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ABSTRACT 

Keyword spotting in voice signal is a crucial task for specialized, low-resource computer systems, such as ground drones, 
particularly when operating under challenging conditions with limited computational power and without reliable cloud access. This 
paper presents a novel, modular model for efficient keyword spotting that does not rely on deep neural networks. The model's core 
principle is the differential weighting of Mel-Frequency Cepstral Coefficients , prioritizing those coefficients most discriminative for 
phonetic content. The architecture incorporates robust signal conditioning, dynamic feature extraction (including delta and del ta-delta 
derivatives), the transformation of acoustic features into compact string-based "fingerprints", and final classification using the 

Levenshtein distance. Experimental validation, conducted on a Ukrainian-language corpus of drone commands with lexicons of up to 
200 words, demonstrated the model's high performance and scalability. The system achieved an F1-score of 0.92 under ideal 
conditions and showed significant resilience in noisy environments, maintaining an F1-score of 0.78 at a 5dB signal-to-noise ratio. 
Furthermore, the proposed system significantly outperformed a baseline version (using only basic Mel-Frequency Cepstral 
Coefficients without derivatives or normalization) by up to 33 percentage points in F1-score under challenging conditions. The study 
validates that this optimized classical Keyword Spotting approach provides an effective and fully autonomous solution for edge 
computing applications where resource efficiency and independence from cloud infrastructure are paramount, especially in critical 
scenarios like military operations.  
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INTRODUCTION 

Keyword spotting (KWS) in voice signals is a 

fundamental task in natural language processing and 
speech recognition, especially for specialized ground 

drone computer systems. The contemporary 

development in this field is characterized by two 
main approaches: highly accurate neural network 

architectures and resource-efficient classical 

algorithms. The former demonstrates the highest 
level of accuracy, particularly with large datasets 

and sufficient computational resources. In contrast, 

the latter, based on Hidden Markov Models (HMMs) 

or edit distance methods, gains relevance under 
limited resource conditions, providing acceptable 

accuracy and real-time stability. 

The first paradigm leverages advanced neural 
architectures, including Convolutional Neural 

Networks (CNNs) for hierarchical feature extraction 

from spectrograms, recurrent models like Long 

Short-Term Memory (LSTM), and attention-based 
Transformers for capturing long-range temporal 
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dependencies in speech. The most recent 

advancements even involve fine-tuning Large 

Language Models (LLMs) for speech-related tasks. 
These solutions exhibit the highest recognition 

accuracy, especially when working with large 

datasets. However, their practical deployment on 
embedded hardware is often constrained by 

significant computational resources and memory 

footprint requirements.  
These constraints present challenges in meeting 

real-time processing deadlines, high power 

consumption which shortens operational endurance, 

and a reliance on cloud offloading, which is 
infeasible in disconnected environments. While 

techniques like model quantization, pruning, and the 

design of specialized “small-footprint” architectures 
aim to mitigate these issues, they still often exceed 

the hardware budgets of deeply embedded systems. 

The second paradigm, which is central to this 

research, utilizes a combination of traditional 
algorithms proven effective in resource-constrained 

systems. It is methodologically rooted in generative 

models like HMMs, which model speech phonetics 
as a sequence of probabilistic states, otemplate- 
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matching techniques such as Dynamic Time 

Warping (DTW). Dynamic Time Warping performs 

a non-linear alignment of an incoming acoustic 

feature sequence against a pre-recorded library of 
reference templates, offering inherent robustness to 

variations in speech tempo. A key feature of the 

proposed approach is the augmentation of these 
acoustic modeling methods with mechanisms based 

on edit distance, specifically the Levenshtein 

distance, which is applied for final matching and 
refinement of recognition results after converting 

acoustic features into discrete string representations. 

This combination allows for retaining the main 

advantages of classical methods – minimal memory 
requirements and exceptionally – high computati-

onal speed – while simultaneously improving discri-

minative accuracy. This design is critical for the 
reliable operation of fully autonomous systems in 

challenging tactical environments, such as combat 

conditions, where operational integrity cannot 

depend on network availability. 

