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ABSTRACT

Keyword spotting in voice signal is a crucial task for specialized, low-resource computer systems, such as ground drones,
particularly when operating under challenging conditions with limited computational power and without reliable cloud access. This
paper presents a novel, modular model for efficient keyword spotting that does not rely on deep neural networks. The model's core
principle is the differential weighting of Mel-Frequency Cepstral Coefficients , prioritizing those coefficients most discriminative for
phonetic content. The architecture incorporates robust signal conditioning, dynamic feature extraction (including delta and del ta-delta
derivatives), the transformation of acoustic features into compact string-based "fingerprints”, and final classification using the
Levenshtein distance. Experimental validation, conducted on a Ukrainian-language corpus of drone commands with lexicons of up to
200 words, demonstrated the model's high performance and scalability. The system achieved an F1-score of 0.92 under ideal
conditions and showed significant resilience in noisy environments, maintaining an F1-score of 0.78 at a 5dB signal-to-noise ratio.
Furthermore, the proposed system significantly outperformed a baseline version (using only basic Mel-Frequency Cepstral
Coefficients without derivatives or normalization) by up to 33 percentage points in F1-score under challenging conditions. The study
validates that this optimized classical Keyword Spotting approach provides an effective and fully autonomous solution for edge
computing applications where resource efficiency and independence from cloud infrastructure are paramount, especially in critical
scenarios like military operations.
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INTRODUCTION dependencies in speech. The most recent
advancements even involve fine-tuning Large
Language Models (LLMs) for speech-related tasks.
These solutions exhibit the highest recognition
accuracy, especially when working with large
datasets. However, their practical deployment on
embedded hardware is often constrained by
significant computational resources and memory
footprint requirements.

These constraints present challenges in meeting
real-time processing deadlines, high power
consumption which shortens operational endurance,
and a reliance on cloud offloading, which is
infeasible in disconnected environments. While
techniques like model quantization, pruning, and the
design of specialized “small-footprint” architectures
aim to mitigate these issues, they still often exceed
the hardware budgets of deeply embedded systems.

The second paradigm, which is central to this
research, utilizes a combination of traditional
algorithms proven effective in resource-constrained
systems. It is methodologically rooted in generative

Keyword spotting (KWS) in voice signals is a
fundamental task in natural language processing and
speech recognition, especially for specialized ground
drone computer systems. The contemporary
development in this field is characterized by two
main approaches: highly accurate neural network
architectures and  resource-efficient  classical
algorithms. The former demonstrates the highest
level of accuracy, particularly with large datasets
and sufficient computational resources. In contrast,
the latter, based on Hidden Markov Models (HMMs)
or edit distance methods, gains relevance under
limited resource conditions, providing acceptable
accuracy and real-time stability.

The first paradigm leverages advanced neural
architectures, including Convolutional Neural
Networks (CNNSs) for hierarchical feature extraction
from spectrograms, recurrent models like Long
Short-Term Memory (LSTM), and attention-based
Transformers for capturing long-range temporal

models like HMMs, which model speech phonetics

© Tereikovskyi 1., Didus A., 2025 as a sequence of probabilistic states, otemplate-
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matching techniques such as Dynamic Time
Warping (DTW). Dynamic Time Warping performs
a non-linear alignment of an incoming acoustic
feature sequence against a pre-recorded library of
reference templates, offering inherent robustness to
variations in speech tempo. A key feature of the
proposed approach is the augmentation of these
acoustic modeling methods with mechanisms based
on edit distance, specifically the Levenshtein
distance, which is applied for final matching and
refinement of recognition results after converting
acoustic features into discrete string representations.
This combination allows for retaining the main
advantages of classical methods — minimal memory
requirements and exceptionally — high computati-
onal speed — while simultaneously improving discri-
minative accuracy. This design is critical for the
reliable operation of fully autonomous systems in
challenging tactical environments, such as combat
conditions, where operational integrity cannot
depend on network availability.

