impression of the possibility of linear scaling of total
operational expenses. Available virtual machine
options come with RAM sizes in multiples of
powers of two — 4GB, 8GB, 16GB, 32GB, etc.

If there is a need for just one extra gigabyte
beyond the available RAM, it becomes necessary to

© Mitikov N., Guk N., 2024

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2663-0176 (Print) Information technology in computer systems 147
ISSN 2663-7731 (Online)

https://orcid.org/0000-0002-3724-430

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

secondary replica/region [5] to enhance availability.
Thus, moving to the next level of virtual machine
power significantly increases the overall cost of
operating expenses.

Existing publications [6], [7] mostly focus on
investigating the problem of memory leaks, paying
less attention to excessive memory usage. A
memory leak is a condition where a program
mistakenly fails to release no longer needed memory
for reuse [22], thus continuing to allocate new
memory blocks.

Fig. 1 illustrates the rapid increase in memory
usage by a software application, leading to
decreased performance and necessitating a system
monitoring restart of the application every few
hours. High-load systems working with large
volumes of data are particularly susceptible to this
problem. Memory snapshots [8], which record the
contents of RAM at a specific moment in time, are
used to identify the root causes of memory leaks.

Memory snapshots are also used to detect
malicious code [9], especially in cases of code
injection into a trusted process. While there is a
focus on identifying leaks, existing research tends to
neglect the issue of excessive memory usage,
particularly the situation where an application uses
more memory than required for the task at hand.
This problem can arise for various reasons, but one
of the most common is the duplication of immutable
objects. If a program creates multiple objects with
identical values instead of using a single immutable
object, this leads to the storage of redundant
information and increases memory requirements.

A common issue in the operation of modern

systems is the duplication of data [24], specifically
String type objects (strings), which poses a
challenge as it increases the overall cost of
operational expenses and remains undetected by
existing diagnostic systems since the criterion for a
memory leak does not apply.

Finding duplicates requires comparing all
strings with each other, which would involve a vast
number of operations and negatively impact the
performance of the application.

LITERATURE REVIEW

Visualization of cloud computing machine costs
[3], depending on the size of RAM, shows a
minimum doubling in costs when the memory
capacity of the virtual machine is exhausted,
necessitating the use of the next size of virtual
machine (Fig. 2).

Researchers Adriaan Labuschagne and Laura
Inozemtseva in their work [4] on regression testing
have clearly demonstrated methods for enhancing
the quality of software products. Testing the product
in environments similar to the real world
significantly reduces the risk of errors in application
functionality [10], but requires specialized testing
environments, thereby increasing the number of
virtual machines.

Significant attention is paid to the mechanisms
of memory leak detection in the works of Gene
Novark, Emery D. Berger, Benjamin G. [6], and
Markus Weninger [7]. Jon Louis Bentley [2]
describes approaches to reducing memory usage, but
the mechanisms for finding candidates for
optimization are outside the scope of his work.

000 Nane
40,00
.'(:r.
L ¢ . |
F
0.00 : ! W’\
F1=0E 0800 11-01 1000 1E=01 12500 11-00 1400 11-01 1600 11-00 1800 1101 2000 1100 2200 H020-11-07 11020209 11-02 0400 11-02 06.00
Thm (UTE)
Fig. 1. Memory usage dynamics
Source: monitoring system supervised by the authors
148 Information technology in computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

loannis T. Christou and Sofoklis Efremidis [11]
describe the use of the “object pool” design pattern.
According to their research, using this design pattern
can significantly reduce the response time of high-
performance multi-threaded applications, especially
in environments with limited memory. However, the
mechanism for finding appropriate uses in their
work is not described.

The authors of these studies agree that the
applicability of this pattern depends on the specific
software product and the data it operates. Excessive
memory use can be an issue for high load systems.
However, with an understanding of the causes of
suboptimal memory distribution [19] and the use of
appropriate strategies to avoid them, the stability and
efficiency of system operations can be enhanced.

1003 - ry
(- core count T
©r
30: +
50 ¢
3 D)
Esm »
e
U
-
200 1 * =W
O+ —C
==]
1 4 8 18 12 84 128
GB

Fig. 2. Hosting cost based on the RAM amount

Source: compiled by the authors

One possible scenario for hosting development
[12], [13] is the implementation of dynamic cost for
using a virtual machine based on the percentage of
resource usage, due to the nonlinear increase in
energy consumption when the load exceeds 80% of
the system's capacity.

The scenario of excessive memory usage by a
software application [21] is difficult to detect since it
does not manifest overtly — the memory leak
criterion is not met, specifically, there is no
monotonic increase in memory usage by the
application over time.

Data duplication appears when diverse data
streams enter the system [25], which may contain
identical values, such as reading data from a
database where the query results contain identical
values. A vivid example of potential information
duplication is relational databases with queries that
join several tables.

To detect data duplication, it is necessary to
analyze the program's memory and identify objects
that have the property of immutability [14]. The

property of immutability can be set at the
programming language level [15], or manifest in
existing code due to the absence of method calls that
can change the state of the object.

Finding the property of immutability [16] is key
to reducing memory costs through the reuse of
identical objects [17], and requires access to the
complete codebase of the running program.