1. ANALYSIS OF LITERARY DATA 

Neural networks, particularly Deep Neural 

Networks (DNNs), have demonstrated significant 

progress in Automatic Speech Recognition (ASR) 

tasks. An algorithmic overview by the authors in [1] 

covers research in this field since 2015, confirming 

the effectiveness of much architecture using deep 

neural networks. In the work of Chen et al. [2], it is 

shown that well-trained deep neural networks 

provide a 45 % relative improvement in keyword 

spotting quality compared to approaches based on 

Hidden Markov Models, and also reduce the impact 

of noise by 39 %. Their model, oriented towards 

embedded systems, reduces computation time and 

simplifies implementation. Similar results were 

achieved by Oruh et al. [3], who utilized a Long 

Short-Term Memory Recurrent Neural Network 

(LSTM-RNN) architecture and were able to achieve 

99.36 % accuracy on a benchmark dataset for 

continuous speech recognition. 

At the same time, despite their high accuracy, 

deep neural networks remain computationally 

complex, which complicates their application in 

resource-constrained environments. O'Shaughnessy 

[4] in his review emphasizes that the high results 

inherent in these models require significant 

computational power during training and 

deployment, which is often unattainable for small 

devices or autonomous systems. Even specialized 

neural network architectures, such as Quantum 

Convolutional Neural Networks, discussed by Yang 

et al. [5], require special hardware, which is even 

less accessible in scenarios with strict limitations, 

particularly during military operations or in the 

absence of proper infrastructure. 

Another disadvantage is the need for large 

training datasets. Dua et al. [6] demonstrated the 

effectiveness of a Convolutional Neural Network 

(CNN) for tonal language recognition (89.15% 

accuracy), but noted that the results are limited by 

the specificity of the dataset and the number of 

speakers. Seo et al. [7], within the concept of 

transfer learning, managed to significantly reduce 

the data requirement (40 examples for English, 20 

for Korean), however, their model still depends on a 

large pre-trained encoder, which increases the 

overall system size. Additionally, adapting such 

neural networks to new operating conditions or a 

specific vocabulary requires thorough retraining, 

which may be impossible in the absence of constant 

or rapid access to cloud computing. 

Finally, a key disadvantage is the dependence 

of deep neural networks on cloud services. Most 

modern neural network ASR systems are designed 

with access to powerful servers for storing large 

models and fast training. In situations where cloud 

computing is unavailable or severely limited (for 

example, during wartime when infrastructure is 

damaged or stable internet connection is absent), 

deploying such models becomes inefficient or 

impossible. Therefore, in the context of small and 

medium vocabularies and strict computational 

resource limitations, neural networks may prove to 

be an impractical choice. 

In contrast to neural network solutions, classical 

speech recognition methods, particularly those based 

on dynamic programming, offer several advantages 

in resource-constrained environments and in the 

absence of access to cloud computing. Seminal 

works, such as that of Rabiner [8], provide a detailed 

description of Hidden Markov Models (HMM) 

theory, which offers a powerful mathematical 

framework for modeling temporal dependencies. 

  However, an alternative line of research is 

based on a different fundamental hypothesis: that 

different Mel-frequency cepstral coefficients 

(MFCCs) have unequal importance for identifying 

phonetic content. Within this framework, a shift 

from probabilistic modeling to a deterministic 

approach is proposed, which involves converting 

MFCC sequences into a string representation (string 

fingerprinting) and their subsequent comparison 

using the Levenshtein distance. 
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Dynamic Time Warping (DTW) remains one of 

the key dynamic programming algorithms used for 

speech recognition, particularly in scenarios 

involving the recognition of isolated words or short 

commands. Furtuna notes that DTW has a simple 

implementation and is effective in applications with 

small to medium-sized vocabularies, as it directly 

compares the input audio signal with pre-prepared 

templates of keywords [9]. Although the complexity 

of DTW increases with vocabulary size, it remains a 

practical and resource-efficient option for keyword 

spotting tasks, especially when access to high-

performance computing power is unavailable. 

The advantages of template matching-based 

approaches (including DTW and the string 

fingerprinting method) include their ability to 

function correctly on hardware-constrained devices 

and to operate autonomously without relying on 

cloud services. The string “fingerprints” generated 

from MFCCs is compact and can be easily 

implemented in embedded systems. Such an 

approach does not require excessive computational 

resources, making it suitable for applications where 

the vocabulary is small, and the transparency and 

predictability of the algorithm are of fundamental 

importance – for example, during military operations 

or other crisis situations where a stable internet 

connection is absent. Furthermore, deterministic 

comparison methods allow for more understandable 

interpretation of results than complex deep neural 

architectures, which further enhances their appeal in 

safety-critical systems. 