1. ANALYSIS OF LITERARY DATA

Neural networks, particularly Deep Neural
Networks (DNNs), have demonstrated significant
progress in Automatic Speech Recognition (ASR)
tasks. An algorithmic overview by the authors in [1]
covers research in this field since 2015, confirming
the effectiveness of much architecture using deep
neural networks. In the work of Chen et al. [2], it is
shown that well-trained deep neural networks
provide a 45 % relative improvement in keyword
spotting quality compared to approaches based on
Hidden Markov Models, and also reduce the impact
of noise by 39 %. Their model, oriented towards
embedded systems, reduces computation time and
simplifies implementation. Similar results were
achieved by Oruh et al. [3], who utilized a Long
Short-Term Memory Recurrent Neural Network
(LSTM-RNN) architecture and were able to achieve
99.36 % accuracy on a benchmark dataset for
continuous speech recognition.

At the same time, despite their high accuracy,
deep neural networks remain computationally
complex, which complicates their application in
resource-constrained environments. O'Shaughnessy
[4] in his review emphasizes that the high results
inherent in these models require significant
computational power during training and
deployment, which is often unattainable for small
devices or autonomous systems. Even specialized
neural network architectures, such as Quantum
Convolutional Neural Networks, discussed by Yang

et al. [5], require special hardware, which is even
less accessible in scenarios with strict limitations,
particularly during military operations or in the
absence of proper infrastructure.

Another disadvantage is the need for large
training datasets. Dua et al. [6] demonstrated the
effectiveness of a Convolutional Neural Network
(CNN) for tonal language recognition (89.15%
accuracy), but noted that the results are limited by
the specificity of the dataset and the number of
speakers. Seo et al. [7], within the concept of
transfer learning, managed to significantly reduce
the data requirement (40 examples for English, 20
for Korean), however, their model still depends on a
large pre-trained encoder, which increases the
overall system size. Additionally, adapting such
neural networks to new operating conditions or a
specific vocabulary requires thorough retraining,
which may be impossible in the absence of constant
or rapid access to cloud computing.

Finally, a key disadvantage is the dependence
of deep neural networks on cloud services. Most
modern neural network ASR systems are designed
with access to powerful servers for storing large
models and fast training. In situations where cloud
computing is unavailable or severely limited (for
example, during wartime when infrastructure is
damaged or stable internet connection is absent),
deploying such models becomes inefficient or
impossible. Therefore, in the context of small and
medium vocabularies and strict computational
resource limitations, neural networks may prove to
be an impractical choice.

In contrast to neural network solutions, classical
speech recognition methods, particularly those based
on dynamic programming, offer several advantages
in resource-constrained environments and in the
absence of access to cloud computing. Seminal
works, such as that of Rabiner [8], provide a detailed
description of Hidden Markov Models (HMM)
theory, which offers a powerful mathematical
framework for modeling temporal dependencies.

However, an alternative line of research is
based on a different fundamental hypothesis: that
different  Mel-frequency cepstral  coefficients
(MFCCs) have unequal importance for identifying
phonetic content. Within this framework, a shift
from probabilistic modeling to a deterministic
approach is proposed, which involves converting
MFCC sequences into a string representation (string
fingerprinting) and their subsequent comparison
using the Levenshtein distance.
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Dynamic Time Warping (DTW) remains one of
the key dynamic programming algorithms used for
speech recognition, particularly in scenarios
involving the recognition of isolated words or short
commands. Furtuna notes that DTW has a simple
implementation and is effective in applications with
small to medium-sized vocabularies, as it directly
compares the input audio signal with pre-prepared
templates of keywords [9]. Although the complexity
of DTW increases with vocabulary size, it remains a
practical and resource-efficient option for keyword
spotting tasks, especially when access to high-
performance computing power is unavailable.

The advantages of template matching-based
approaches (including DTW and the string
fingerprinting method) include their ability to
function correctly on hardware-constrained devices
and to operate autonomously without relying on
cloud services. The string “fingerprints” generated
from MFCCs is compact and can be easily
implemented in embedded systems. Such an
approach does not require excessive computational
resources, making it suitable for applications where
the vocabulary is small, and the transparency and
predictability of the algorithm are of fundamental
importance — for example, during military operations
or other crisis situations where a stable internet
connection is absent. Furthermore, deterministic
comparison methods allow for more understandable
interpretation of results than complex deep neural
architectures, which further enhances their appeal in
safety-critical systems.

