Humeniuk A. O. / Herald of Advanced Information Technology
2025; Vol.8 No.3: 326-340

DOI: https://doi.org/10.15276/hait.08.2025.21
UDC 004.72:004.4'272:004.415

Development and optimization of distributed high-performance
systems with real-time data consistency

Andrii O. Humeniuk
ORCID: https://orcid.org/0009-0002-0985-1146; andy.gumenyuk@gmail.com
DASTA Incorporated (“dub”). New York, NY, 10006, USA

ABSTRACT

This article examines the theoretical and applied aspects of building distributed high-performance systems capable of
processing large volumes of data with minimal latency while maintaining real-time consistency guarantees. The relevance of the
research is determined by the rapid growth of data-intensive domains such as high-frequency trading, telemedicine, smart cities, the
Internet of Things, and autonomous transport, where even millisecond delays can have critical consequences. The study focuses on
the analysis of modern architectural models, including microservices, CQRS, Lambda and Kappa architectures, and event-driven
systems with Apache Kafka. Methods of performance optimization are explored in detail, covering asynchronous request handling,
caching, replication, and load balancing, with special attention to edge computing and 5G-based infrastructures. Particular emphasis
is placed on theoretical and practical aspects of data consistency, including CAP-theorem (Consistency Availability Partition
tolerance) trade-offs, consensus algorithms (Paxos, Raft), and CRDT (Conflict-free Replicated Data Type) structures. The results
demonstrate that no universal architectural solution exists, but hybrid approaches combining strong and eventual consistency models
can ensure reliability in mission-critical domains. The proposed analytical model for evaluating performance under different
workload profiles enables the selection of optimal system configurations, balancing throughput, latency, and consistency
requirements. The scientific novelty of the research lies in the integrated framework that unites architectural patterns, optimization
techniques, and consensus mechanisms, as well as in the development of an analytical evaluation model that had not been suffi ciently
presented in previous studies. The practical significance is manifested in the formulation of recommendations for the design of fault-
tolerant, scalable infrastructures for finance, telecommunications, healthcare, 10T, and smart cities.

Keywords: Distributed systems; high throughput; system architecture; data consistency; real-time synchronization;
performance optimization; CAP theorem; horizontal scaling; fault tolerance; consensus algorithms

For citation: Humeniuk A. O. “Development and optimization of distributed high-performance systems with real-time data consistency”.
Herald of Advanced Information Technology. 2025; Vol.8 No.3: 326-340. DOI: https://doi.org/10.15276/hait.08.2025.21

INTRODUCTION second — for example, in stock exchange or
cryptocurrency platforms, where even a delay of a
few milliseconds can have critical consequences.

Traditional monolithic data-processing models
are increasingly being replaced by decentralized and
event-driven approaches. At the same time, the
introduction of microservice technologies,
containerization, serverless
architectures, and progress in dataflow and
infrastructure management in cloud environments
have paved the way for building dynamic, reactive
systems capable of adapting to workloads in real
time.

Ensuring data consistency in such environments
is a task that requires careful design, the correct
choice of synchronization strategies, thoughtful data
replication, and in-depth monitoring. It is important
to achieve a balance between consistency,
availability, and fault tolerance, avoiding situations
where improving one parameter leads to the
deterioration of another (the well-known

In the era of rapid growth of digital
technologies, the development of information
systems is increasingly focused on the efficient
processing of vast amounts of data in real time. The
emergence of new domains — such as high-frequency
trading, decentralized financial technologies (DeFi),
telemedicine, smart cities, the Internet of Things
(1oT), and autonomous transportation systems — has
created an urgent need for high-performance,
scalable, and fault-tolerant information architectures.

Distributed computing systems, operating under
conditions of geographically dispersed nodes, offer
opportunities for scalability, parallelism, and fault
tolerance. However, these advantages are
accompanied by challenges related to ensuring data
consistency, performance, and low latency. These
issues become especially critical in systems
designed to process millions of transactions per

© Humeniuk A., 2025 compromise defined by the CAP theorem).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

326 Information technologies and ISSN 2663-0176 (Print)
computer systems ISSN 2663-7731 (Online)

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

LITERATURE REVIEW AND PROBLEM
STATEMENT

The issue of building distributed high-
performance systems with data consistency
guarantees has attracted researchers’ attention for
decades. The classical works of Tanenbaum and Van
Steen laid the theoretical foundations for designing
such systems, defining the basic approaches to
organizing distributed computations, their
architectures, and principles of interaction between
nodes. A significant contribution to the development
of this field was made by Abadi, Vogels, and
Brewer, who examined the trade-offs between
consistency, availability, and partition tolerance.
Brewer’s CAP theorem, later expanded in
subsequent studies, became the starting point for
modern discussions on balancing performance and
data consistency.