Memory snapshots are extensively utilized for
analyzing and detecting malicious code that may be
introduced into the memory of a trusted process.
Traditional static and dynamic methods prove
ineffective in identifying malware residing in
memory [18]. Furthermore, existing solutions
employing forensic memory analysis exhibit
unsatisfactory efficiency in terms of detection speed
and rely heavily on extensive expertise in memory
analysis. A solution to this problem involves
capturing memory snapshots from healthy processes
to serve as a training base for machine learning
algorithms. Upon detecting anomalies, the security
system is capable of responding swiftly despite the
absence of a physical threat file.

Analysis indicates that contemporary research
focuses heavily on identifying memory leaks, yet
there are no effective methods for addressing
excessive memory usage in high-load systems.
Concurrently, existing studies converge on the
importance of optimal memory utilization to
enhance application performance. Therefore, the
development of mathematical models and methods
for detecting excessive memory use remains a
pressing issue.

PROBLEM STATEMENT

In the domain of software development,
particularly in environments where high-load
systems are prevalent, the efficient utilization of
memory resources [23] is crucial for maintaining
optimal performance and reducing operational costs.
The challenge of detecting excessive memory usage
in such systems is compounded by the complexities
involved in managing and understanding memory
dynamics, which include the presence of immutable
object duplicates that consume unnecessary memory
space.

The problem of excessive memory detection in
software products can be articulated as the
development of a robust quantitative model that
effectively identifies and quantifies duplicate
immutable objects within the memory of these
systems. This model should enable developers to
assess the amount of memory wastefully consumed
by these duplicates, thereby informing strategies to

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technology in computer systems

149

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

minimize memory usage without compromising
system performance.

The proposed model will utilize advanced
memory snapshot analysis techniques to accurately
detect these duplicates, incorporating a set of metrics
designed to expedite the identification process.
Although, the article focuses on single scenario,
further research shall be built on top of the
foundation laid. The effectiveness of this model will
be evaluated through computational experiments
within industrial systems, aiming to provide a
scalable and reliable solution to the excessive
memory usage problem. This approach is analogous
to the challenge in machine learning of evaluating
model quality, where a quantitative metric based on
current standards and trends is crucial for selecting
the optimal model for specific tasks. The goal is to
develop a methodological framework that not only
addresses the immediate concerns of memory waste
but also contributes to the broader discourse on
resource efficiency in software development.

PURPOSE AND OBJECTIVES OF THE
STUDY

The aim of this work is to optimize memory
usage by developing a new mathematical model for
identifying duplicate String objects in the memory of
software products. This will be achieved by
analyzing memory snapshots and evaluating the
model's effectiveness. Detecting duplicates with
immutability properties allows for an accurate
assessment of the amount of excessively used
memory and reduces its consumption in subsequent
development cycles.

To achieve this goal, the following objectives
were set:

1. Construct a mathematical model of objects in
memory.

2. Isolate String type objects with immutability
properties into a set.

3. Select a supplementary metric to accelerate
the search for duplicates.

4. Develop a method for searching for
duplicates.

5. Apply the proposed approach to an existing
industrial system and perform an analysis of the
computational experiment results.

MATERIALS AND METHODS OF
RESEARCH
1. Overview of modern development practices
focus in software engineering

To ensure the stable operation of high-load
systems, it is critically important to have sufficient

computational resources. Due to the high complexity
of industrial systems and significant variability of
data, the sizes of computational capacities are
calculated based on load testing that exceeds
expected levels. As a result of these tests,
requirements are formed for the amount of RAM
and computational power needed for the software
product to function.

Errors identified during program execution and
code deficiencies are subject to refinement. After
successfully passing key test scenarios, the software
product is ready to be launched for end-users.
However, the development cycle often does not
account for the possibility of increased resource
usage, which leads to an increase in computational
demands, raises operating costs, and limits the
number of requests the system can handle according
to requirements. It is necessary to optimize the
memory usage of software applications to improve
performance and increase the potential number of
operations performed simultaneously.

2. Memory snapshots applicability

Within a memory snapshot, information is
displayed about the operations being performed, the
state of execution threads, the objects managed by
these threads, and the program code. Details about
the objects include their types, states, and
relationships.

A memory snapshot of a program can be
represented as a structured array of bytes in the
following way:

Miime =[b1, ba, ... by],
where time is the moment when the memory
snapshot is taken; b;, b, ... by are bytes that make
up the snapshot; N is the number of bytes.

Considering the presence of a large number of
objects in the memory of industrial software
applications, manually searching for duplicates
among thousands of different object types in a
memory snapshot is not feasible. It is necessary to
limit the search to types that occupy the most
memory space, in most cases, these are objects of
type String.

The creation, modification, and deletion of
String type objects require certain resources. Fig. 3
shows an example of object duplication from the
studied industrial system, which consumes over
20GB of memory. This software application does
not exhibit signs of memory leakage, namely the
monotonic increase in used memory, so existing
monitoring systems do not detect any memory usage
problems in it.