The scientific intuition underlying the feature
weighting approach is that some MFCCs (typically
the lower-order ones) are more responsible for
forming the phonetic signature of a word, while
others (higher-order ones) may reflect speaker
variability or environmental noise characteristics.
Consequently, a key research direction is the
verification of the hypothesis that selecting these
informative coefficients and prioritizing them during
the creation of the string “fingerprint” can
significantly improve recognition accuracy and
reliability. Unlike HMM-based systems that require
special adaptation methods like MLLR [10] to adjust
to new conditions, here, robustness to variability is
achieved by focusing on the most stable acoustic
features.

In light of the advantages, an approach based on
weighted feature representation and metric-based
comparison is a promising choice in scenarios where

it is necessary to maintain stable real-time
performance and autonomy in the absence of an
extensive computing infrastructure. Its potential
robustness to speech signal variability, as well as the
transparency of the algorithm, make it particularly
useful for keyword recognition.

Therefore, the task arises of creating a solution
based on the principles of selective processing of
MFCC features and their conversion into string
representations for subsequent comparison. Such an
approach should ensure reliable and resource-
efficient keyword recognition capable of operating
even under challenging conditions without access to
the cloud.

Based on the established methodology for
developing computer-based tools [11], a common
starting point for the development of the proposed
solution is the construction of an integrated model
for keyword recognition in a voice signal. Such a
model combines classical signal processing
methods, particularly cepstral analysis and the use of
Hidden Markov Models, with modern deep learning
algorithms, which allows for high accuracy while
maintaining low computational costs.

However, for scenarios with strict hardware
constraints where even compact hybrid models can
be too resource-intensive, an alternative direction is
considered in the literature. It also relies on cepstral
analysis but departs from probabilistic models in
favor of deterministic comparison. This approach is
based on the assumption that different Mel-
frequency cepstral coefficients (MFCCs) make an
unequal contribution to the discrimination of the
phonetic content of words. This leads to methods
wherein  MFCC sequences are converted into
generalized string representations (string
fingerprints).

To compare these string “fingerprints” with
each other or with a reference template, the
Levenshtein distance is applied. The choice of this
metric is justified by its ability to work effectively
with variable-length sequences, which are a natural
consequence of variations in speech tempo and
signal parameters. This approach allows for the
creation of transparent and computationally
lightweight algorithms capable of functioning
reliably in autonomous systems, such as ground
drones, which is especially relevant under wartime
conditions or with limited access to cloud computing
resources.
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2. THE PURPOSE AND OBJECTIVES OF THE
RESEARCH

The purpose of this research is to develop,
investigate and empirically validate a resource-
efficient model for KWS based on the conversion of
Mel-frequency  cepstral  coefficient (MFCC)
sequences into string representations  (string
“fingerprints”) and their comparison using the
Levenshtein distance.

A key aspect of this work is the investigation of
how selectively considering the informativeness of
different coefficients impacts recognition quality,
based on the assumption that they make an unequal
contribution to the formation of the word's content.

To formally define the task, the system is
designed to detect keywords from a predefined
lexicon within a continuous audio stream. This
stream is segmented by a Voice Activity Detection
(VAD) module to isolate potential utterances. The
model must then handle out of vocabulary words
and background noise through a rejection
mechanism based on a predefined threshold. The
current scope is focused on spotting single-word
commands.

To achieve this purpose, the developed model
must meet the following requirements:

— achieve competitive accuracy in keyword
recognition, measured by the maximization of the
F1-score;

— have low computational requirements,
specifically a minimal memory footprint and a low
Real-Time Factor (RTF), to enable autonomous
operation (without access to cloud resources);

— allow for the rapid addition of new keywords
and adaptation to new conditions without complex
retraining procedures;

— remain reliable in challenging or critical
conditions, particularly during military operations,
when stable access to computing clusters or servers
is unavailable.

3. RESEARCH METHODS

Drawing upon foundational research in
classical speech recognition, a modular approach
underpins the architecture of the keyword spotting
process, facilitating the adaptation of the recognition
framework to specific operational requirements. The

configurable according to implementation needs,
which collectively constitute a sequential processing
pipeline as depicted in Fig.1.

