
Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems 147

DOI: https://doi.org/10.15276/hait.07.2024.10

UDC 004.942

Modeling and automation of the process for detecting

duplicate objects in memory snapshots

Nikolay Y. Mitikov1)
ORCID: https://orcid.org/0009-0002-1297-5676; mitikov.m22@fpm.dnu.edu.ua. Scopus Author ID: 59005016500

Natalia A. Guk1)
ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900

1) Oles Honchar Dnipro National University, 72, Science Avenue. Dnipro, 49010, Ukraine

ABSTRACT

The paper is devoted to the problem of detecting increased memory usage by software applications. The modern software

development cycle is focused on functionality and often overlooks aspects of optimal resource utilization. Limited physical

scalability sets an upper limit on the system's capacity to handle requests. The presence of immutable objects with identical

information indicates increased memory consumption. Avoiding duplicates of objects in memory allows for more rational use of

existing resources and increases the volumes of processed information. Existing scientific publications focus on investigating

memory leaks, limiting attention to excessive memory use due to the lack of a unified model for finding excessive memory use. It

should be noted that existing programming patterns include the “object pool” pattern, but leave the decision on its implementation to

engineers without providing mathematical grounding. This paper presents the development of a mathematical model for the process

of detecting duplicates of immutable String type objects in a memory snapshot. Industrial systems that require hundreds of gigabytes

of random-access memory to operate and contain millions of objects in memory have been analyzed. At such data scales, there is a

need to optimize specifically the process of finding duplicates. The research method is the analysis of memory snapshots of high-load

systems using software code developed on.NET technology and the ClrMD library. A memory snapshot reflects the state of the

process under investigation at a particular moment in time, containing all objects, threads, and operations being performed. The

ClrMD library allows programmatic exploration of objects, their types, obtaining field values, and constructing graphs of

relationships between objects. The series of experiments was conducted on Windows-backed machines, although similar results can

be obtained on Linux thanks to cross-platform object memory layout pattern. The results of the study proposed an optimization that

allows speeding up the process of finding duplicates several times. The scientific contribution of the research lies in the creation of a

mathematically substantiated approach that significantly reduces memory resource use and optimizes computational processes. The

practical utility of the model is confirmed by the optimization results achieved thanks to the obtained recommendations, reducing

hosting costs (which provides greater economic efficiency in the deployment and use of software systems in industrial conditions),

and increasing the volumes of processed data.

Keywords: Optimization; algorithm; performance; memory snapshot; duplication; string

For citation: Mitikov N. Y., Guk N. A. “Modeling and automation of the process for detecting duplicate objects in memory snapshots”. Herald

of Advanced Information Technology. 2024; Vol. 7 No. 2: 147–157. DOI: https://doi.org/10.15276/hait.07.2024.10

INTRODUCTION

The rapid development of information

technologies facilitates the comprehensive

application of software applications in many areas.

The need to process significant volumes of

information can be compensated by increasing the

computational power of computing systems [1] or

optimizing existing software implementations [2].

Considering the linear growth in the cost per unit of

RAM in cloud hosting [3], there is a false

impression of the possibility of linear scaling of total

operational expenses. Available virtual machine

options come with RAM sizes in multiples of

powers of two – 4GB, 8GB, 16GB, 32GB, etc.

If there is a need for just one extra gigabyte

beyond the available RAM, it becomes necessary to

© Mitikov N., Guk N., 2024

scale the computing system to the next tier, which is

at least twice as expensive as the previous one

(considering the amount of processing power).

Optimizing the memory usage of a software

application requires a deep understanding of the

system's operating algorithms [20] and access to the

development process, which also makes this method

complex and economically unjustifiable given the

option to scale the computing system. Scaling

computational capacities is cost-effective at small

sizes but becomes progressively less economically

viable with each subsequent increase in the memory

size of the virtual machine.

It is worth noting that modern development

methodologies are based on having multiple

environments for testing before releasing a software

application into public access [4] and having a

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

https://orcid.org/0000-0002-3724-430

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

148

Information technology in computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

secondary replica/region [5] to enhance availability.

Thus, moving to the next level of virtual machine

power significantly increases the overall cost of

operating expenses.

Existing publications [6], [7] mostly focus on

investigating the problem of memory leaks, paying

less attention to excessive memory usage. A

memory leak is a condition where a program

mistakenly fails to release no longer needed memory

for reuse [22], thus continuing to allocate new

memory blocks.

Fig. 1 illustrates the rapid increase in memory

usage by a software application, leading to

decreased performance and necessitating a system

monitoring restart of the application every few

hours. High-load systems working with large

volumes of data are particularly susceptible to this

problem. Memory snapshots [8], which record the

contents of RAM at a specific moment in time, are

used to identify the root causes of memory leaks.

Memory snapshots are also used to detect

malicious code [9], especially in cases of code

injection into a trusted process. While there is a

focus on identifying leaks, existing research tends to

neglect the issue of excessive memory usage,

particularly the situation where an application uses

more memory than required for the task at hand.