The practical side of the problem is reflected in
works dedicated to building specific platforms. For
instance, Amazon Dynamo, Apache Cassandra, and
Google Spanner have demonstrated different
approaches to achieving consistency on the scale of
global distributed databases. Kleppmann’s research
emphasized the combination of reliability,
scalability, and maintainability in systems operating

with intensive data streams. Meanwhile, works
devoted to Apache Kafka highlighted the
effectiveness of event-driven architectures in
building high-performance event-processing
pipelines.

Summarizing the existing scientific
contributions, it can be stated that the problem of
data consistency in distributed systems remains open
and multifaceted. Contemporary literature covers
both the formal aspects of consensus theory and
applied solutions for specific domains; however, no
final universal approach has been achieved. This
confirms the relevance of further research and the
need for a deeper analysis of the trade-offs between
various architectural models.

Modern information systems operate in an
environment where data volumes are constantly
increasing, and the requirements for processing
speed are becoming increasingly stringent. For
domains such as financial technologies,
telecommunications, medical services, or the
Internet of Things infrastructure, the ability to
process information flows in real time without losing
consistency and availability is critical. Traditional
centralized data-processing models cannot provide
the required level of scalability and fault tolerance,

while known architectural solutions always involve
a compromise between performance and
consistency.

The problem lies in the development and
optimization of architectural and algorithmic
approaches that would combine high throughput
with guaranteed data consistency. It is necessary to
find a balance between different consistency models,
determine the role of consensus algorithms, and
evaluate the effectiveness of existing technological
solutions in the context of specific application
domains. This problem statement defines the goal of
the study, which is to identify architectural models
and synchronization mechanisms capable of
ensuring the operation of mission-critical real-time
systems.

PROBLEM STATEMENT

Based on the analysis of current trends in the
field of distributed high-performance systems, it can
be concluded that the problem of ensuring real-time
data consistency remains open and multifaceted.
Traditional centralized architectures cannot provide
the required level of scalability and fault tolerance,
while existing decentralized solutions always imply
a trade-off between performance and data
consistency.

In this context, the task arises to develop and
optimize architectural and algorithmic approaches
that will allow to:

e ensure high system throughput with minimal
latency;

o achieve guaranteed data consistency through
modern consensus models and replication
mechanisms;

e design an analytical model for evaluating
the efficiency of various architectures depending on
workload characteristics and domain specificity;

o define practical recommendations for
applying optimal solutions in mission-critical
domains (financial technologies,

telecommunications, 10T infrastructures, medical
systems, etc.).

Thus, the problem statement consists in
identifying balanced architectural models and
algorithmic mechanisms that combine the
requirements for scalability, fault tolerance, and
performance with the assurance of real-time data
consistency. Formally, the problem can be expressed
as a multi-criteria optimization task.

Let:

- R — the set of requests arriving in the system

per unit of time,

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and 327
computer systems

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

- N — the set of nodes (servers, containers, or
edge devices),

- L(r,n) — latency of processing request r € R
onnoden € N,

- C(n) — throughput capacity of node n,

- S(r) — data size of request r,

- Cons(r) — required consistency level for
request r (e.g., strong, quorum, eventual).

Decision variables: x_{r,n} € {0,1} — binary
variable indicating whether request r is processed on
node n Constraints:

1. Each request must be assigned to at least one
node: Y {n€ N} x {rn}>1,VreR

2. The workload of each node must not exceed
its processing capacity:

> {re R} S(r) - x {rn} <C(n), Vv n€ N.

3. Consistency guarantees must satisfy
minimum requirements:

K >K min,
where K denotes the ratio of successfully synchro-
nized transactions to the total number of transacti-
ons.