150

Information technology in computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

90181696ce780 (Model.CountryToCountrySetting)

<ObjectStatesk BackingField:@x8 (Undefined) (Data.Cache(bjectStates)

<SourceCountryIdsk BackingField:Bxe2 (System.Int64)
<TargetCountryIdsk BackingField:0x28 (System.Int64)

<Settinglame>k BackingField:00080181696ce740 (System.String) Length=34, String="AddShippingCostToCommerciallnvoice"
<SettingValuerk BackingField:00868181696ce7ad (System.String) Length=6, String="5;;USD"
<SettingDescriptionyk_ BackingField:B80@8181696ce7c8 (System.String) Length=111, String="Value for Commercial and Par

B181696ceBcB (Model.CountryToCountrySetting)

<ObjectStaterk BackingField:@x8 (Undefined) (Data.Cache(bjectStates)

<SourceCountryldsk BackingField:Bxe2 (System.Inthd)
<TargetCountryIdsk BackingField:Bx21 (System.Int64)

<Settinglamesk BackingField:00000181696ce900 (System.String) Length=34, String="AddShippingCostToCommerciallnvoice"
<SettingValuesk BackingField:00000181696ce960 (System.String) Length=6, String="5;;USD"
<SettingDescriptionyk_ BackingField:B80B8181696ce988 (System.String) Length=111, String="Value for Commercial and Par

30181696cead® (Model.CountryToCountrySetting)

<ObjectStaterk BackingField:8xB (Undefined) (Data.CacheObjectStates)

<SourceCountryldsk BackingField:Bxe2 (System.Intfd)
<TargetCountryldsk BackingField:@x22 (System.Int6d)

<Settinglamesk BackingField:00000181696ceacd (System.String) Length=34, String="AddShippingCostToCommerciallnvoice”
<SettingValuesk BackingField:00000181696ceb20 (System.String) Length=6, String="5;;USD"
<SettingDescription>k BackingField:08008181696cebd8 (System.String) Length=111, String="Value for Commercial and Par

Fig. 3. String duplicates example

Source: compiled by the authors

Thanks to the memory snapshot, duplicates of
objects with the property of immutability were
found, leading to the identification of increased
memory usage. To understand the mechanism of the
software application and diagnose problems,
memory snapshots are scanned [8].

In the case of using high-load systems, the
process of scanning memory snapshots requires
automation, which allows for rapid analysis.
Therefore, the automation of scanning provides
significant advantages, including reducing the time
for analysis, increasing the accuracy of problem
detection, and improving the overall performance of
the system [17].

3. Algorithm for segregating objects

In this work, it is proposed to identify objects in
a memory snapshot based on their properties and to
use this as a metric. The metric is introduced to
define the “distance” between objects and their
similarity.

An automated scanning system during a
memory snapshot will create a set of objects O. The
next step is to separate the types that possess the
property of immutability, specifically those that do
not change their state after creation. We will apply a
function to group by types and find the set O; of
objects with immutable types. We will consider this
property only for String type objects due to their
statistically highest occurrence in the memory

snapshots of the studied systems. In this set, we will
identify the subset STRN of all String type objects
and the subset STR of objects that possess the
property of immutabilitySTR < STRN < O, ¢ 0.

Under the directive of the software
application’s CLR (Common Language Runtime)
execution environment, objects of type String have a
zero byte b(0), the length of the object in bytes b,
and the content information located in these bytes. A
String type object can be represented as String(b(0),
b). Introduce an additional property s of the object,
which is the arithmetic sum of the bytes allocated for
storing the object’s content. Thus, the expression for
a String type object can be written as
String(b(0), b, s).

Each instance of the object String(b(0), b, s)
belongs to the set:

STRN
= {Stringl (bl (0)' bll Sl)'
String,(b,(0), by, s,),Stringy (by (0), by, sSy)},

where N is the number of instances of String type
objects. This set includes all String type objects,
including duplicates.

Each instance of a String object is identified by
the parameter s.

The values of the parameters s; for each of the
objects form the set

S={s1, 82,...,5n},

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technology in computer systems 151

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

where n is the number of unique sizes of String type
objects, n<=N.

To optimize the grouping of strings, we will
develop an approach that allows for quick
segregation of strings based on the introduced
metric, thus significantly reducing the number of
comparisons between strings, leaving only
comparisons between elements within one group.

In the set S, we will find the minimum and
maximum values, denoted as and b, respectively.
The range [a, b] will be divided into m intervals A of

length A= (b=a)
several values of the parameter s of String type
objects, or none at all.

The distribution of the parameter s across
intervals is done by aligning subsets:

k:]‘[?’ﬂ(%),kSn, (1)

where £ is the interval number.

Thus, a partial ordering of the set S by intervals
occurs. It should be noted that the obtained intervals
may contain strings with the same value of s, but
differing in content. A clear example would be
strings in which the order of words is changed, but
the algebraic sum of bytes allocated for their storage
remains the same. The sum function was chosen as a
quick hash function. Among the set of intervals,
there will be those that contain several unordered
values. Additional ordering should be conducted
within such intervals. Therefore, the task arises to
perform the minimum number of such orderings. Let
us denote by the function G (m, L) the total number
of orderings and find the minimum G (m, L).

Let us assume that each interval contains the
same number of numbers, L.

In this case, the total number of orderings
equals:

,m < n. Each interval may include

G(m,L) = mL=—.