This problem can arise for various reasons, but one

of the most common is the duplication of immutable

objects. If a program creates multiple objects with

identical values instead of using a single immutable

object, this leads to the storage of redundant

information and increases memory requirements.

A common issue in the operation of modern

systems is the duplication of data [24], specifically

String type objects (strings), which poses a

challenge as it increases the overall cost of

operational expenses and remains undetected by

existing diagnostic systems since the criterion for a

memory leak does not apply.

Finding duplicates requires comparing all

strings with each other, which would involve a vast

number of operations and negatively impact the

performance of the application.

LITERATURE REVIEW

Visualization of cloud computing machine costs

[3], depending on the size of RAM, shows a

minimum doubling in costs when the memory

capacity of the virtual machine is exhausted,

necessitating the use of the next size of virtual

machine (Fig. 2).

Researchers Adriaan Labuschagne and Laura

Inozemtseva in their work [4] on regression testing

have clearly demonstrated methods for enhancing

the quality of software products. Testing the product

in environments similar to the real world

significantly reduces the risk of errors in application

functionality [10], but requires specialized testing

environments, thereby increasing the number of

virtual machines.

Significant attention is paid to the mechanisms

of memory leak detection in the works of Gene

Novark, Emery D. Berger, Benjamin G. [6], and

Markus Weninger [7]. Jon Louis Bentley [2]

describes approaches to reducing memory usage, but

the mechanisms for finding candidates for

optimization are outside the scope of his work.

Fig. 1. Memory usage dynamics
Source: monitoring system supervised by the authors

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems 149

Ioannis T. Christou and Sofoklis Efremidis [11]

describe the use of the “object pool” design pattern.

According to their research, using this design pattern

can significantly reduce the response time of high-

performance multi-threaded applications, especially

in environments with limited memory. However, the

mechanism for finding appropriate uses in their

work is not described.

The authors of these studies agree that the

applicability of this pattern depends on the specific

software product and the data it operates. Excessive

memory use can be an issue for high load systems.

However, with an understanding of the causes of

suboptimal memory distribution [19] and the use of

appropriate strategies to avoid them, the stability and

efficiency of system operations can be enhanced.

Fig. 2. Hosting cost based on the RAM amount

Source: compiled by the authors

One possible scenario for hosting development

[12], [13] is the implementation of dynamic cost for

using a virtual machine based on the percentage of

resource usage, due to the nonlinear increase in

energy consumption when the load exceeds 80% of

the system's capacity.

The scenario of excessive memory usage by a

software application [21] is difficult to detect since it

does not manifest overtly – the memory leak

criterion is not met, specifically, there is no

monotonic increase in memory usage by the

application over time.

Data duplication appears when diverse data

streams enter the system [25], which may contain

identical values, such as reading data from a

database where the query results contain identical

values. A vivid example of potential information

duplication is relational databases with queries that

join several tables.

To detect data duplication, it is necessary to

analyze the program's memory and identify objects

that have the property of immutability [14]. The

property of immutability can be set at the

programming language level [15], or manifest in

existing code due to the absence of method calls that

can change the state of the object.

Finding the property of immutability [16] is key

to reducing memory costs through the reuse of

identical objects [17], and requires access to the

complete codebase of the running program.

Memory snapshots are extensively utilized for

analyzing and detecting malicious code that may be

introduced into the memory of a trusted process.

Traditional static and dynamic methods prove

ineffective in identifying malware residing in

memory [18]. Furthermore, existing solutions

employing forensic memory analysis exhibit

unsatisfactory efficiency in terms of detection speed

and rely heavily on extensive expertise in memory

analysis. A solution to this problem involves

capturing memory snapshots from healthy processes

to serve as a training base for machine learning

algorithms. Upon detecting anomalies, the security

system is capable of responding swiftly despite the

absence of a physical threat file.

Analysis indicates that contemporary research

focuses heavily on identifying memory leaks, yet

there are no effective methods for addressing

excessive memory usage in high-load systems.

Concurrently, existing studies converge on the

importance of optimal memory utilization to

enhance application performance. Therefore, the

development of mathematical models and methods

for detecting excessive memory use remains a

pressing issue.

PROBLEM STATEMENT

In the domain of software development,

particularly in environments where high-load

systems are prevalent, the efficient utilization of

memory resources [23] is crucial for maintaining

optimal performance and reducing operational costs.

The challenge of detecting excessive memory usage

in such systems is compounded by the complexities

involved in managing and understanding memory

dynamics, which include the presence of immutable

object duplicates that consume unnecessary memory

space.

The problem of excessive memory detection in

software products can be articulated as the

development of a robust quantitative model that

effectively identifies and quantifies duplicate

immutable objects within the memory of these

systems. This model should enable developers to

assess the amount of memory wastefully consumed

by these duplicates, thereby informing strategies to

test

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

150

Information technology in computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

minimize memory usage without compromising

system performance.

The proposed model will utilize advanced

memory snapshot analysis techniques to accurately

detect these duplicates, incorporating a set of metrics

designed to expedite the identification process.