Optimization criteria:

The objective is to minimize average system
latency T, maximize total throughput Th, and
maximize the consistency index K. min T = (1/|R])
> {re R} Y {n € N} L(r,n) x {r,n} max Th =
> {n € N} > {r e R} S() x {rn} max K =
(Number of successfully synchronized transactions)
/ (Total number of transactions).

In practice, these conflicting objectives can be
combined into a single weighted optimization
criterion:

F=a-(1/T)+p -Th+y-K — max,
where a, B, vy are weights reflecting the priority of
latency, throughput, and consistency for a given
application domain (e.g., finance, 1loT, or
telemedicine).

RESEARCH AIM AND OBJECTIVES

The aim of this study is to substantiate and
develop approaches to building distributed high-
performance systems capable of ensuring data
consistency in real time under high loads and in
conditions of geographically distributed
infrastructure. Achieving this aim involves finding a
balance between performance, availability, and
consistency, as well as identifying architectural
models and algorithmic mechanisms that allow the
creation of fault-tolerant information systems.

Within this aim, several interrelated research
objectives are addressed. First, it is necessary to
analyze modern architectural approaches to
designing distributed systems and to determine their

advantages and limitations in the context of high
performance. Second, an important task is to
investigate performance optimization methods,
including asynchronous processing mechanisms,
caching systems, distributed message queues, and
load-balancing technologies. Third, algorithmic
approaches to ensuring consistency must be
examined, including consistency models and
consensus algorithms, and their suitability for
different types of systems must be assessed. Fourth,
the research seeks to identify opportunities for the
practical application of the developed solutions in
financial ~ technologies, = medicine, telecom-
munications, and the Internet of Things.

Thus, the study combines theoretical analysis
and practical testing of mechanisms for building
distributed systems, which makes it possible to
formulate recommendations for creating next-
generation infrastructures capable of meeting the
growing demands of the digital era.

MATERIALS AND METHODS

To achieve the stated aim, a combination of
theoretical and applied methods was used, enabling
the integration of fundamental concept analysis with
the evaluation of practical solutions in the field of
distributed high-performance systems. The research
materials included scientific publications by leading
scholars in distributed system architecture,
monographs, technical documentation, and official
reports on the functioning of industrial platforms.
Special attention was given to works addressing data
consistency, consensus algorithms, and performance
optimization in high-load environments.

The methodological foundation was a systems
approach, which made it possible to consider
distributed systems as complex multi-level entities
where architectural decisions, algorithmic models,
and infrastructural tools are closely intertwined.
Comparative modeling was applied to identify the
advantages and limitations of different architectural
approaches, including microservice, Lambda, and
Kappa architectures. Performance evaluation
considered response time, throughput, and fault
tolerance parameters, which allowed an assessment
of the suitability of each solution for systems with
different load profiles.

The study also employed abstract modeling of
consistency algorithms, in particular Paxos and Raft,
which enabled tracing the mechanisms of reaching
consensus in geographically distributed nodes.
Practical aspects were evaluated by analyzing open
technical reports from companies such as Google,
Amazon, and the Apache Foundation, describing the

328

Information technologies and
computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

operation of Spanner, DynamoDB, Cassandra, and
Kafka platforms. Special attention was paid to
research on edge computing solutions and the impact
of 5G technology on reducing communication
latency.

The application of these methods made it
possible to combine in-depth theoretical analysis
with practical testing, ensuring the
comprehensiveness and reliability of the results.
Such an approach allowed for the formulation of
conclusions that can be used both in academic
research and in the practical design of mission-
critical real-time systems.

RESEARCH RESULTS

1. Architectural
distributed systems

approaches to building

In the design of distributed high-performance
systems, architecture plays a critically important
role. It determines not only the system’s ability to
process millions of transactions per second but also
its reliability, consistency, and scalability. Modern
distributed solutions are evolving toward
decentralization, fault tolerance, and automated
component management at all levels — from data
transmission to processing logic [2].

In cloud environments and large-scale
platforms focused on event stream processing, one
of the most effective architectures is the
microservice model, which ensures modularity,
separation of responsibilities, and flexible scaling.
Microservices allow individual system elements to
be modified without interfering with others,
reducing failure risks and shortening release cycles.
However, scaling microservices introduces the need
for effective event management and inter-service
communication. This is why technologies such as
Kafka—a distributed message broker capable of
handling millions of events per second while
guaranteeing delivery and near-real-time data
processing — are increasingly important.