The scientific intuition underlying the feature 

weighting approach is that some MFCCs (typically 

the lower-order ones) are more responsible for 

forming the phonetic signature of a word, while 

others (higher-order ones) may reflect speaker 

variability or environmental noise characteristics. 

Consequently, a key research direction is the 

verification of the hypothesis that selecting these 

informative coefficients and prioritizing them during 

the creation of the string “fingerprint” can 

significantly improve recognition accuracy and 

reliability. Unlike HMM-based systems that require 

special adaptation methods like MLLR [10] to adjust 

to new conditions, here, robustness to variability is 

achieved by focusing on the most stable acoustic 

features. 

In light of the advantages, an approach based on 

weighted feature representation and metric-based 

comparison is a promising choice in scenarios where 

it is necessary to maintain stable real-time 

performance and autonomy in the absence of an 

extensive computing infrastructure. Its potential 

robustness to speech signal variability, as well as the 

transparency of the algorithm, make it particularly 

useful for keyword recognition. 

Therefore, the task arises of creating a solution 

based on the principles of selective processing of 

MFCC features and their conversion into string 

representations for subsequent comparison. Such an 

approach should ensure reliable and resource-

efficient keyword recognition capable of operating 

even under challenging conditions without access to 

the cloud. 

Based on the established methodology for 

developing computer-based tools [11], a common 

starting point for the development of the proposed 

solution is the construction of an integrated model 

for keyword recognition in a voice signal. Such a 

model combines classical signal processing 

methods, particularly cepstral analysis and the use of 

Hidden Markov Models, with modern deep learning 

algorithms, which allows for high accuracy while 

maintaining low computational costs. 

However, for scenarios with strict hardware 

constraints where even compact hybrid models can 

be too resource-intensive, an alternative direction is 

considered in the literature. It also relies on cepstral 

analysis but departs from probabilistic models in 

favor of deterministic comparison. This approach is 

based on the assumption that different Mel-

frequency cepstral coefficients (MFCCs) make an 

unequal contribution to the discrimination of the 

phonetic content of words. This leads to methods 

wherein MFCC sequences are converted into 

generalized string representations (string 

fingerprints). 

To compare these string “fingerprints” with 

each other or with a reference template, the 

Levenshtein distance is applied. The choice of this 

metric is justified by its ability to work effectively 

with variable-length sequences, which are a natural 

consequence of variations in speech tempo and 

signal parameters. This approach allows for the 

creation of transparent and computationally 

lightweight algorithms capable of functioning 

reliably in autonomous systems, such as ground 

drones, which is especially relevant under wartime 

conditions or with limited access to cloud computing 

resources. 
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2. THE PURPOSE AND OBJECTIVES OF THE 

RESEARCH 

The purpose of this research is to develop, 

investigate and empirically validate a resource-
efficient model for KWS based on the conversion of 

Mel-frequency cepstral coefficient (MFCC) 

sequences into string representations (string 
“fingerprints”) and their comparison using the 

Levenshtein distance. 

A key aspect of this work is the investigation of 
how selectively considering the informativeness of 

different coefficients impacts recognition quality, 

based on the assumption that they make an unequal 

contribution to the formation of the word's content. 
To formally define the task, the system is 

designed to detect keywords from a predefined 

lexicon within a continuous audio stream. This 
stream is segmented by a Voice Activity Detection 

(VAD) module to isolate potential utterances. The 

model must then handle out of vocabulary words 

and background noise through a rejection 
mechanism based on a predefined threshold. The 

current scope is focused on spotting single-word 

commands. 
To achieve this purpose, the developed model 

must meet the following requirements: 

– achieve competitive accuracy in keyword 
recognition, measured by the maximization of the 

F1-score; 

– have low computational requirements, 

specifically a minimal memory footprint and a low 
Real-Time Factor (RTF), to enable autonomous 

operation (without access to cloud resources); 

– allow for the rapid addition of new keywords 
and adaptation to new conditions without complex 

retraining procedures; 

– remain reliable in challenging or critical 
conditions, particularly during military operations, 

when stable access to computing clusters or servers 

is unavailable. 