Although, the article focuses on single scenario,

further research shall be built on top of the

foundation laid. The effectiveness of this model will

be evaluated through computational experiments

within industrial systems, aiming to provide a

scalable and reliable solution to the excessive

memory usage problem. This approach is analogous

to the challenge in machine learning of evaluating

model quality, where a quantitative metric based on

current standards and trends is crucial for selecting

the optimal model for specific tasks. The goal is to

develop a methodological framework that not only

addresses the immediate concerns of memory waste

but also contributes to the broader discourse on

resource efficiency in software development.

PURPOSE AND OBJECTIVES OF THE

STUDY

The aim of this work is to optimize memory

usage by developing a new mathematical model for

identifying duplicate String objects in the memory of

software products. This will be achieved by

analyzing memory snapshots and evaluating the

model's effectiveness. Detecting duplicates with

immutability properties allows for an accurate

assessment of the amount of excessively used

memory and reduces its consumption in subsequent

development cycles.

To achieve this goal, the following objectives

were set:

1. Construct a mathematical model of objects in

memory.

2. Isolate String type objects with immutability

properties into a set.

3. Select a supplementary metric to accelerate

the search for duplicates.

4. Develop a method for searching for

duplicates.

5. Apply the proposed approach to an existing

industrial system and perform an analysis of the

computational experiment results.

MATERIALS AND METHODS OF

RESEARCH

1. Overview of modern development practices

focus in software engineering

To ensure the stable operation of high-load

systems, it is critically important to have sufficient

computational resources. Due to the high complexity

of industrial systems and significant variability of

data, the sizes of computational capacities are

calculated based on load testing that exceeds

expected levels. As a result of these tests,

requirements are formed for the amount of RAM

and computational power needed for the software

product to function.

Errors identified during program execution and

code deficiencies are subject to refinement. After

successfully passing key test scenarios, the software

product is ready to be launched for end-users.

However, the development cycle often does not

account for the possibility of increased resource

usage, which leads to an increase in computational

demands, raises operating costs, and limits the

number of requests the system can handle according

to requirements. It is necessary to optimize the

memory usage of software applications to improve

performance and increase the potential number of

operations performed simultaneously.

2. Memory snapshots applicability

Within a memory snapshot, information is

displayed about the operations being performed, the

state of execution threads, the objects managed by

these threads, and the program code. Details about

the objects include their types, states, and

relationships.

A memory snapshot of a program can be

represented as a structured array of bytes in the

following way:

Mtime =[b1, b2, … bN],

where time is the moment when the memory

snapshot is taken; b1, b2, … bN are bytes that make

up the snapshot; N is the number of bytes.

Considering the presence of a large number of

objects in the memory of industrial software

applications, manually searching for duplicates

among thousands of different object types in a

memory snapshot is not feasible. It is necessary to

limit the search to types that occupy the most

memory space, in most cases, these are objects of

type String.

The creation, modification, and deletion of

String type objects require certain resources. Fig. 3

shows an example of object duplication from the

studied industrial system, which consumes over

20GB of memory. This software application does

not exhibit signs of memory leakage, namely the

monotonic increase in used memory, so existing

monitoring systems do not detect any memory usage

problems in it.

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems 151

Fig. 3. String duplicates example
Source: compiled by the authors

Thanks to the memory snapshot, duplicates of

objects with the property of immutability were

found, leading to the identification of increased

memory usage. To understand the mechanism of the

software application and diagnose problems,

memory snapshots are scanned [8].

In the case of using high-load systems, the

process of scanning memory snapshots requires

automation, which allows for rapid analysis.

Therefore, the automation of scanning provides

significant advantages, including reducing the time

for analysis, increasing the accuracy of problem

detection, and improving the overall performance of

the system [17].

3. Algorithm for segregating objects

In this work, it is proposed to identify objects in

a memory snapshot based on their properties and to

use this as a metric. The metric is introduced to

define the “distance” between objects and their

similarity.

An automated scanning system during a

memory snapshot will create a set of objects O. The

next step is to separate the types that possess the

property of immutability, specifically those that do

not change their state after creation. We will apply a

function to group by types and find the set Ot of

objects with immutable types. We will consider this

property only for String type objects due to their

statistically highest occurrence in the memory

snapshots of the studied systems. In this set, we will

identify the subset STRN of all String type objects

and the subset STR of objects that possess the

property of immutability𝑆𝑇𝑅 ⊂ 𝑆𝑇𝑅𝑁 ⊂ 𝑂𝑡𝑖
⊂ 𝑂.

Under the directive of the software

application’s CLR (Common Language Runtime)

execution environment, objects of type String have a

zero byte b(0), the length of the object in bytes b,

and the content information located in these bytes. A

String type object can be represented as String(b(0),

b). Introduce an additional property s of the object,

which is the arithmetic sum of the bytes allocated for

storing the object’s content. Thus, the expression for

a String type object can be written as

𝑆𝑡𝑟𝑖𝑛𝑔(𝑏(0), 𝑏, 𝑠).