For managing commands and queries
separately, which is particularly relevant in financial
systems, the CQRS (Command Query
Responsibility Segregation) architectural model is
often applied. It separates responsibilities between
modules that change the system state and those that
only read data. Combined with Kafka, this model
enables maximum performance without sacrificing
consistency.

Fig. 1 illustrates the architectural scheme of
such a CQRS implementation with Kafka in a
financial system.

This scheme clearly demonstrates the
separation of the command and query streams,
enabling efficient independent scaling of system
components, with Kafka serving as a reliable
mediator that guarantees event order and their
processing by all necessary subsystems. Such an
approach significantly reduces the risk of
bottlenecks in high-load environments, especially in
financial platforms or real-time analytics systems,
where thousands of events per second must be
processed without compromising accuracy.

When choosing an architectural approach for a
distributed system, it is necessary to consider not
only technical requirements but also industry-
specific features, expected transaction volumes, and
criticality regarding latency, consistency, and
scalability. These factors directly influence the
efficiency of the selected model, the complexity of
its maintenance, and its adaptability to future
workload growth. The main advantages and
disadvantages of the considered architectures are
summarized in Table 1, which provides a
comparative overview of microservice, CQRS,
event-driven, monolithic, and Lambda-based
solutions.

As shown in Table 1, microservice and CQRS
architectures offer high scalability and efficient load
isolation but require complex orchestration and
synchronization logic. Event-driven models,
particularly ~ with Kafka, provide excellent
throughput and asynchronicity but may complicate
state tracking. In contrast, monolithic solutions are
easier to implement but lack flexibility and
scalability in large-scale deployments. Lambda and
Kappa architectures combine real-time
responsiveness with batch analytics, though at the
expense of implementation complexity and potential
duplication of logic.

One of the important directions in the
development of distributed system architectures has
been the emergence of models oriented toward
processing large data streams in real time. Among
them, the most well-known and widely used are the
Lambda architecture and its simplified variant — the
Kappa architecture. They were developed as a
response to the need to combine high-speed
information processing with the ability to store data
in the long term for subsequent analytical use [11].

The Lambda architecture was proposed as a
universal approach to building systems capable of
working with big data at enterprise scale. Its key
idea lies in combining two different processing paths
— batch processing and real-time streaming. The
batch layer stores the full dataset, which is

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and
computer systems

329

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

periodically processed in large portions to generate
aggregated results. This enables maximum accuracy
and consistency since all data is reprocessed with
each update. In parallel, the real-time layer provides
quick reactions to new events. Data streams are
processed in near-real-time, giving users immediate
results. A service layer then combines both layers to
provide final responses.

API komann API xoman
Command Query Handler
Handler
l TTomii
Kafka
Basza ganux Baza gannx
KOMAaH/| 3AIIHTIB
' 5
Baza gaHmx Baza ganmnx
KOMaH]T 3BHHTjB

Fig. 1. Implementation of command query

responsibility segregation with
kafka in a financial system
Source: compiled by the author

Table 1. Below provides a comparative overview
of key architectural models in the context of their
use in high-performance distributed systems

Architecture

Advantages

Disadvantages

Microservice

Scalability, service
independence, fast
deployment

Complicated
orchestration, need for
a service mesh

CQRS

Optimized read/write
operations, load
isolation

Complex
synchronization logic,
doubled effort for
maintaining models

Event-driven

High performance,

Complicated state

(Kafka) asynchronicity, tracking, potential
reliable event delays in consistency
delivery

Monolithic Simple Limited scalability,
implementation, no difficult to maintain
network overhead as the project grows

Lambda Combines real-time | High implementation

Architecture

and batch processing

complexity,
duplicated logic

Source: compiled by the author

A practical example of the Lambda architecture
is recommendation systems in large online
platforms. For instance, a streaming service may
collect all user viewing history in the batch layer to
periodically recalculate long-term preferences and
profiles, while the real-time layer processes the most
recent actions — such as views over the last few
minutes or hours — to update recommendations
instantly. The combination of both layers provides
users with personalized suggestions that reflect both
long-term trends and current interests.