The primary objective of the proposed model is
the robust identification of keywords from a
predefined lexicon within an input acoustic signal.
Formally, for a given input acoustic signal S, the
model yields an output tuple R = (W, C). Here, W
represents the identified keyword from the lexicon
V ={Wordl,Word2,...,WordN}, or a null token
in the absence of a match. The component C denotes
a confidence or similarity score derived from the
Levenshtein distance, constrained to the continuous
interval [0, 1]. This value is interpreted as the
model's  confidence  level  regarding  the
correspondence between the input signal and the
reference template of the identified word W.
Notably, while the current configuration targets a
specific lexicon of drone commands, the
architecture’'s inherent modularity permits the
flexible expansion of the keyword set V to address
other task-specific requirements or to enable more
granular control in future applications

The Signal Processing module of the keyword
recognition pipeline is fundamental. Its main
purpose is to transform an unprocessed acoustic
waveform into a robust set of numerical vectors
suitable for further analytical processing. This
module is executed via a sequence of three
consolidated stages illustrated in Fig. 2.

Stage 1 — Signal Conditioning. This primary
stage prepares the raw audio stream for analysis. It
begins with the acquisition of the signal and
verification of its technical specifications, where
crucial attributes like a 16 kHz sampling rate and
mono channel configuration are confirmed to ensure
data integrity. Subsequently, to enhance the signal-
to-noise ratio (SNR), it employs denoising
algorithms such as spectral subtraction, which are
effective for attenuating stationary or quasi-
stationary noise profiles like engine hum or wind.
Finally, a Voice Activity Detection (VAD)
algorithm is used to segment the speech by excising
non-speech portions, and amplitude normalization
(e.g., peak normalization to -1.0 dBFS) is performed
to correct for variations arising from vocal effort or
distance from the microphone.

model comprises several key components,
Signal Processing P| Keyword Recognition ——p Model Evaluation
Fig. 1. Main modules of constructing a keyword recognition model
Source: compiled by the authors
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Signal Processing

Signal Conditioning

v

Static Feature Extraction

!

Dynamic Feature
Augmentation

Fig. 2. Signal processing module
Source: compiled by the authors

Stage 2 - Static Feature Extraction. This
stage transforms the conditioned time-domain signal
into a sequence of static spectral feature vectors. The
process initiates with framing, where the waveform
is partitioned into short, overlapping segments
(typically 20-30 ms) advanced by a 10 ms shift. A
windowing function, such as a Hamming window, is
applied to each frame to minimize spectral leakage.
For every windowed frame, a vector of Mel-
frequency cepstral coefficients (MFCCs) s
computed. This procedure involves applying a Fast
Fourier Transform (FFT), warping the power
spectrum onto the mel scale via a filter bank, and
applying a discrete cosine transform (DCT) to yield
a set of static coefficients that provide a resilient
characterization of the vocal tract’s spectral
envelope.

Stage 3 — Dynamic Feature Augmentation.
To model the time-varying nature of speech, the
static feature vectors are supplemented by their time
derivatives. This stage calculates the first-order
(delta) and second-order (delta-delta) derivatives of
the MFCCs. These dynamic features encode the
velocity and acceleration of the cepstral values over
time, respectively. This provides vital information
on the transitional aspects of speech articulation,
which is crucial for significantly improving the
robustness of the recognition model.

The Keyword Recognition Module serves as
the system's primary inferential engine. It is
responsible for classifying the acoustic feature
vectors generated by the preceding Signal
Processing module against a predefined lexicon of
keywords. The module's operation is structured into
three sequential stages to accomplish this task, as
illustrated in Fig. 3.

Keyword Recognition

Weighted Feature
Aggregation

I

Template Matching

I

Decision Logic

- -

Fig. 3. Keyword Recognition module

Source: compiled by the authors

Stage 1 — Weighted Feature Aggregation and
Fingerprinting.

This stage transforms the sequence of feature
vectors into a compact, discrete “fingerprint.” A
non-uniform weighting vector, W, is first applied to
the feature matrix, M € RT*N (where T is frames
and N is features), to emphasize the most
phonetically  discriminative  coefficients.  The
resulting weighted features are temporally averaged,
quantized by a function Q, and serialized to produce
the final fingerprint string, F.

This process can be formally expressed as:

F=Q(:sl, M OW) (1)

where M; is the feature vector at frame t and ©
denotes element-wise multiplication.