Each instance of the object 𝑆𝑡𝑟𝑖𝑛𝑔(𝑏(0), 𝑏, 𝑠)

belongs to the set:

𝑆𝑇𝑅𝑁
= {𝑆𝑡𝑟𝑖𝑛𝑔1(𝑏1(0), 𝑏1, 𝑠1),
𝑆𝑡𝑟𝑖𝑛𝑔2(𝑏2(0), 𝑏2, 𝑠2), … . 𝑆𝑡𝑟𝑖𝑛𝑔𝑁(𝑏𝑁(0), 𝑏𝑁, 𝑠𝑁)},

where N is the number of instances of String type

objects. This set includes all String type objects,

including duplicates.

Each instance of a String object is identified by

the parameter s.

The values of the parameters si for each of the

objects form the set

S={s1, s2,…,sn},

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

152

Information technology in computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

where n is the number of unique sizes of String type

objects, n<=N.

To optimize the grouping of strings, we will

develop an approach that allows for quick

segregation of strings based on the introduced

metric, thus significantly reducing the number of

comparisons between strings, leaving only

comparisons between elements within one group.

In the set S, we will find the minimum and

maximum values, denoted as and b, respectively.

The range [a, b] will be divided into m intervals ∆ of

length ∆=
(𝑏−𝑎)

𝑚
, 𝑚 ≤ 𝑛. Each interval may include

several values of the parameter s of String type

objects, or none at all.

The distribution of the parameter s across

intervals is done by aligning subsets:

𝑘 = ∏ (
𝑠𝑖

∆
)𝑁

𝑖=1 , 𝑘 ≤ 𝑛, (1)

where k is the interval number.

Thus, a partial ordering of the set S by intervals

occurs. It should be noted that the obtained intervals

may contain strings with the same value of s, but

differing in content. A clear example would be

strings in which the order of words is changed, but

the algebraic sum of bytes allocated for their storage

remains the same. The sum function was chosen as a

quick hash function. Among the set of intervals,

there will be those that contain several unordered

values. Additional ordering should be conducted

within such intervals. Therefore, the task arises to

perform the minimum number of such orderings. Let

us denote by the function G (m, L) the total number

of orderings and find the minimum G (m, L).

Let us assume that each interval contains the

same number of numbers, L.

In this case, the total number of orderings

equals:

𝐺(𝑚, 𝐿) = 𝑚𝐿
𝐿−1

2
.

It is necessary to determine the values of 𝑚 and

L for which the function G (m, L) assumes the

smallest value.

Since 𝑚 =
𝑛

𝐿
, we have:

𝐺(𝑛, 𝐿) = 𝑛
𝐿−1

2
. (2)

The minimum of the function G(m,L) will

depend on the value of parameter 𝐿. The trivial case

𝐿=1 is not considered because sorting operations

require at least two values; therefore, the minimum

value of (𝑚,) is achieved for 𝐿=2:

𝑚𝑖𝑛 𝐺(𝑛, 𝐿) =
𝑛

2
. (3)

With this value of 𝐿, the number of intervals

will be 𝑚 =
𝑛

2
.

Since it is not known in advance how to divide

the set 𝑆 into a number of unequal intervals such that

these intervals contain an equal number of numbers,

we introduce the estimate 𝑖𝑛𝑓 𝐺(𝑛, 𝐿) =
𝑛

2

The upper bound of values for the function 𝐺 is

found when 𝐿=𝑛 and 𝑚=1 𝑠𝑢𝑝 𝐺(𝑛, 𝐿) = 𝑛
𝑛−1

2

Let's define the effectiveness of the proposed

method in the study by comparing the number of

operations required with that of a full exhaustive

search. A full exhaustive search involves pairwise

comparisons of all strings with each other. In this

case, the total number of comparisons is 𝑛
𝑛−1

2

Let's introduce an efficiency coefficient 𝐾ef

for the extreme cases inf 𝐺(𝑛,𝐿) and sup𝐺(𝑛,𝐿),

considering the number of operations for distribution

into intervals and the number of operations required

to determine the values 𝑎 and 𝑏:

𝐾еф
𝑖𝑛𝑓

=
𝑛

𝑛 − 1
2

𝑛
2

+ 2𝑛
=

𝑛 − 1

5
,

𝐾еф
𝑠𝑢𝑝

=
𝑛

𝑛 − 1
2

𝑛
n − 1

2
+ 2𝑛

=
𝑛 − 1

𝑛 + 3
.

Thus, the efficiency coefficient of the proposed

method lies within the range of

𝑛 − 1

𝑛 + 3
≤ 𝐾еф ≤

𝑛 − 1

5
.

The maximum value of the efficiency

coefficient indicates a linear dependency of

efficiency on the number of processed elements,

demonstrating that with each additional element,

processing costs increase linearly. This suggests that

the overhead for handling each additional string

grows in a linear fashion, which is typical when the

number of operations scales directly with the size of

the input.