3. RESEARCH METHODS 

Drawing upon foundational research in 

classical speech recognition, a modular approach 

underpins the architecture of the keyword spotting 
process, facilitating the adaptation of the recognition 

framework to specific operational requirements. The 

model comprises several key components, 

configurable according to implementation needs, 

which collectively constitute a sequential processing 

pipeline as depicted in Fig.1. 

The primary objective of the proposed model is 
the robust identification of keywords from a 

predefined lexicon within an input acoustic signal. 

Formally, for a given input acoustic signal S, the 

model yields an output tuple 𝑅 = (𝑊, 𝐶). Here, W 

represents the identified keyword from the lexicon 

𝑉 = {𝑊𝑜𝑟𝑑1, 𝑊𝑜𝑟𝑑2, … , 𝑊𝑜𝑟𝑑𝑁}, or a null token 

in the absence of a match. The component C denotes 
a confidence or similarity score derived from the 

Levenshtein distance, constrained to the continuous 

interval [0, 1]. This value is interpreted as the 
model's confidence level regarding the 

correspondence between the input signal and the 

reference template of the identified word W. 

Notably, while the current configuration targets a 
specific lexicon of drone commands, the 

architecture's inherent modularity permits the 

flexible expansion of the keyword set V to address 
other task-specific requirements or to enable more 

granular control in future applications 

The Signal Processing module of the keyword 
recognition pipeline is fundamental. Its main 

purpose is to transform an unprocessed acoustic 

waveform into a robust set of numerical vectors 

suitable for further analytical processing. This 
module is executed via a sequence of three 

consolidated stages illustrated in Fig. 2. 

Stage 1 – Signal Conditioning. This primary 
stage prepares the raw audio stream for analysis. It 

begins with the acquisition of the signal and 

verification of its technical specifications, where 

crucial attributes like a 16 kHz sampling rate and 
mono channel configuration are confirmed to ensure 

data integrity. Subsequently, to enhance the signal-

to-noise ratio (SNR), it employs denoising 
algorithms such as spectral subtraction, which are 

effective for attenuating stationary or quasi-

stationary noise profiles like engine hum or wind. 
Finally, a Voice Activity Detection (VAD) 

algorithm is used to segment the speech by excising 

non-speech portions, and amplitude normalization 

(e.g., peak normalization to -1.0 dBFS) is performed 
to correct for variations arising from vocal effort or 

distance from the microphone. 

 
Fig. 1. Main modules of constructing a keyword recognition model 

Source: compiled by the authors
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Fig. 2. Signal processing module 
Source: compiled by the authors 

Stage 2 – Static Feature Extraction. This 
stage transforms the conditioned time-domain signal 

into a sequence of static spectral feature vectors. The 

process initiates with framing, where the waveform 

is partitioned into short, overlapping segments 
(typically 20-30 ms) advanced by a 10 ms shift. A 

windowing function, such as a Hamming window, is 

applied to each frame to minimize spectral leakage. 
For every windowed frame, a vector of Mel-

frequency cepstral coefficients (MFCCs) is 

computed. This procedure involves applying a Fast 
Fourier Transform (FFT), warping the power 

spectrum onto the mel scale via a filter bank, and 

applying a discrete cosine transform (DCT) to yield 

a set of static coefficients that provide a resilient 
characterization of the vocal tract’s spectral 

envelope. 

Stage 3 – Dynamic Feature Augmentation. 
To model the time-varying nature of speech, the 

static feature vectors are supplemented by their time 

derivatives. This stage calculates the first-order 

(delta) and second-order (delta-delta) derivatives of 
the MFCCs. These dynamic features encode the 

velocity and acceleration of the cepstral values over 

time, respectively. This provides vital information 
on the transitional aspects of speech articulation, 

which is crucial for significantly improving the 

robustness of the recognition model. 
The Keyword Recognition Module serves as 

the system's primary inferential engine. It is 

responsible for classifying the acoustic feature 

vectors generated by the preceding Signal 
Processing module against a predefined lexicon of 

keywords. The module's operation is structured into 

three sequential stages to accomplish this task, as 
illustrated in Fig. 3. 