It is necessary to determine the values of m and
L for which the function G (m, L) assumes the
smallest value.

Since m = %, we have:
G(n,L) =n=—.)

The minimum of the function G(m,L) will
depend on the value of parameter L. The trivial case
L=1 is not considered because sorting operations
require at least two values; therefore, the minimum
value of (m,) is achieved for L=2:

n

minG(n,L) = > 3)

With this value of L, the number of intervals
willbe m = 2.
Since it is not known in advance how to divide

the set S into a number of unequal intervals such that
these intervals contain an equal number of numbers,

we introduce the estimate inf G(n, L) = %

The upper bound of values for the function G is
found when L=n and m=1 sup G(n,L) = n nT_l

Let's define the effectiveness of the proposed
method in the study by comparing the number of
operations required with that of a full exhaustive
search. A full exhaustive search involves pairwise
comparisons of all strings with each other. In this

. . n-1
case, the total number of comparisons is n—-

Let's introduce an efficiency coefficient Ker
for the extreme cases inf (7, /) and supl(n, /),
considering the number of operations for distribution
into intervals and the number of operations required
to determine the values a and b:

nn—l 1
. 2 n—
K =t =
b n 5"’
2+2n
n—1
KW — n 2 _n_l
e n-—1 T n+3
n— + 2n

Thus, the efficiency coefficient of the proposed
method lies within the range of

n—1<K <n—1

n+3- %~ 5
The maximum value of the efficiency
coefficient indicates a linear dependency of

efficiency on the number of processed elements,
demonstrating that with each additional element,
processing costs increase linearly. This suggests that
the overhead for handling each additional string
grows in a linear fashion, which is typical when the
number of operations scales directly with the size of
the input.

The minimum value approximates to constant
complexity at large n, showing that the efficiency of
the algorithm increases and approaches a constant
value as n increases. This implies that as the dataset
grows; the relative cost of processing per element
diminishes, potentially leading to a more efficient
use of resources at scale.

However, the efficiency coefficient of the
method does not account for the increase in the
number of additional resources required to create
sets as the number of elements and the number of
sets increase. This can include memory for storing

152

Information technology in computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

the intervals and the computational overhead
associated with managing larger sets. This additional
cost could offset some of the gains from the reduced
number of comparisons, especially in cases where
the distribution of elements across intervals is
uneven or requires frequent reevaluation.

In practical applications, it would be necessary
to also consider these factors to obtain a holistic
view of the method's performance and to optimize
the parameters m and L not just for theoretical
efficiency but also taking into account practical
resource utilization and operational constraints.

EXPERIMENT SETUP

1. Enterprise system characteristics

The validation of the proposed approach was
carried out on a memory snapshot of an industrial
system, which occupies more than 20 GB of
operational memory under normal load conditions.

The system is responsible for transactional data
processing, handling hundreds of tax-related,
product stock, and delivery enquiries in real time. A
distribution of String type objects was constructed
based on the metric s.

On the graph (Fig. 4), there are three peaks that
demonstrate a significant increase in the number of
elements with the same checksum value s,
corresponding to three String type objects:
“5,USD ”,AddShippingCostToCommerciallnvoice”,
“Value for Commercial and Parcel Invoice”.
According to the developed approach, each peak on
the graph corresponds to one s value and uniquely
identifies an object. This allows for rapid analysis
and quantitative identification of duplicates.

The grouping by the s parameter confirmed the
presence of 220 thousand unique values and 14.5
million duplicates. The most duplicated strings
(Fig. 4) were identified, confirming the initial
assumption about the presence of abnormal
duplication of objects in the memory snapshot. A set
s’ of s parameters of objects identified in the
previous step will be formed as s'={s!, si?, si’}. Set
s' belong to S, meaning s' < S.

The resulting set will contain String type
objects that have not yet been processed by the
algorithm. A significant number of duplicates were
found in this set.

Element count

Fig. 4. Distribution Across Set S

Source: compiled by the authors
By removing the set s! from set S, we obtain a
new set S'=S\s! (Fig. 5) and will construct a
distribution for the set S,

Object count

hetric s value
Fig. 5. Distribution across the set S°

Source: compiled by the authors

In (Table 1), examples of strings with the
highest number of repetitions in memory are
provided, highlighting both their duplication count
and the total amount of memory they collectively
consume. For example, the string True appears
635,181 times, occupying a total of 2.4 MB of
memory.

Table 1. Duplicates count and space taken

String value Duplicate T?tal
s size

True 635181 2.4 MB
HideStandardShipping
Method 390073 9.7 MB
false 318273 1.5 MB
Restricted due to ticket | 257600 8.4 MB
Visa 241913 945 KB

Source: compiled by the authors

Table 2 illustrates how the time it takes to find
duplicates varies depending on the number of sets
used in the process. Each row in the table represents
a different configuration of sets, detailing the
maximum number of elements per set, the size of the

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technology in computer systems

153

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

intervals (A), and the execution time in milliseconds
(ms) for the duplicate search operation.

Fig. 6 illustrates how the maximum number of
elements within set changes as the number of sets
increases. It provides a visual representation
showing that as the number of sets increases, the
maximum number of elements per set tends to
decrease. This trend suggests that dividing the data
into more sets leads to smaller groups or subsets,
thus distributing the data more finely across the sets.