Despite its effectiveness, the Lambda
architecture has a significant drawback in the form
of duplicated logic. Developers must maintain two
parallel processing pipelines — batch and streaming —
which complicates development, testing, and system
maintenance. This challenge led to the emergence of
the alternative Kappa architecture.

The Kappa architecture simplifies the Lambda
model by eliminating the batch layer. All data is
processed in a single streaming mode. Its key
principle is that any re-computation can be
performed by replaying the data stream from the
beginning. The system stores an event log, which
can be “replayed” whenever re-analysis is required,
producing the necessary results. This reduces
architectural complexity by removing the need to
support two separate processing models.

An example of the Kappa architecture can be
found in financial systems where quick reactions to
events are especially critical. On trading platforms,
each operation enters the streaming pipeline as an
event, where it is validated, processed, and
forwarded to the relevant modules. If re-analysis is
required later, the system simply replays the entire
event log to restore the precise state. This approach
is also applied in loT systems, where sensors
continuously generate data streams that must be
processed in real time to respond to environmental
changes [15].

The comparison of Lambda and Kappa
architectures shows that each has its advantages and
limitations. Lambda is more suitable when
maximum accuracy combined with real-time
responsiveness is required, though at the cost of
higher complexity. Kappa is simpler and more
elegant in implementation but may be less
convenient for tasks requiring in-depth analytics
over complete datasets. In practice, enterprises often
adopt hybrid solutions that combine elements of
both architectures, adapting the system to specific
business and user needs.

Thus, the expansion of architectural approaches
in distributed systems reflects the constant evolution

330

Information technologies and
computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

of data-processing requirements in the digital era.
Lambda and Kappa architectures play leading roles
in building flexible, scalable, and high-performance
systems that provide both rapid response to events
and long-term data accumulation for analysis. They
have become indispensable tools in e-commerce,
finance, telecommunications, healthcare, and IoT,
confirming their universality and potential for
further development.

2. Performance optimization

Performance in distributed high-load systems is
not limited to increasing request processing speed. It
requires a holistic approach that spans all stages —
from architectural design to the optimization of
individual components and interaction protocols.
Performance is a critical parameter in such systems,
as even millisecond delays can lead to lost trades on
financial markets, failures in real-time data delivery,
or the inability to scale business operations.

One of the key strategies for improving
performance is load distribution among services.
Instead of processing requests centrally, the system
delegates processing to independent microservices
or micro-frontends, which can be scaled
horizontally. This enables the use of independent
resources for different tasks without creating
bottlenecks. For instance, in cryptocurrency trading
systems, individual microservices may be
responsible exclusively for transaction validation,
digital asset signing, or order book processing [18].

Another crucial aspect is query optimization in
databases. In systems with intensive reads and
writes, especially when implementing CQRS
architecture, it is advisable to separate storage for
reading and writing. This prevents transaction
blocking and reduces resource contention. High-
speed read operations are supported through caching
systems such as Redis or Memcached, as well as
search indexes like Elasticsearch, which can process
complex queries almost instantly.

Asynchronous event processing mechanisms,
implemented via message brokers such as Apache
Kafka, also play a fundamental role in improving
performance. Event transmission in asynchronous
mode allows the user to receive confirmation
immediately, while the system continues internal
computations in the background. For example, when
creating an order, the wuser instantly gets a
confirmation, while the “OrderCreated” event is
processed asynchronously — triggering invoicing,
balance updates, and logging across services.

Significant benefits are also achieved through
intelligent load balancing. In complex distributed

systems, workloads may be unevenly distributed
over time or across geographic regions. Dynamic
traffic balancing algorithms between data centers,
hosts, or containers make optimal use of resources
and prevent performance degradation. In cloud
infrastructures, such tasks are often handled by
automated systems based on Kubernetes, which
scale services according to load metrics (CPU,
latency, IOPS).

Performance optimization also involves
selecting appropriate communication protocols. In
systems with minimal latency requirements and high
traffic volumes, traditional HTTP requests may be
replaced with more efficient protocols such as grRPC
or WebSocket. gRPC ensures compact message
exchange through Protocol Buffers, reducing
network load by an order of magnitude compared to
JSON messages.

Overall, performance optimization is not a one-
time action but a continuous process involving
component profiling, metric monitoring, and
refactoring of bottlenecks. Metrics such as response
time, failure rate, and events per second must be
integrated into monitoring systems (e.g.,
Prometheus, Grafana), enabling DevOps teams to
detect performance degradation before it affects end
users.