 

Fig. 3. Keyword Recognition module 
       Source: compiled by the authors 

Stage 1 – Weighted Feature Aggregation and 

Fingerprinting. 

This stage transforms the sequence of feature 

vectors into a compact, discrete "fingerprint." A 
non-uniform weighting vector, W, is first applied to 

the feature matrix, 𝑀 ∈ 𝑅𝑇×𝑁   (where T is frames 

and N is features), to emphasize the most 
phonetically discriminative coefficients. The 

resulting weighted features are temporally averaged, 

quantized by a function Q, and serialized to produce 

the final fingerprint string, F.  
This process can be formally expressed as: 

𝐹 = 𝑄 (
1

𝑇
∑ 𝑀𝑡

𝑇
𝑡=1 ⊙ 𝑊),  (1) 

where 𝑀𝑡  is the feature vector at frame t and ⊙ 
denotes element-wise multiplication. 

Stage 2 – Dictionary-Based Template 

Matching. This stage executes the primary 

comparison logic. The fingerprint 𝐹𝑖𝑛𝑝𝑢𝑡  generated 

from the input signal is compared against a pre-
compiled library of reference templates. This library 

is constructed by applying the identical 

fingerprinting process (1) to canonical audio 

recordings of each keyword in the system's lexicon, 
V. The comparison is performed using the 

Levenshtein distance, 𝐿𝑒𝑣(𝐹𝑖𝑛𝑝𝑢𝑡 , 𝐹𝑟𝑒𝑓), which 

provides a quantitative measure of dissimilarity 

between the two string representations. 

Stage 3 – Decision Logic and Thresholding. In 
this final stage, a recognition decision is made by 

identifying the reference template that yields the 

minimum Levenshtein distance. The recognized 

keyword, 𝑊𝑟𝑒𝑐, is determined by finding the key in 

the lexicon, k∈V, that minimizes this distance.  
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This selection can be described as: 

𝑊𝑟𝑒𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑒𝑣(𝐹𝑖𝑛𝑝𝑢𝑡 , 𝐹𝑘), (2) 

where 𝐹𝑘 is the reference fingerprint for keyword k. 

The match is validated only if the resulting 
minimum distance is below a predefined rejection 

threshold θ, thereby minimizing false positives. 

The validation of the proposed keyword 
recognition model is conducted through a structured 

methodology designed to empirically measure its 

effectiveness. This protocol extends beyond simple 
accuracy measurement to encompass a rigorous 

assessment of the model's performance under 

adverse conditions, its generalization to new 

speakers, and a diagnostic analysis of classification 
errors. The objective is to establish a comprehensive 

performance profile for the system, ensuring its 

suitability for deployment in resource-constrained 
and mission-critical applications. 

To ascertain the practical viability and 

operational robustness of the proposed keyword 

spotting system, a structured protocol is 
implemented, as detailed in Fig. 4 with 3 main 

stages. 

 

 

Fig. 4. Schematic representation of the model 

validation and testing stage 
Source: compiled by the authors 

Stage 1 – Test Corpus Preparation. This 
initial stage involves the establishment of a 

standardized test dataset for objective 

benchmarking. A corpus, comprising audio 
recordings of the predefined lexicon (e.g., 100 drone 

commands), is created, and each audio segment is 

meticulously annotated with its corresponding 

ground truth label. 

Stage 2 – Quantitative Performance 

Analysis. This stage focuses on the quantitative 

assessment of the model's classification accuracy 

using a suite of standard metrics derived from a 

Confusion Matrix. 

● Accuracy (Acc): The overall proportion of 

correct classifications, serving as a primary indicator 
of performance. 

● Precision (P): Measures the rate of false 

alarms by quantifying the proportion of correct 
detections among all instances identified as a 

specific keyword. 

● Recall (R): Measures the miss rate by 
quantifying the model's ability to identify all actual 

instances of a keyword. 

● F1-Score (F1): The harmonic mean of P and 

R, providing a single, balanced score that is crucial 
for assessing performance with uneven class 

distributions. 