The minimum value approximates to constant

complexity at large 𝑛, showing that the efficiency of

the algorithm increases and approaches a constant

value as 𝑛 increases. This implies that as the dataset

grows; the relative cost of processing per element

diminishes, potentially leading to a more efficient

use of resources at scale.

However, the efficiency coefficient of the

method does not account for the increase in the

number of additional resources required to create

sets as the number of elements and the number of

sets increase. This can include memory for storing

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems 153

the intervals and the computational overhead

associated with managing larger sets. This additional

cost could offset some of the gains from the reduced

number of comparisons, especially in cases where

the distribution of elements across intervals is

uneven or requires frequent reevaluation.

In practical applications, it would be necessary

to also consider these factors to obtain a holistic

view of the method's performance and to optimize

the parameters 𝑚 and 𝐿 not just for theoretical

efficiency but also taking into account practical

resource utilization and operational constraints.

EXPERIMENT SETUP

1. Enterprise system characteristics

The validation of the proposed approach was

carried out on a memory snapshot of an industrial

system, which occupies more than 20 GB of

operational memory under normal load conditions.

The system is responsible for transactional data

processing, handling hundreds of tax-related,

product stock, and delivery enquiries in real time. A

distribution of String type objects was constructed

based on the metric s.

On the graph (Fig. 4), there are three peaks that

demonstrate a significant increase in the number of

elements with the same checksum value 𝑠,

corresponding to three String type objects:

“5;USD”,AddShippingCostToCommercialInvoice”,

“Value for Commercial and Parcel Invoice”.

According to the developed approach, each peak on

the graph corresponds to one 𝑠 value and uniquely

identifies an object. This allows for rapid analysis

and quantitative identification of duplicates.

The grouping by the 𝑠 parameter confirmed the

presence of 220 thousand unique values and 14.5

million duplicates. The most duplicated strings

(Fig. 4) were identified, confirming the initial

assumption about the presence of abnormal

duplication of objects in the memory snapshot. A set

s1 of 𝑠 parameters of objects identified in the

previous step will be formed as s1={sk
1, sk

2, sk
3}. Set

s1 belong to S, meaning s1 S.

The resulting set will contain String type

objects that have not yet been processed by the

algorithm. A significant number of duplicates were

found in this set.

Fig. 4. Distribution Across Set S
 Source: compiled by the authors

By removing the set s1 from set 𝑆, we obtain a

new set S1=S\s1 (Fig. 5) and will construct a

distribution for the set S1
.

Fig. 5. Distribution across the set S`

 Source: compiled by the authors

In (Table 1), examples of strings with the

highest number of repetitions in memory are

provided, highlighting both their duplication count

and the total amount of memory they collectively

consume. For example, the string True appears

635,181 times, occupying a total of 2.4 MB of

memory.

Table 1. Duplicates count and space taken

String value
Duplicate

s

Total

size

True 635181 2.4 MB

HideStandardShipping

Method
390073 9.7 MB

false 318273 1.5 MB

Restricted due to ticket 257600 8.4 MB

Visa 241913 945 KB
Source: compiled by the authors

Table 2 illustrates how the time it takes to find

duplicates varies depending on the number of sets

used in the process. Each row in the table represents

a different configuration of sets, detailing the

maximum number of elements per set, the size of the

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

154

Information technology in computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

intervals (△), and the execution time in milliseconds

(ms) for the duplicate search operation.

Fig. 6 illustrates how the maximum number of

elements within set changes as the number of sets

increases. It provides a visual representation

showing that as the number of sets increases, the

maximum number of elements per set tends to

decrease. This trend suggests that dividing the data

into more sets leads to smaller groups or subsets,

thus distributing the data more finely across the sets.

Table 2. Dependency of duplicate search time

on the number of sets

Set count

Max

elements in

set

Size

△

Execution

time, ms.

2 2160701

4679

5 3321.95

4 2142365

2339

8 2653.41

8 1753658

1169

9 3152.39

16 1715889 5850 3100.36

32 1558702 2925 2323.03

64 1260964 1463 2274.14

128 862321 732 2089.94

256 535165 366 1968.16

512 325051 183 1894.38

1024 262314 92 2253.57

2048 174401 46 2074.31

10000 91012 10 1708.93

20000 50420 5 1789.49

30000 40239 4 1831.46

40000 30639 3 1881.13

50000 20531 2 1994.7
Source: compiled by the authors

Fig. 6. Dependency of the maximum number of

 elements on the number of sets
 Source: compiled by the authors

The Fig. 7 displays the relationship between the

number of sets and the time taken (in milliseconds)

to complete the partitioning operation. This chart

would typically show trends where the operation

time might decrease as the number of sets increases,

indicating more efficient processing due to

parallelization or more manageable data sizes per

set. Conversely, it could also reveal points where

operation time increases due to overhead associated

with managing a larger number of sets, or where the

distribution of data among sets is less than optimal,

requiring adjustments in the partitioning logic.