Well-implemented performance optimization
strategies not only meet user expectations but also
enhance reliability, scalability, and competitiveness.
For distributed real-time systems, performance
optimization is not a luxury but a necessity without
which further development is impossible.

One of the most important modern optimization
trends in distributed high-load systems is the use of
edge computing. Traditionally, all data from client
devices or sensors was transmitted to central data
centers for processing and response generation.
While suitable in many cases, this model has
inherent latency due to long-distance data
transmission. For critical applications—such as
autonomous vehicles, telemedicine, or industrial
monitoring systems — milliseconds may be decisive.

Edge computing shifts part of the computation
closer to the data source. This reduces latency,
network load, and resource consumption. For
example, in 10T systems, sensors and local gateways
can preprocess data at the edge, filtering
unnecessary information and sending only
aggregated results to the central system. In
intelligent transportation, edge nodes can instantly
respond to changes in traffic conditions, making
local decisions without waiting for remote servers.
This achieves a balance between centralized control

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and 331
computer systems

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

and local autonomy, crucial for reducing latency and
improving reliability [21].

A key enabler of edge computing has been the
introduction of fifth-generation (5G) mobile
networks. Their main advantage is drastically
reduced latency: while 4G networks average tens of
milliseconds, 5G reduces it to nearly one
millisecond. This enables entirely new applications
previously unfeasible on traditional mobile
infrastructure. The combination of edge computing
and 5G creates opportunities for a new class of
systems capable of near-instant reactions.

In healthcare, this means enabling remote
surgical operations via robotic systems, where a
surgeon can control the procedure from a distance
and commands are executed without delay. In
industry, 5G and edge computing allow factories of
the future, where equipment operates in real-time
synchronization, and control systems perform instant
diagnostics and prevent accidents. In transportation,
the technologies make autonomous vehicles feasible,
allowing them to interact not only with each other
but also with road infrastructure in real time.

From a technical standpoint, 5G combined with
edge computing changes distributed system design
requirements. It creates demand for smaller-scale
distributed data centers located near users,
functioning as edge nodes that handle part of the
processing, while central clusters focus on long-term
storage, analytics, and integration. This leads to a
new level of decentralization, with functions
distributed not only among services but also across
infrastructure layers.

However, combining edge computing and 5G
raises new challenges for security and data
consistency. Localized processing reduces central
bottlenecks but requires robust synchronization
between numerous nodes. Hybrid consistency
models may be applied, combining local eventual
consistency with global transactional control. This
balances response speed with accuracy guarantees,
crucial for mission-critical applications [24].

Overall, performance optimization through
edge computing and 5G marks a new stage in the
evolution of distributed systems. These technologies
enable a shift from traditional centralized models to
more flexible and adaptive solutions operating close
to users. This not only enhances service quality but
also establishes a foundation for innovation across
domains ranging from healthcare and transportation
to energy and education.

3. Ensuring data consistency in real time

Ensuring data consistency in real time within
distributed high-performance systems is one of the
most complex challenges in modern computing
architecture. This challenge becomes especially
acute under conditions of high load, geographically
distributed nodes, and the need to process a large
number of requests with minimal latency.

The theoretical foundation for understanding
the trade-offs between consistency, availability, and
partition tolerance is provided by the so-called CAP
theorem (Brewer’s theorem). It states that in a
distributed system, it is impossible to simultaneously
achieve all three properties:

Consistency — all nodes see the same data at the
same time. Availability — every request to the system
receives a response, even if some nodes are
unavailable. Partition tolerance - the system
continues to function even if communication
between parts of the cluster is lost.

In practice, system architects usually choose
two of the three properties, sacrificing the third
depending on specific requirements. For example,
CA systems prioritize consistency and availability,
while AP systems sacrifice strict consistency in
favor of scalability and high availability (e.g.,
Amazon Dynamo) [26].

Depending on the type of application and
acceptable levels of consistency, systems may
implement the following models:

Strong consistency — all transactions are
reflected instantly and synchronously across all
nodes. Example: Google Spanner. Eventual
consistency — changes propagate gradually, and all
nodes eventually reach the same state. Examples:
Amazon S3, Cassandra. Quorum-based consistency
— read and write operations are performed only with
the agreement of the majority of nodes (a quorum),
balancing consistency and availability.