Table 2. Dependency of duplicate search time
on the number of sets

Max
elements in Size | Execution
Set count set A time, ms.
4679
2 2160701 5 3321.95
2339
4 2142365 8 2653.41
1169
8 1753658 9 3152.39
16 1715889 5850 | 3100.36
32 1558702 2925 | 2323.03
64 1260964 1463 | 2274.14
128 862321 732 | 2089.94
256 535165 366 | 1968.16
512 325051 183 1894.38
1024 262314 92 2253.57
2048 174401 46 2074.31
10000 91012 10 1708.93
20000 50420 5 1789.49
30000 40239 4 1831.46
40000 30639 3 1881.13
50000 20531 2 1994.7
Source: compiled by the authors
2500000
2000000
0 1500000
]
T 1000000
s 500000

i) 500 1000 1500 2000 250

._.I gt count

Fig. 6. Dependency of the maximum number of

elements on the number of sets
Source: compiled by the authors

The Fig. 7 displays the relationship between the
number of sets and the time taken (in milliseconds)
to complete the partitioning operation. This chart
would typically show trends where the operation
time might decrease as the number of sets increases,
indicating more efficient processing due to
parallelization or more manageable data sizes per
set. Conversely, it could also reveal points where
operation time increases due to overhead associated
with managing a larger number of sets, or where the
distribution of data among sets is less than optimal,
requiring adjustments in the partitioning logic.

3500
3000
2500
2000

1500

Time taken, ms

0 1000 2000 3000

Count of sets

Fig. 7. Dependency of the time (ms) of execution
of partitioning on the number of sets
Source: compiled by the authors

DISCUSSION OF THE RESULTS

Based on the assumption made, the best
performance of partitioning is achieved when there
are a similar number of elements in the subsets,
which helps reduce the proportion of strings with the
same checksum but different contents. This
assumption was confirmed through a series of
experiments with memory snapshots of the studied
industrial systems, finding that the optimal number
of subsets to accelerate partitioning falls within the
range of 460 to 520. Increasing the number of
subsets beyond this range does not significantly
speed up the operation but does lead to the need to
maintain a significantly larger number of groups in
memory, thus increasing the memory requirements
for conducting the analysis.

The series of experiments showed a dominant
number of duplicates in strings up to 150 characters
in length. This is explained by “constant” values that
enter the system at the startup phase (for example,
read from a database). Longer strings are usually
formed dynamically and have a greater variability of
data. Strings containing a large number of culture-
specific characters, such as hieroglyphs, must also
be considered separately. Each hieroglyph in UTF-8

154

Information technology in computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Mitikov N. Y., Guk N. A.

/ Herald of Advanced Information Technology

2024; Vol. 7 No.2: 147-157

has a large index/value, leading to a large sum of
values and thus increasing the interval A.

Introducing these constraints allows for
reducing the interval A and achieving a more even
distribution of values across intervals.

CONCLUSIONS

Most publications on the topic of research focus
on the problem of memory leaks, bypassing
excessive consumption due to the inability to
diagnose it. Studies on the application of design
patterns to reduce memory usage present
mechanisms of implementation and effect but leave
aside the criteria and mechanics of searching for
candidates due to the great variability of scenarios
and software products. There is a justified need to
pay attention to non-functional requirements,
specifically the minimization of object duplicates in
memory to increase performance and the volume of
information with which the system can operate.

This work focuses specifically on the algorithm
for searching for candidates using memory
snapshots. While memory snapshots are used to

search for memory leaks or introduced malicious
code, their use to search for excessive memory
consumption is a novel implementation.

A model of objects in the memory snapshot of
the process has been developed, which allows
obtaining the type and values of each object's fields.
String type objects with the property of immutability
were separated from the general set of objects. An
improved method for searching for duplicates of
String type objects in memory snapshots using the
introduced metric has been developed.

The proposed approach was tested on several
high-load industrial systems for which significant
increases in used memory were detected. The
conclusions obtained from the analysis of industrial
systems were conveyed to the developers of the
studied industrial systems. Based on these, the
software code was modified, and in each case, the
amount of RAM required by the process was
significantly reduced.

A foundation has been laid for further search
for mechanisms of memory preservation in
industrial systems.

REFERENCES
1. Gregg, B. “2.7.3 scaling solutions”. “Systems Performance, Second Edition.” Boston: Addison-

Wesley. 2021. ISBN-10 0136820158.

2. Bentley, J. L. Writing efficient programs, Englewood Cliffs, N.J.: Prentice-Hall. 1982. ISBN-10

013970244X.

3. “Microsoft. Windows virtual machines pricing”. — Available from: https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/windows. — [Accessed: 8, February 2023].

4. Labuschagne, A., Inozemtseva, L. & Holmes, R. “Measuring the cost of regression testing in
practice”. ESEC/FSE: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
2017, https://www.scopus.com/record/display.uri?eid=2-s2.0-85030776060&origin=resultslist.

DOIL: https://doi.org/10.1145/3106237.3106288.