Fig. 7. Dependency of the time (ms) of execution

 of partitioning on the number of sets
 Source: compiled by the authors

DISCUSSION OF THE RESULTS

 Based on the assumption made, the best

performance of partitioning is achieved when there

are a similar number of elements in the subsets,

which helps reduce the proportion of strings with the

same checksum but different contents. This

assumption was confirmed through a series of

experiments with memory snapshots of the studied

industrial systems, finding that the optimal number

of subsets to accelerate partitioning falls within the

range of 460 to 520. Increasing the number of

subsets beyond this range does not significantly

speed up the operation but does lead to the need to

maintain a significantly larger number of groups in

memory, thus increasing the memory requirements

for conducting the analysis.

 The series of experiments showed a dominant

number of duplicates in strings up to 150 characters

in length. This is explained by “constant” values that

enter the system at the startup phase (for example,

read from a database). Longer strings are usually

formed dynamically and have a greater variability of

data. Strings containing a large number of culture-

specific characters, such as hieroglyphs, must also

be considered separately. Each hieroglyph in UTF-8

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems 155

has a large index/value, leading to a large sum of

values and thus increasing the interval Δ.

Introducing these constraints allows for

reducing the interval Δ and achieving a more even

distribution of values across intervals.

CONCLUSIONS

Most publications on the topic of research focus

on the problem of memory leaks, bypassing

excessive consumption due to the inability to

diagnose it. Studies on the application of design

patterns to reduce memory usage present

mechanisms of implementation and effect but leave

aside the criteria and mechanics of searching for

candidates due to the great variability of scenarios

and software products. There is a justified need to

pay attention to non-functional requirements,

specifically the minimization of object duplicates in

memory to increase performance and the volume of

information with which the system can operate.

This work focuses specifically on the algorithm

for searching for candidates using memory

snapshots. While memory snapshots are used to

search for memory leaks or introduced malicious

code, their use to search for excessive memory

consumption is a novel implementation.

A model of objects in the memory snapshot of

the process has been developed, which allows

obtaining the type and values of each object's fields.

String type objects with the property of immutability

were separated from the general set of objects. An

improved method for searching for duplicates of

String type objects in memory snapshots using the

introduced metric has been developed.

The proposed approach was tested on several

high-load industrial systems for which significant

increases in used memory were detected. The

conclusions obtained from the analysis of industrial

systems were conveyed to the developers of the

studied industrial systems. Based on these, the

software code was modified, and in each case, the

amount of RAM required by the process was

significantly reduced.

A foundation has been laid for further search

for mechanisms of memory preservation in

industrial systems.

REFERENCES

1. Gregg, B. “2.7.3 scaling solutions”. “Systems Performance, Second Edition.” Boston: Addison-
Wesley. 2021. ISBN-10 0136820158.

2. Bentley, J. L. Writing efficient programs, Englewood Cliffs, N.J.: Prentice-Hall. 1982. ISBN-10
013970244X.

3. “Microsoft. Windows virtual machines pricing”. – Available from: https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/windows. – [Accessed: 8, February 2023].

4. Labuschagne, A., Inozemtseva, L. & Holmes, R. “Measuring the cost of regression testing in
practice”. ESEC/FSE: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
2017, https://www.scopus.com/record/display.uri?eid=2-s2.0-85030776060&origin=resultslist.
DOI: https://doi.org/10.1145/3106237.3106288.

5. Gao, L., Dahlin, M., Nayate, A., Zheng, J. & Iyengar, A. “Improving availability and performance
with application-specific data replication”. IEEE Transactions on Knowledge and Data Engineering. 2005;
17 (1): 106–120, https://www.scopus.com/inward/record.uri?eid=2-s2.0-17444420807&doi=10.1109
%2fTKDE.2005.10&partnerID=40&md5=372f00d4ec430291228a21a2ede57ca9.
DOI: https://doi.org/10.1109/TKDE.2005.10.

6. Novark, G., Berger, E. D. & Zorn, B. G. “Efficiently and precisely locating memory leaks and
bloat”. ACM SIGPLAN Conference on Programming Language Design and Implementation. 2009,
https://www.scopus.com/record/display.uri?eid=2-s2.0-70450250104&origin=resultslist.
DOI: https://doi.org/10.1145/1542476.1542521.

7. Weninger, M. “Analyzing data structure growth over time to facilitate memory leak detection»
Mumbai”. 10th ACM/SPEC International Conference on Performance Engineering. 2019,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85064630765&origin=resultslist.
DOI: https://doi.org/10.1145/3297663.3310297.

8. Shin, W., Kim, W. H., & Min, C. “Fireworks: A fast, efficient, and safe serverless framework using
vm-level post-jit snapshot”. European Conference on Computer Systems. 2022; 17: 663–677.

9. Hamad, N., Dong, S., Olorunjube J. & Farhan, U. “Development of a deep stacked ensemble with
process based volatile memory forensics for platform independent malware detection and classification”.
Expert Systems with Applications. 223, https://www.scopus.com/record/display.uri?eid=2-s2.0-
85151039062&origin=resultslist. DOI: https://doi.org/10.1016/j.eswa.2023.119952.