To aggregate these indicators, a composite 

performance index (𝑃𝑒𝑟𝑓 ) is formulated as a 

weighted sum: 

𝑃𝑒𝑟𝑓 = 𝛼 ⋅ 𝐴𝑐𝑐 +  𝛽 ⋅ 𝑃 +  𝛾 ⋅ 𝑅 +
+ 𝛿 ⋅ 𝐹1  

(3) 

where the coefficients (α, β, γ, δ) are tunable 

parameters that allow for prioritizing specific 

performance aspects. 

Stage 3 – Stress Testing and Error Analysis. 
Validation procedures assess the model’s 

generalization capability, and continuous monitoring 

of performance metrics allows for a detailed analysis 
of model behavior and resource utilization. Model 

performance is evaluated using a comprehensive set 

of metrics that provide insights into different aspects 
of classification quality.  

4. EXPERIMENT AND RESULTS 

To empirically validate the proposed model, a 
series of experiments were conducted to assess its 

performance, robustness, and scalability. A software 

prototype was implemented in Python, encapsulating 

the modular architecture described in the preceding 
sections. 

4.1. Experimental Setup 

Implementation: The system was developed as 
a complete software application for automated 

keyword spotting. The implementation includes 

modules for audio preprocessing (volume 

normalization, silence-based segmentation), feature 
extraction (MFCCs with delta and delta-delta 

derivatives), the proposed weighted fingerprinting 

mechanism, and Levenshtein distance-based 
matching. 

Testing Environment: All performance 

benchmarks, including inference time and memory 
usage, were measured on a Raspberry Pi 4 (4GB 
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RAM), which serves as a representative target 

platform for edge computing applications. The 

system was running Raspberry Pi OS, and the model 

was executed in a Python environment. 
Dataset and Lexicon: The experiments were 

performed on a custom-recorded Ukrainian language 

corpus designed for a ground drone control 
application.  The corpus contains recordings from 6 

adult native Ukrainian speakers (3 male and 3 

female) to ensure a balanced gender distribution. 
Recordings were captured using a combination of 

headset microphones and far-field microphones in 

environments with varying levels of background 

noise (different levels of street noise) to simulate 
realistic conditions. All audio was recorded as 

single-channel (mono) files with a sampling rate of 

16 kHz. To ensure an objective evaluation of the 
model's generalization capabilities, the dataset was 

partitioned into train (70 %), val (15 %), and test 

(15%) sets using a speaker-independent split. This 

methodology guarantees that all recordings from any 
single speaker belong exclusively to one set, which 

is critical for assessing the model's ability to 

generalize to new voices. The lexicon was designed 
for a ground drone control application and was 

tested at three distinct scales to evaluate scalability: 

a small 10-word lexicon, a medium 100-word 
lexicon, and an extended 200-word lexicon. 

Baseline for Comparison: To demonstrate the 

efficiancy of the proposed enhancements (feature 

weighting, dynamic features, normalization), a 
Baseline Model was also implemented. This model 

utilizes the same core architecture but employs only 

basic, unnormalized MFCCs without their 
derivatives. 

Additional Benchmark Models: To provide a 

comprehensive performance context, two additional 
models were implemented for comparison: HMM-

GMM Model – a classic HMM with Gaussian 

Mixture Models was configured with 3 states per 

phoneme and 4 Gaussian components per state. The 
features used were standard 13-dimensional MFCCs 

with delta and delta-delta derivatives. Tiny CNN 

Model – a compact Convolutional Neural Network 
was designed for edge devices, consisting of two 

convolutional layers (with 8 and 16 filters 

respectively, kernel size 3x3) followed by a fully 

connected layer and a softmax output. The model 
was trained for 50 epochs using the cross-entropy 

loss function. And classical DTW Model: A 

standard Dynamic Time Warping implementation 
was used as a template-matching baseline. It 

performs a direct non-linear alignment between the 

MFCC feature sequence of the input signal and the 

pre-recorded reference templates for each keyword.  

4.2. Performance Evaluation 

The model's performance was evaluated under a 
range of conditions to establish its operational 

characteristics. 

Speaker-Dependent Performance: Under ideal 
conditions (a single, known speaker whose voice 

was used to generate the reference templates, clean 

audio), the proposed model demonstrated high 
accuracy. For the 100-word lexicon, it achieved an 

F1-score of 0.92. Performance varied predictably 

with lexicon size, reaching an F1-score of 0.96 for 

the 10-word lexicon and 0.89 for the 200-word 
lexicon, indicating graceful degradation as 

ambiguity increased. 