5. Gao, L., Dahlin, M., Nayate, A., Zheng, J. & Iyengar, A. “Improving availability and performance
with application-specific data replication”. IEEE Transactions on Knowledge and Data Engineering. 2005;

17 (1): 106-120,

https://www.scopus.com/inward/record.uri?eid=2-s2.0-17444420807&doi=10.1109

%2fTKDE.2005.10&partnerID=40&md5=372f00d4ec430291228a21a2edeS57ca9.

DOIL: https://doi.org/10.1109/TKDE.2005.10.

6. Novark, G., Berger, E. D. & Zorn, B. G. “Efficiently and precisely locating memory leaks and
bloat”. ACM SIGPLAN Conference on Programming Language Design and Implementation. 2009,
https://www.scopus.com/record/display.uri?eid=2-s2.0-70450250104 &origin=resultslist.

DOI: https://doi.org/10.1145/1542476.1542521.

7. Weninger, M. “Analyzing data structure growth over time to facilitate memory leak detection»

Mumbai”. 10th ACM/SPEC International

Conference on

Performance Engineering. 2019,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85064630765&origin=resultslist.

DOI: https://doi.org/10.1145/3297663.3310297.

8. Shin, W., Kim, W. H., & Min, C. “Fireworks: A fast, efficient, and safe serverless framework using
vm-level post-jit snapshot”. European Conference on Computer Systems. 2022; 17: 663-677.

9. Hamad, N., Dong, S., Olorunjube J. & Farhan, U. “Development of a deep stacked ensemble with
process based volatile memory forensics for platform independent malware detection and classification”.

Expert Systems with Applications. 223,

https://www.scopus.com/record/display.uri?eid=2-s2.0-

85151039062 &origin=resultslist. DOI: https://doi.org/10.1016/j.eswa.2023.119952.
10. Osherove, R. & Khorikov, V. “The art of unit testing, manning”. 2024. ISBN-10 1617297488.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technology in computer systems 155

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology
2024; Vol. 7 No.2: 147-157

11. Toannis, S. E. & Christou, T. “To pool or not to pool? Revisiting an old pattern”. Athens Information
Technology. 2018. DOI: https://doi.org/10.48550/arXiv.1801.03763.

12. Aldossary, M., Djemame, K., Alzamil, I. & Kostopoulos, A. “Energy-aware cost prediction and
pricing of virtual machines in cloud computing environments”. Future Generation Computer Systems. 2019,
p. 442-459, https://www.scopus.com/record/display.uri?eid=2-s2.0-850564484 12 &origin=resultslist.

DOI: https://doi.org/10.1016/j.future.2018.10.027.

13. Zhang, X., Wu, T., Chen, M., Wei, T. & Zhou, J.”Energy-aware virtual machine allocation for cloud
with resource reservation”. Journal of Systems and Software. 2019. p. 147-161,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85055471140&origin=resultslist.

DOI: https://doi.org/10.1016/j.jss.2018.09.084.

14. Flageol, W., Guéhéneuc, Y., Badri, M., Monnier, S., “Design pattern for reusing immutable
methods in object-oriented languages”. European Conference on Pattern Languages of Programs. 2023; 28
(6): 1-9. DOL: https://doi.org/10.1145/3628034.3628040.

15. Haack, C., Poll, E., Schéfer, J. & Schubert, A. “Immutable objects for a java-like language”. 2007,
https://www.scopus.com/record/display.uri?eid=2-s2.0-37149051628 &origin=resultslist.

DOIL: https://doi.org/10.1007/978-3-540-71316-6_24.

16. Pengfei, S., Qingsen, W., Milind, C. & Xu, L. “Pinpointing performance inefficiencies in Java”.
2019, https://www.scopus.com/record/display.uri?eid=2-s2.0-85071907205 &origin=resultslist.
DOI: https://doi.org/10.1145/3338906.3338923.

17. Mitikov, N. & Guk, N. A. “Detection of software problems based on memory dump analysis”.
Applied Mathematics and Mathematical ~ Modeling Issues. 2023; 23: 171-178.
DOI: https://doi.org/10.15421/32232301.

18. Liu, J., Feng, Y. & Liu, X. “MRm-DLDet: a memory-resident malware detection framework based
on memory forensics and deep neural network™. Cybersecurity. 2023; 6 (21).
DOI: https://doi.org/10.1186/s42400-023-00157-w.

19. Helm, C. & Kenjiro, T. “PerfMemPlus: A tool for automatic discovery of memory performance
problems”. 34th International Conference on High Performance Computing. 2019; 11501: 209-226,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85067495342 &origin=resultslist.

DOI: https://doi.org/10.1007/978-3-030-20656-7 11.

20. Bennour, I., Ettouil, M., Zarrouk, R. & Abderrazak J. “Study of runtime performance for Java-
multithread PSO on multicore machines”. International Journal of Computational Science and Engineering.
2019; 19 (4): 483493, https://www.scopus.com/record/display.uri?eid=2-s2.0-85072122618&
origin=resultslist. DOI: https://doi.org/10.1504/IJCSE.2019.101881.