10. Osherove, R. & Khorikov, V. “The art of unit testing, manning”. 2024. ISBN-10 1617297488.

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

156

Information technology in computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

11. Ioannis, S. E. & Christou, T. “To pool or not to pool? Revisiting an old pattern”. Athens Information
Technology. 2018. DOI: https://doi.org/10.48550/arXiv.1801.03763.

12. Aldossary, M., Djemame, K., Alzamil, I. & Kostopoulos, A. ”Energy-aware cost prediction and
pricing of virtual machines in cloud computing environments”. Future Generation Computer Systems. 2019.
p. 442–459, https://www.scopus.com/record/display.uri?eid=2-s2.0-85056448412&origin=resultslist.
DOI: https://doi.org/10.1016/j.future.2018.10.027.

13. Zhang, X., Wu, T., Chen, M., Wei, T. & Zhou, J.”Energy-aware virtual machine allocation for cloud
with resource reservation”. Journal of Systems and Software. 2019. p. 147–161,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85055471140&origin=resultslist.
DOI: https://doi.org/10.1016/j.jss.2018.09.084.

14. Flageol, W., Guéhéneuc, Y., Badri, M., Monnier, S., “Design pattern for reusing immutable
methods in object-oriented languages”. European Conference on Pattern Languages of Programs. 2023; 28
(6): 1–9. DOI: https://doi.org/10.1145/3628034.3628040.

15. Haack, C., Poll, E., Schäfer, J. & Schubert, A. “Immutable objects for a java-like language”. 2007,
https://www.scopus.com/record/display.uri?eid=2-s2.0-37149051628&origin=resultslist.
DOI: https://doi.org/10.1007/978-3-540-71316-6_24.

16. Pengfei, S., Qingsen, W., Milind, C. & Xu, L. “Pinpointing performance inefficiencies in Java”.
2019, https://www.scopus.com/record/display.uri?eid=2-s2.0-85071907205&origin=resultslist.
DOI: https://doi.org/10.1145/3338906.3338923.

17. Mitikov, N. & Guk, N. A. “Detection of software problems based on memory dump analysis”.
Applied Mathematics and Mathematical Modeling Issues. 2023; 23: 171–178.
DOI: https://doi.org/10.15421/32232301.

18. Liu, J., Feng, Y. & Liu, X. “MRm-DLDet: a memory-resident malware detection framework based
on memory forensics and deep neural network”. Cybersecurity. 2023; 6 (21).
DOI: https://doi.org/10.1186/s42400-023-00157-w.

19. Helm, C. & Kenjiro, T. “PerfMemPlus: A tool for automatic discovery of memory performance
problems”. 34th International Conference on High Performance Computing. 2019; 11501: 209–226,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85067495342&origin=resultslist.
DOI: https://doi.org/10.1007/978-3-030-20656-7_11.

20. Bennour, I., Ettouil, M., Zarrouk, R. & Abderrazak J. “Study of runtime performance for Java-
multithread PSO on multicore machines”. International Journal of Computational Science and Engineering.
2019; 19 (4): 483–493, https://www.scopus.com/record/display.uri?eid=2-s2.0-85072122618&
origin=resultslist. DOI: https://doi.org/10.1504/IJCSE.2019.101881.

21. Xulong, T., Karakoy, M., Kandemir, M. T. & Arunachalam, M. “Co-optimizing memory-level
parallelism and cache-level parallelism”. ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2019; 40: 935–949, https://www.scopus.com/record/display.uri?eid=2-s2.0-
85067638402&origin=resultslist. DOI: https://doi.org/10.1145/3314221.3314599.

22. Ryoo, J., Kandemir, M. T. & Karakoy, M. “Memory space recycling”. Proceedings of the ACM on
Measurement and Analysis of Computing Systems. 2022; 6 (1): 14,
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85125844851&doi=10.1145%2f3508034&partnerID=40&md5=081a08166101c225ab14a4915aa72a5f.
DOI: https://doi.org/10.1145/3508034.

23. Kandemir, M., Tang, X., Kotra, J. & Karakoy, M. “Fine-granular computation and data layout
reorganization for improving locality”. IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers. 2022; art. no. 5, https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85145665934&doi=10.1145%2f3508352.3549386&partnerID=40&md5=c94f97d17d306caa1051b0c5cf13fb
c8. DOI: https://doi.org/10.1145/3508352.3549386.

24. Helm, C. & Taura, K. “Automatic identification and precise attribution of DRAM bandwidth
contention”. ACM International Conference Proceeding Series. 2020. 3404422,
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85090562735&doi=10.1145%2f3404397.3404422&partnerID=40&md5=1ee2463914a91b32d52f28b60a7fb
9be. DOI: https://doi.org/10.1145/3404397.3404422.

25. Akbulut, G. G., Kandemir, M. T., Karakoy M. & Choi, W. “Data recompilation for multithreaded
applications”. Data Recomputation for Multithreaded Applications. 2023, https://www.scopus.com/inward/
record.uri?eid=2-s2.085181397164&doi=10.1109%2fICCAD57390.2023.10323776&partnerID=40&md5=
fabfedc3945ee184a991e0e537d138d1. DOI: https://doi.org/10.1109/ICCAD57390.2023.10323776.