Stage 2 - Dictionary-Based Template
Matching. This stage executes the primary
comparison logic. The fingerprint F;,,,. generated
from the input signal is compared against a pre-
compiled library of reference templates. This library
is constructed by applying the identical
fingerprinting process (1) to canonical audio
recordings of each keyword in the system's lexicon,
V. The comparison is performed using the
Levenshtein distance, Lev(Finpur, Fres), Which
provides a quantitative measure of dissimilarity
between the two string representations.

Stage 3 — Decision Logic and Thresholding. In
this final stage, a recognition decision is made by
identifying the reference template that yields the
minimum Levenshtein distance. The recognized
keyword, W,..., is determined by finding the key in
the lexicon, keV, that minimizes this distance.
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This selection can be described as:
Wyee = argmin Lev(Finput,Fk), 2

where F, is the reference fingerprint for keyword k.
The match is validated only if the resulting
minimum distance is below a predefined rejection
threshold 0, thereby minimizing false positives.

The validation of the proposed keyword
recognition model is conducted through a structured
methodology designed to empirically measure its
effectiveness. This protocol extends beyond simple
accuracy measurement to encompass a rigorous
assessment of the model's performance under
adverse conditions, its generalization to new
speakers, and a diagnostic analysis of classification
errors. The objective is to establish a comprehensive
performance profile for the system, ensuring its
suitability for deployment in resource-constrained
and mission-critical applications.

To ascertain the practical viability and
operational robustness of the proposed keyword
spotting  system, a structured protocol s

implemented, as detailed in Fig. 4 with 3 main
stages.

(" 3
Model Evaluation

Test Corpus Preparation

:

Quantitative
Performance Analysis

:

Stress Testing

. v

Fig. 4. Schematic representation of the model

validation and testing stage
Source: compiled by the authors

Stage 1 — Test Corpus Preparation. This
initial stage involves the establishment of a
standardized  test  dataset  for  objective
benchmarking. A corpus, comprising audio
recordings of the predefined lexicon (e.g., 100 drone
commands), is created, and each audio segment is
meticulously annotated with its corresponding
ground truth label.

Stage 2 - Quantitative Performance
Analysis. This stage focuses on the quantitative
assessment of the model's classification accuracy

using a suite of standard metrics derived from a
Confusion Matrix.

e Accuracy (Acc): The overall proportion of
correct classifications, serving as a primary indicator
of performance.

e Precision (P): Measures the rate of false
alarms by quantifying the proportion of correct
detections among all instances identified as a
specific keyword.

e Recall (R): Measures the miss rate by
quantifying the model's ability to identify all actual
instances of a keyword.

e F1-Score (F1): The harmonic mean of P and
R, providing a single, balanced score that is crucial
for assessing performance with uneven class
distributions.

To aggregate these indicators, a composite
performance index (Perf ) is formulated as a
weighted sum:

Perf=a-Acc + B-P +y-R+ @A)
+4-F1

where the coefficients (a, P, y, 0) are tunable
parameters that allow for prioritizing specific
performance aspects.

Stage 3 — Stress Testing and Error Analysis.
Validation  procedures assess the model’s
generalization capability, and continuous monitoring
of performance metrics allows for a detailed analysis
of model behavior and resource utilization. Model
performance is evaluated using a comprehensive set
of metrics that provide insights into different aspects
of classification quality.

4. EXPERIMENT AND RESULTS

To empirically validate the proposed model, a
series of experiments were conducted to assess its
performance, robustness, and scalability. A software
prototype was implemented in Python, encapsulating
the modular architecture described in the preceding
sections.

4.1. Experimental Setup

Implementation: The system was developed as
a complete software application for automated
keyword spotting. The implementation includes
modules for audio  preprocessing  (volume
normalization, silence-based segmentation), feature
extraction (MFCCs with delta and delta-delta
derivatives), the proposed weighted fingerprinting

mechanism, and Levenshtein  distance-based
matching.
Testing  Environment:  All  performance

benchmarks, including inference time and memory
usage, were measured on a Raspberry Pi 4 (4GB

346 Information technologies
and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)



Tereikovskyi I. A., Didus A. V. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 341-351

RAM), which serves as a representative target
platform for edge computing applications. The
system was running Raspberry Pi OS, and the model
was executed in a Python environment.