21. Xulong, T., Karakoy, M., Kandemir, M. T. & Arunachalam, M. “Co-optimizing memory-level
parallelism and cache-level parallelism”. ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2019; 40: 935-949, https://www.scopus.com/record/display.uri?eid=2-s2.0-
85067638402 &origin=resultslist. DOI: https://doi.org/10.1145/3314221.3314599.

22. Ryoo, J., Kandemir, M. T. & Karakoy, M. “Memory space recycling”. Proceedings of the ACM on
Measurement and Analysis of Computing Systems. 2022; 6 (1): 14,
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85125844851&d0i=10.1145%213508034&partnerlD=40&md5=081a08166101c225ab14a4915aa72a5f.

DOI: https://doi.org/10.1145/3508034.

23. Kandemir, M., Tang, X., Kotra, J. & Karakoy, M. “Fine-granular computation and data layout
reorganization for improving locality”. IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers. 2022; art. no. 5, https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85145665934&d0i=10.1145%213508352.3549386&partnerID=40&md5=c94f97d17d306caal 051b0c5cf13fb
¢8. DOI: https://doi.org/10.1145/3508352.3549386.

24. Helm, C. & Taura, K. “Automatic identification and precise attribution of DRAM bandwidth
contention”. ACM International Conference Proceeding Series. 2020. 3404422,
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85090562735&d0i=10.1145%213404397.3404422 &partnerID=40&md5=1ee2463914a91b32d52f28b60a7tb
9be. DOI: https://doi.org/10.1145/3404397.3404422.

25. Akbulut, G. G., Kandemir, M. T., Karakoy M. & Choi, W. “Data recompilation for multithreaded
applications”. Data Recomputation for Multithreaded Applications. 2023, https://www.scopus.com/inward/
record.uri?eid=2-s2.085181397164&d0i=10.1109%2fICCAD57390.2023.10323776&partnerD=40&md5=
fabfedc3945ee184a991e0e537d138d1. DOI: https://doi.org/10.1109/ICCAD57390.2023.10323776.

156 Information technology in computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology
2024; Vol. 7 No.2: 147-157

Conflicts of Interest: the authors declare no conflict of interest

Received 11.03.2024
Received after revision 07.05.2024
Accepted 15.05.2024

DOI: https://doi.org/10.15276/hait.07.2024.10
YK 004.942

Moje/il0BaHHA Ta AaBTOMATH3AIliSl IPOLECY MOIIYKY Ay0JIiKaTIB
00'eKTiB y 3HIMKaX mam'siTi

Mitikos MuxoJa IOpiiiosuu?
ORCID: https://orcid.org/0009-0002-1297-5676; mitikov.m22@fpm.dnu.edu.ua. Scopus Author ID: 59005016500

I'yk Harajisn Anarodiisna®

ORCID: https://orcid.org/0000-0001-7937-1039; huk n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900
D JIninpoBchKuii HallioHansHul yHiBepeuTeT iM. Onecst Ionuapa, npocnext Hayku, 72. ninpo, Ykpaina