 
Table 1. Model Performance and Inference Time 

vs. Lexicon Size 

Lexicon Size F1-Score  

(Clean Audio) 

Average 

Inference Time 

10 words 0.96 ~4 ms 

100 words 0.92 ~5 ms 

200 words 0.89 ~7 ms 

Source: compiled by the authors 

The analysis of these results in Table 1 

indicates a graceful degradation in recognition 
accuracy as the lexicon grows and inter-keyword 

acoustic confusability increases. Importantly, the 

inference time exhibits only a marginal, sub-linear 

increase. This demonstrates the high computational 
efficiency of the fingerprinting and Levenshtein 

matching approach, confirming the model's 

suitability for applications requiring both a 
moderately large vocabulary and real-time 

responsiveness. 

Speaker Independence: When tested against 

speakers not included in the reference template 
generation, the model showed strong generalization. 

For the 100-word lexicon, the F1-score for unknown 

speakers was 0.76, demonstrating the robustness of 
the fingerprinting method to inter-speaker 

variability. 

Noise Resilience: The model's performance 
under noisy conditions was a key focus. With 

additive white Gaussian noise, the system 

maintained an accuracy of 0.78 at a Signal-to-Noise 

Ratio (SNR) of 5dB. Against realistic environmental 
noise profiles (e.g., wind, mechanical sounds), the 

accuracy remained within the 0.7-0.8 range, 

confirming its suitability for deployment in real-
world environments. 
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Table 2. F1-Score Degradation under Additive 

Noise (100-word lexicon) 

Condition F1-Score 

Clean Audio 0.92 

SNR 20dB 0.88 

SNR 10dB 0.81 

SNR 5dB 0.78 

SNR 0dB 0.65 

Source: compiled by the authors 

The data in Table 2 show that the model 
maintains a high level of performance down to an 

SNR of 10dB and remains functional even at 5dB, 

which represents a challenging acoustic 

environment. This resilience is attributed to the 
inclusion of dynamic features (delta and delta-delta 

coefficients) and the robust nature of the fingerprint 

comparison method. 
Comparison to Baseline: In all test cases, the 

proposed model significantly outperformed the 

baseline. In challenging conditions (unknown 
speaker, 5dB SNR), the proposed model showed up 

to a 24 percentage point improvement in F1-score 

over the baseline, confirming the critical 

contribution of dynamic features and weighted 
cepstral analysis. The Voice Activity Detection 

(VAD) module played a critical role in this 

resilience, successfully rejecting over 98% of non-
speech segments containing only background noise, 

which significantly reduced the rate of false alarms. 

4.3. Comparative Analysis 

To contextualize the model's overall 

performance, it was benchmarked against the 

baseline model, a classical Dynamic Time Warping 

(DTW) implementation, and a representative state-
of-the-art cloud-based Automatic Speech 

Recognition (ASR) service. The results for the 100-

word lexicon are summarized in Table 3. 
The results presented in Table 3 clearly 

illustrate the key trade-offs between the different 

approaches. As expected, the Cloud ASR by AWS 

Service demonstrates the highest recognition 

accuracy. However, its practical application for 

autonomous systems is non-viable due to high 
latency (an RTF of 0.450) and its fundamental 

dependency on a stable internet connection. 

The Proposed Model, in contrast, proves to be 
the optimal solution for the target application. It 

significantly outperforms not only the Baseline 

Model but also the Tiny CNN, HMM-GMM, and 
Classical DTW implementations, especially under 

noisy conditions. The 33% improvement in F1-score 

over the baseline in 5dB SNR noise is particularly 

notable, confirming the effectiveness of using 
weighted dynamic features. While achieving higher 

accuracy than other classical and compact neural 

models, it does so with a substantially smaller 
memory footprint and faster processing speed, 

making it the most balanced choice for resource-

constrained edge devices 

CONCLUSIONS AND PROSPECTS OF 

FURTHER RESEARCH 

This paper presented a solution to the challenge 
of implementing a robust Keyword Spotting (KWS) 

system for autonomous platforms, such as ground 

drones, which must operate effectively under strict 
computational constraints and without reliable 

network access. We have introduced a novel, non-

neural model founded on the principles of weighted 
acoustic feature analysis, the transformation of 

speech into discrete “fingerprints”, and subsequent 

metric-based comparison. The resulting framework 

is therefore lightweight, fully autonomous, and well-
suited for mission-critical applications where cloud 

connectivity is unavailable or compromised. 