Dataset and Lexicon: The experiments were
performed on a custom-recorded Ukrainian language
corpus designed for a ground drone control
application. The corpus contains recordings from 6
adult native Ukrainian speakers (3 male and 3
female) to ensure a balanced gender distribution.
Recordings were captured using a combination of
headset microphones and far-field microphones in
environments with varying levels of background
noise (different levels of street noise) to simulate
realistic conditions. All audio was recorded as
single-channel (mono) files with a sampling rate of
16 kHz. To ensure an objective evaluation of the
model's generalization capabilities, the dataset was
partitioned into train (70 %), val (15 %), and test
(15%) sets using a speaker-independent split. This
methodology guarantees that all recordings from any
single speaker belong exclusively to one set, which
is critical for assessing the model's ability to
generalize to new voices. The lexicon was designed
for a ground drone control application and was
tested at three distinct scales to evaluate scalability:
a small 10-word lexicon, a medium 100-word
lexicon, and an extended 200-word lexicon.

Baseline for Comparison: To demonstrate the
efficiancy of the proposed enhancements (feature
weighting, dynamic features, normalization), a
Baseline Model was also implemented. This model
utilizes the same core architecture but employs only
basic, unnormalized MFCCs without their
derivatives.

Additional Benchmark Models: To provide a
comprehensive performance context, two additional
models were implemented for comparison;: HMM-
GMM Model — a classic HMM with Gaussian
Mixture Models was configured with 3 states per
phoneme and 4 Gaussian components per state. The
features used were standard 13-dimensional MFCCs
with delta and delta-delta derivatives. Tiny CNN
Model — a compact Convolutional Neural Network
was designed for edge devices, consisting of two
convolutional layers (with 8 and 16 filters
respectively, kernel size 3x3) followed by a fully
connected layer and a softmax output. The model
was trained for 50 epochs using the cross-entropy
loss function. And classical DTW Model: A
standard Dynamic Time Warping implementation
was used as a template-matching baseline. It
performs a direct non-linear alignment between the

MFCC feature sequence of the input signal and the
pre-recorded reference templates for each keyword.

4.2. Performance Evaluation

The model's performance was evaluated under a
range of conditions to establish its operational
characteristics.

Speaker-Dependent Performance: Under ideal
conditions (a single, known speaker whose voice
was used to generate the reference templates, clean
audio), the proposed model demonstrated high
accuracy. For the 100-word lexicon, it achieved an
F1-score of 0.92. Performance varied predictably
with lexicon size, reaching an F1-score of 0.96 for
the 10-word lexicon and 0.89 for the 200-word
lexicon, indicating graceful degradation as
ambiguity increased.

Table 1. Model Performance and Inference Time
vs. Lexicon Size

Lexicon Size F1-Score Average
(Clean Audio) | Inference Time
10 words 0.96 ~4 ms
100 words 0.92 ~5ms
200 words 0.89 ~7ms

Source: compiled by the authors

The analysis of these results in Table 1
indicates a graceful degradation in recognition
accuracy as the lexicon grows and inter-keyword
acoustic confusability increases. Importantly, the
inference time exhibits only a marginal, sub-linear
increase. This demonstrates the high computational
efficiency of the fingerprinting and Levenshtein

matching approach, confirming the model's
suitability for applications requiring both a
moderately large vocabulary and real-time

responsiveness.

Speaker Independence: When tested against
speakers not included in the reference template
generation, the model showed strong generalization.
For the 100-word lexicon, the F1-score for unknown
speakers was 0.76, demonstrating the robustness of
the fingerprinting method to inter-speaker
variability.

Noise Resilience: The model's performance
under noisy conditions was a key focus. With
additive white Gaussian noise, the system
maintained an accuracy of 0.78 at a Signal-to-Noise
Ratio (SNR) of 5dB. Against realistic environmental
noise profiles (e.g., wind, mechanical sounds), the
accuracy remained within the 0.7-0.8 range,
confirming its suitability for deployment in real-
world environments.
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Table 2. F1-Score Degradation under Additive
Noise (100-word lexicon)

Condition F1-Score
Clean Audio 0.92
SNR 20dB 0.88
SNR 10dB 0.81
SNR 5dB 0.78
SNR 0dB 0.65

Source: compiled by the authors

The data in Table 2 show that the model
maintains a high level of performance down to an
SNR of 10dB and remains functional even at 5dB,
which  represents a  challenging  acoustic
environment. This resilience is attributed to the
inclusion of dynamic features (delta and delta-delta
coefficients) and the robust nature of the fingerprint
comparison method.