AHOTALIS

Mera 1i€i po6oTH HONATaE Y BUSBICHHI 30UIBIICHOT0 BUKOPUCTAHHS MaM'ATi IPOTPaMHUMH 3acTocyHKaMu. CydacHUH LUK
PO3pOOKH MPOTrpaMHOTO 3a0e3MeueHHs 30CepeHKEHIN Ha (PyHKIIOHATBHOCTI 1 4aCTO IrHOPYE aCIEeKTH ONTHMAIBHOTO BUKOPUCTAHHSA
pecypciB. ObMmexene ¢izuuHe MacmTaOyBaHHS 3aJa€ BEpXHIM JIMIT Ha NMPOMYCKHY 3JaTHICTh CHCTEMH OOpOOIIOBATH 3aIllUTH.
HasBHicTh He3MiHHHMX O00’€KTiB 3 OJHAKOBOIO iH(oOpMaIlif0 € 03HAaKOI 301LIbLIEHOT BHTpPATH IIaM’siTi. YHHKHEHHs AyOJikaTiB
00’eKTiB B IaM’sTi JO3BOJSIE OUTBII pPAI[iOHAIEHO BHUKOPHUCTOBYBAaTH ICHYIOUMH pecypc 1 301IbIIMTH 0OCSTH 00poOmoBaHOl
iHpopmanii. IcHyroui HaykoBi myGumikamii (OKyCyIOThCS Ha IOCIIDKEHHI IPOo0IeM BHTOKIB I1aM’siTi, Ta 0OMEXYIOTh YBaror came
HaJIMipHE BHKOPHCTAaHHS IaM’sITi 4epe3 BiACYTHICTh YHi(iKOBaHOI MOJENi MONIYKY HaJIMIpHOTO BHKOPHCTAaHHs mam’sti. Bapro
3a3HAYUTH, [0 iCHYIOWi MAONIOHH MPOTrpaMyBaHHS MICTATH IMAOIOH «ITyd 00’€KTiB», ajie 3aIUIIAIOTh BICHOBOK MPO JOUUIBHICTH
HOro BIPOBa/LKCHHS IH)KEHEepaM, HE HAJal04d MaTeMaTHYHOTO MiArpyHTs. IIpeacTaBieHO po3poOKy MaTeMaTHYHOI MOJEN it
MpoIiecy BUSBIICHHS AyOJiKaTiB 00'€KTiB 3 BIACTHBICTIO HE3MIHHOCTI THIy String B 3HIMKY mam’sTi. [IpoaHanizoBaHO MPOMHCIOBI
CHCTEMH, SIKi BUMAararoTh COTHI TirabaifT omepaTHBHOI am’sTi 111 poOOTH Ta MICTATh MITBIOHU 00’ €KTIB B OTIEpPAaTHBHIN aM’sTi. 3a
TakuX MaciTaliB JaHWX, iCHye HEOOXiTHICTh ONTHMI3YBaTH caMe MpOIeC MOUIyKy AyOmikariB. MeTomoM IOCTIKEHHS € aHaji3
3HIMKIB ITaM’ITi BACOKOHABaHTA)XEHUX CHCTEM 3a JIOIIOMOT'O0 [IPOrpaMHOro Koxy, po3pobieHoro Ha texnoiorii .NET ta 6i6mioTeri
CIrMD. 3HiMOK mam’siTi BitoOpaskae cTaH JOCIIDKYBaHOTO IPOIECY Y MOMEHT 4acy, MICTHTh yci 00’€KTH, IIOTOKH Ta BUKOHYBaHI
ornepanii. bidmiorexa ClIrMD no3Boiisie mporpaMHO JOCTIDKYBaTH 00’€KTH, IX THIIH, OTPUMYBATH 3Ha4YEHHS IOJIB, OyayBaTH rpadu
3B’s13KiB Mixk 00’ ektamu. Cepiro eKCIiepuMEHTIB OyJIo MPOBEAEHO Ha BipTyalbHHUX MAlIMHAX IIiJ] KepyBaHHSIM OINeEpawiifHOi cHCTeMHU
Windows, ame cXoxi pe3ylpTaTH MOXYTh OyTH OTpHMaHi Ui omepauiitHoi cuctemu Linux depes3 Kpoc-tuiaTGopMeHHi CTaHAapT
MO3WIIIOBAaHHS JaHUX B MaM ATi. 3a pe3ylbTaTaMH JOCITiHKEHHS OyJ0 3aIpOIIOHOBAHO ONTHMI3AIII0 SIKa JO3BOJISE MPUIIBUALIIATH
MpoIiec MOUIyKy MyOJiKaTiB y JeKinbka pasiB. HaykoBuil BHECOK JOCHIKEHHS MOJATAE B CTBOPEHHI MATEMAaTHYHO OOTPYHTOBAHOTO
MiAXOMy, SKWH CHpHUsS€ 3HAYHOMY 3MEHIICHHIO BHUKOPHCTAHHS PECypCiB MaM'ATi Ta ONTHUMI3alii OOYMCIIOBAIFHUX MpOIECIB.
IIpakTH4Ha KOPHUCTH MOJENI MiATBEPIXKYETHCS pe3ydbTaTaMH ONTUMi3allii JOCATHYTHX 3aBISKH OTPHMAaHUM PEKOMEHJIALisM,
3HIDKEHHSIM BHTpPAT Ha XOCTHHT (110 3abe3nedye Oinblly eKOHOMIYHY e()eKTHBHICTh y PO3rOpPTaHHI Ta BUKOPHCTAaHHI MPOTPaMHHX
CHCTEM Y MMPOMHUCIIOBHX YMOBaX), & TAKOXK 30UIbIICHHS 00CATIB 00POOJICHUX TaHHX.

Kirouosi ci1oBa: onTuMisaliisi, ailrOPUTM; IPOTYKTHBHICTh; 3HIMOK MaM’sITi; TyOJIFOBaHHS; CTPOKA

ABOUT THE AUTHORS

Nikolay Y. Mitikov - Postgraduate student, Faculty of Applied Mathematics. Oles Honchar Dnipro National
University, 72, Science Ave. Dnipro, 49010, Ukraine

ORCID: https://orcid.org/0009-0002-1297-5676; mitikov.m22@fpm.dnu.edu.ua. Scopus Author ID: 59005016500
Research field: Math modeling; application performance; resource consumption

MirtikoB Muxona IOpiiioBnu - acmipanTt, dakymsrer IlpukmagHoi MaTemMatwky. JIHIMPOBCHKMIA HaIiOHATBHMH
yHiBepcuret imeHi Onecst [onuapa , np. Hayku, 72. [lainpo, 49010, Ykpaina

Natalia A. Guk - Doctor of Physical and Mathematical Sciences, Professor, Faculty of Applied Mathematics. Oles
Honchar Dnipro National University, 72, Science Ave. Dnipro, 49010, Ukraine

ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900
Research field: Machine Learning; intelligent information technologies; mechanics

T
I'yk Haranisn AnarouiiBHa - TokTop (i3MKO-MaTeMaTHYHUX Hayk, npodecop, pakynaprer [IpukiaaqHoi MaTeMaTHUKH.
JIHinpoBchKMi HanioHanbHUH yHiBepeutet iMeHi Onecs ['onvapa , np. Haykn, 72. {ninpo, 49010, Ykpaina

ISSN 2663-0176 (Print) Information technology in computer systems 157

ISSN 2663-7731 (Online)

https://orcid.org/0000-0002-3724-430