Mitikov N. Y., Guk N. A. / Herald of Advanced Information Technology

 2024; Vol. 7 No.2: 147–157

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology in computer systems 157

Conflicts of Interest: the authors declare no conflict of interest

Received 11.03.2024

Received after revision 07.05.2024

Accepted 15.05.2024

DOI: https://doi.org/10.15276/hait.07.2024.10

УДК 004.942

Моделювання та автоматизація процесу пошуку дублікатів

об'єктів у знімках пам'яті

Мітіков Микола Юрійович1)
ORCID: https://orcid.org/0009-0002-1297-5676; mitikov.m22@fpm.dnu.edu.ua. Scopus Author ID: 59005016500

Гук Наталія Анатоліївна1)
ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900

1) Дніпровський національний університет ім. Олеся Гончара, проспект Науки, 72. Дніпро, Україна

АНОТАЦІЯ

Мета цієї роботи полягає у виявленні збільшеного використання пам'яті програмними застосунками. Сучасний цикл

розробки програмного забезпечення зосереджений на функціональності і часто ігнорує аспекти оптимального використання

ресурсів. Обмежене фізичне масштабування задає верхній ліміт на пропускну здатність системи оброблювати запити.

Наявність незмінних об’єктів з однаковою інформацію є ознакою збільшеної витрати пам’яті. Уникнення дублікатів

об’єктів в пам’яті дозволяє більш раціонально використовувати існуючий ресурс і збільшити обсяги оброблюваної

інформації. Існуючі наукові публікації фокусуються на дослідженні проблем витоків пам’яті, та обмежують увагою саме

надмірне використання пам’яті через відсутність уніфікованої моделі пошуку надмірного використання пам’яті. Варто

зазначити, що існуючі шаблони програмування містять шаблон «пул об’єктів», але залишають висновок про доцільність

його впровадження інженерам, не надаючи математичного підґрунтя. Представлено розробку математичної моделі для

процесу виявлення дублікатів об'єктів з властивістю незмінності типу String в знімку пам’яті. Проаналізовано промислові

системи, які вимагають сотні гігабайт оперативної пам’яті для роботи та містять мільйони об’єктів в оперативній пам’яті. За

таких масштабів даних, існує необхідність оптимізувати саме процес пошуку дублікатів. Методом дослідження є аналіз

знімків пам’яті високонавантажених систем за допомогою програмного коду, розробленого на технології .NET та бібліотеці

ClrMD. Знімок пам’яті відображає стан досліджуваного процесу у момент часу, містить усі об’єкти, потоки та виконувані

операції. Бібліотека ClrMD дозволяє програмно досліджувати об’єкти, їх типи, отримувати значення полів, будувати графи

зв’язків між об’єктами. Серію експериментів було проведено на віртуальних машинах під керуванням операційної системи

Windows, але схожі результати можуть бути отримані для операційної системи Linux через крос-платформений стандарт

позиціювання даних в пам’яті. За результатами дослідження було запропоновано оптимізацію яка дозволяє пришвидшити

процес пошуку дублікатів у декілька разів. Науковий внесок дослідження полягає в створенні математично обґрунтованого

підходу, який сприяє значному зменшенню використання ресурсів пам'яті та оптимізації обчислювальних процесів.

Практична користь моделі підтверджується результатами оптимізації досягнутих завдяки отриманим рекомендаціям,

зниженням витрат на хостинг (що забезпечує більшу економічну ефективність у розгортанні та використанні програмних

систем у промислових умовах), а також збільшення обсягів оброблених даних.

Ключові слова: оптимізація, алгоритм; продуктивність; знімок пам’яті; дублювання; строка

ABOUT THE AUTHORS

Nikolay Y. Mitikov - Postgraduate student, Faculty of Applied Mathematics. Oles Honchar Dnipro National
University, 72, Science Ave. Dnipro, 49010, Ukraine

ORCID: https://orcid.org/0009-0002-1297-5676; mitikov.m22@fpm.dnu.edu.ua. Scopus Author ID: 59005016500

Research field: Math modeling; application performance; resource consumption

Мітіков Микола Юрійович - аспірант, факультет Прикладної математики. Дніпровський національний

університет імені Олеся Гончара , пр. Науки, 72. Дніпро, 49010, Україна

Natalia A. Guk - Doctor of Physical and Mathematical Sciences, Professor, Faculty of Applied Mathematics. Oles
Honchar Dnipro National University, 72, Science Ave. Dnipro, 49010, Ukraine

ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900

Research field: Machine Learning; intelligent information technologies; mechanics

Гук Наталія Анатоліївна - доктор фізико-математичних наук, професор, факультет Прикладної математики.

Дніпровський національний університет імені Олеся Гончара , пр. Науки, 72. Дніпро, 49010, Україна

https://orcid.org/0000-0002-3724-430