Comparison to Baseline: In all test cases, the
proposed model significantly outperformed the
baseline. In challenging conditions (unknown
speaker, 5dB SNR), the proposed model showed up
to a 24 percentage point improvement in F1-score
over the baseline, confirming the critical
contribution of dynamic features and weighted
cepstral analysis. The Voice Activity Detection
(VAD) module played a critical role in this
resilience, successfully rejecting over 98% of non-
speech segments containing only background noise,
which significantly reduced the rate of false alarms.

4.3. Comparative Analysis

To contextualize the model's overall
performance, it was benchmarked against the
baseline model, a classical Dynamic Time Warping
(DTW) implementation, and a representative state-
of-the-art cloud-based Automatic Speech
Recognition (ASR) service. The results for the 100-
word lexicon are summarized in Table 3.

approaches. As expected, the Cloud ASR by AWS
Service demonstrates the highest recognition
accuracy. However, its practical application for
autonomous systems is non-viable due to high
latency (an RTF of 0.450) and its fundamental
dependency on a stable internet connection.

The Proposed Model, in contrast, proves to be
the optimal solution for the target application. It
significantly outperforms not only the Baseline
Model but also the Tiny CNN, HMM-GMM, and
Classical DTW implementations, especially under
noisy conditions. The 33% improvement in F1-score
over the baseline in 5dB SNR noise is particularly
notable, confirming the effectiveness of using
weighted dynamic features. While achieving higher
accuracy than other classical and compact neural
models, it does so with a substantially smaller
memory footprint and faster processing speed,
making it the most balanced choice for resource-
constrained edge devices

CONCLUSIONS AND PROSPECTS OF
FURTHER RESEARCH

This paper presented a solution to the challenge
of implementing a robust Keyword Spotting (KWS)
system for autonomous platforms, such as ground
drones, which must operate effectively under strict
computational constraints and without reliable
network access. We have introduced a novel, non-
neural model founded on the principles of weighted
acoustic feature analysis, the transformation of
speech into discrete ““fingerprints”, and subsequent
metric-based comparison. The resulting framework
is therefore lightweight, fully autonomous, and well-
suited for mission-critical applications where cloud
connectivity is unavailable or compromised.

The empirical validation confirmed the efficacy
of our proposed model. The experimental results
demonstrate that the system achieves an optimal

The results presented in Table 3 clearly balance between recognition accuracy and

illustrate the key trade-offs between the different
Table 3. Performance benchmark of different keyword recognition models
Model Memory Inference Real-Time F1-Score F1-Score
Footprint Time Factor (RTF) (Clean Audio) | (5dB SNR Noise)

Baseline ~150 KB ~3 ms 0.003 0.75 0.45
Proposed ~250 KB ~5ms 0.005 0.92 0.78
Tiny CNN ~15MB ~12 ms 0.012 0.91 0.7
HMM-GMM ~1.4 MB ~20 ms 0.018 0.88 0.66
Classical DTW ~2 MB ~20 ms 0.02 0.88 0.65
Cloud ASR N/A(Server) ~450 ms 0.45 0.97 0.91
(AWS)

Source: compiled by the authors
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efficiency. It delivered a high F1-score of 0.92 under
ideal conditions while maintaining an extremely low
Real-Time Factor (RTF) of 0.005, validating its
suitability ~ for  real-time applications. The
comparative analysis further revealed that our model
outperforms both a simplified baseline and a
classical DTW approach, particularly in noisy
environments, while successfully avoiding the high
latency and connectivity dependencies inherent in

investigation of more advanced fingerprinting
techniques to further enhance noise robustness and
speaker independence. Research into on-device
model adaptation, allowing the system to learn new
noise profiles or keywords dynamically in the field,
also presents a significant area for advancement.
Finally, exploring hybrid architectures could be
employed solely for the feature weighting or
quantization stage, may offer a path to improved

cloud-based ASR solutions.
Future work will proceed along several
promising avenues. A primary direction is the
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AHOTALIA