The empirical validation confirmed the efficacy 
of our proposed model. The experimental results 

demonstrate that the system achieves an optimal 

balance between recognition accuracy and 

 

 
Table 3. Performance benchmark of different keyword recognition models 

Model Memory 

Footprint 

Inference 

Time 

Real-Time 

Factor (RTF) 

F1-Score  

(Clean Audio) 

F1-Score  

(5dB SNR Noise) 

Baseline ~150 KB ~3 ms 0.003 0.75 0.45 

Proposed ~250 KB ~5 ms 0.005 0.92 0.78 

Tiny CNN ~ 1.5 MB ~12 ms 0.012 0.91 0.7 

HMM-GMM ~1.4 MB ~20 ms 0.018 0.88 0.66 

Classical DTW ~2 MB ~20 ms 0.02 0.88 0.65 

Cloud ASR 

(AWS) 

N/A(Server) ~450 ms 0.45 0.97 0.91 

Source: compiled by the authors 
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efficiency. It delivered a high F1-score of 0.92 under 

ideal conditions while maintaining an extremely low 

Real-Time Factor (RTF) of 0.005, validating its 

suitability for real-time applications. The 

comparative analysis further revealed that our model 

outperforms both a simplified baseline and a 

classical DTW approach, particularly in noisy 

environments, while successfully avoiding the high 

latency and connectivity dependencies inherent in 

cloud-based ASR solutions. 

Future work will proceed along several 

promising avenues. A primary direction is the 

investigation of more advanced fingerprinting 

techniques to further enhance noise robustness and 

speaker independence. Research into on-device 

model adaptation, allowing the system to learn new 

noise profiles or keywords dynamically in the field, 

also presents a significant area for advancement.  

Finally, exploring hybrid architectures could be 

employed solely for the feature weighting or 

quantization stage, may offer a path to improved 

accuracy while still adhering to the strict 

computational budget of embedded systems. 
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АНОТАЦІЯ 

Розпізнавання ключових слів у голосових сигналах є критично важливим завданням для спеціалізованих 

комп’ютерних систем з обмеженими ресурсами, таких як наземні дрони, особливо під час роботи у складних умовах з 

обмеженою обчислювальною потужністю та без надійного доступу до хмарних ресурсів. Ця стаття представляє нову 

модульну модель для ефективного розпізнавання ключових слів, яка не покладається на глибокі нейронні мережі. 

Ключовим принципом моделі є диференційоване зважування мел-кепстральних коефіцієнтів, що пріоритезує коефіцієнти, 

які є найбільш інформативними для фонетичного змісту. Архітектура включає надійну підготовку сигналу, виділення 

динамічних ознак (включно з похідними дельта та дельта-дельта), перетворення акустичних ознак у компактні рядкові 

«відбитки» та фінальну класифікацію за допомогою відстані Левенштейна. Експериментальна валідація, проведена на 

україномовному корпусі команд для дронів з лексиконами обсягом до 200 слів, продемонструвала високу продуктивність та 

масштабованість моделі. Система досягла F1-міри 0.92 в ідеальних умовах і показала значну стійкість у зашумлених  
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середовищах, підтримуючи F1-міру 0.78 при співвідношенні сигнал/шум 5 дБ. Крім того, запропонована система значно 

перевершила базову версію (яка використовує лише прості мелкепстральні коефіцієнти без похідних чи нормалізації) до 33 

процентних пунктів за F1-мірою у складних умовах. Дослідження підтверджує, що такий оптимізований класичний підхід 

до розпізнавання ключових слів є ефективним та повністю автономним рішенням для застосунків на периферійних 

пристроях, де ресурсоефективність та незалежність від хмарної інфраструктури є першочерговими, особливо у критичних 

сценаріях, як-от військові операції. 

Ключові слова: розпізнавання ключових слів; обробка голосових сигналів; системи з обмеженими ресурсами; 

приховані марковські моделі; динамічна часова деформація 
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