Po3ni3HaBaHHSA KIIOYOBMX CJiB Yy TOJOCOBHX CHIHAJaX € KPHUTHYHO BAXKJIMBMM 3aBIAHHSAM JUIS  CIEL{iali30BaHUX
KOMIT' FOTEPHHUX CHUCTEM 3 OOMEXEHHMH pecypcaMu, TAaKHX sSK Ha3eMHi JPOHH, OCOONHUBO MiJ 4ac poOOTH Yy CKIAJHHX YMOBax 3
00MEKEHOI0 OOYHCITIOBAIBHOIO MOTY)XKHICTIO Ta 0e3 HaAIHHOro MOCTYIy A0 XMapHHX pecypciB. Lls crarts mpencraBisie HOBY
MOZAYJAbHY MOJENb sl epEeKTHBHOrO PO3Mi3HABAHHS KIIOYOBHUX CNiB, sKa HE IMOKIANAE€ThCs Ha TIMOOKI HEUPOHHI Mepexi.
KirouoBuM mpuHIMIOM Mozeni € audepeHiiiiioBaHe 3BaKyBaHHs Me-KeTCTPaIbHUX KOe(illieHTIiB, M0 mpiopuTe3ye KoedilieHTH,
sIKi € HaiOinpin iHGOpMATUBHUME Ui ()OHETHYHOTO 3MICTy. APXITEKTypa BKIIOYAE€ HAifiHY MiATOTOBKY CHUTHANY, BHIIIICHHS
JMHAMIYHUX O3HaK (BKJIIOYHO 3 MOXIJHUMH JIENbTa Ta AENbTa-7lelibTa), NePeTBOPEHHsS aKyCTUYHHX O3HAK Y KOMIIAKTHI PSAKOBI
«BiIOUTKM» Ta (QiHaJIbHY Kiachdikaimio 3a Jonmomoror BifacraHi JleBeHmreliHa. ExcrepuMmeHTanbHa Bamifamisi, MpOBEICHA HA
YKpaiHOMOBHOMY KOPITyCi KOMaH IS APOHIB 3 JIEKCHKOHaMU oOcsiroM 1o 200 ciriB, MpoaeMOHCTpYBajla BUCOKY POAYKTUBHICTH Ta
MacmraboBanicte Mogenmi. Cucrema gocsriaa Fl-mipm 0.92 B imeanpHHX yMmMoOBax i1 MoOKasaja 3HA4HY CTIHKICTh y 3aIlIyMIICHHX
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cepenoBuax, marpumyroun Fl-mipy 0.78 npu cmiBBinHOmEHHI curHaw/miym 5 1b. Kpim Toro, 3ampornoHoBaHa cucreMa 3HA4HO
nepeBepImia 6a30By BEpCiio (Ska BUKOPHCTOBYE JIMIIE MPOCTI MEIKEICTpabHi KoedimieHTH Oe3 MoxXixHuX 9u HopMauti3anii) 1o 33
MPOIIEHTHHUX IMyHKTIB 32 F1-Miporo y ckimagHux ymoBax. JlOCHiDKEHHS MiATBEP/DKYE, IO TAKMA ONTHMI30BaHUI KIIACHYHHHN ITiIXiM
JI0 pO3Ii3HABaHHA KIIOYOBHX CNIiB € ©(QEKTUBHUM Ta IIOBHICTIO ABTOHOMHHM pIIICHHSIM JUIsI 3aCTOCYHKIB Ha mHepudepiiiHux
MIPUCTPOSIX, 1€ pecypcoeeKTUBHICTD Ta HE3aJIEKHICTh BiJl XMapHOI iHPPACTPYKTYPH € IEpPIIOYEepProBHMH, OCOOIMBO Y KPUTHIHHX
CIICHAPIsIX, SK-OT BIHCHKOBI orepariii.

KirouoBi cioBa: posmi3HaBaHHS KIIOYOBHX CJIiB; OOpOOKa TOJIOCOBHX CHTHAJIB; CHCTEMH 3 OOMEXEHHMH PpeCypcaMy;
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