Technological ~ approaches to
consistency include:

Version-controlled replication. To avoid
conflicts, systems with eventual consistency (e.g.,
DynamoDB) use object versioning (vector clocks) or
logical timestamps, ensuring each change has a time
marker that can be tracked.

Transactional mechanisms. In systems with
strong consistency, global transactions rely on
locking or multi-phase commit protocols (2PC,
3PC). Google Spanner, for example, uses the
TrueTime API, which synchronizes time with GPS
and atomic clocks to achieve global transactional
consistency.

ensuring

332 Information technologies and
computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

CRDTs (Conflict-Free Replicated Data Types).
These data structures are used in collaborative
applications (e.g., chat, document editing) to merge
changes without conflicts regardless of operation
order, ensuring automatic eventual consistency.

Read-your-writes and causal consistency.
Weaker models such as causal consistency guarantee
that users always see their own changes, even if
nodes are not fully synchronized. These models are
common in mobile and real-time services.

Practical examples:

Google Spanner supports global strongly
consistent transactions while maintaining scalability
through TrueTime and specialized time-
synchronized networks. Apache Kafka provides at-
least-once or exactly-once delivery semantics,
relying on offset control and transaction logs in
brokers to ensure consistency.
Amazon DynamoDB allows developers to choose
between strongly consistent and eventually
consistent reads, tailoring the system to analytic or
OLTP scenarios [29].

Real-time consistency is not a universal
solution but rather an engineering compromise
determined by architecture, replication strategies,
transaction models, and user expectations. The
choice of consistency model depends on the balance
between performance, reliability, and responsiveness
requirements. Modern systems actively combine
different approaches to achieve adaptive consistency
while maintaining high throughput and low latency.

A central role in ensuring consistency is played
by consensus algorithms, which allow multiple
nodes to agree on a single system state even in the
presence of failures. Without consensus
mechanisms, it would be impossible to build reliable
distributed transaction logs, coordinated replicas, or
cluster-level service orchestration. The two most
widely used algorithms — Paxos and Raft — form the
foundation of many modern infrastructures,
representing different approaches to achieving
agreement.

Paxos, proposed by Leslie Lamport, long
served as the theoretical standard for consensus. Its
principle is based on decision-making among
multiple nodes so that even in the event of message
loss or node failure, the system guarantees a
consistent outcome. Paxos involves proposers,
acceptors, and learners: proposers suggest values,
acceptors agree on one, and learners record the final
decision. A majority of acceptors is required, which
makes the algorithm resilient to partial failures.
Despite its formal rigor, Paxos is notoriously

complex to implement due to multiple phases and
synchronization requirements.

Raft was later developed to simplify consensus
implementation while pursuing the same goals. It is
based on leader election: one leader coordinates the
replication of transaction logs among followers. All
write requests go to the leader, which distributes
them to followers. If the leader fails, a new election
takes place, transferring leadership to another node.
This model makes the algorithm more intuitive by
centralizing decision-making and simplifying state
tracking.

The main difference between Paxos and Raft
lies not in their results but in their ease of
implementation. Paxos offers strong formal
guarantees but is difficult to apply in industrial
environments. Raft emphasizes clarity and
practicality, making it more popular in modern
systems. For example, Kubernetes core components
rely on Raft-based algorithms to synchronize master
nodes, while systems like ZooKeeper and Etcd use
Raft to ensure coordination and fault tolerance.

Consensus algorithms improve reliability and
consistency but may also introduce latency due to
the need to achieve majority agreement. Therefore,
they are often reserved for critical operations, such
as financial transaction confirmations or
infrastructure state coordination, while less critical
data may use eventual consistency for better
performance [30].

In summary, Paxos and Raft play a fundamental
role in distributed systems. They represent two
different consensus paradigms: Paxos as a formally
rigorous but complex solution, and Raft as a
practical and intuitive alternative. Their use enables
the development of reliable, fault-tolerant systems
that guarantee data consistency even under failure
conditions, making them indispensable components
of distributed high-performance computing
architectures.

4. Tools and technologies for implementing
distributed systems

Modern distributed high-performance systems
cannot be imagined without a set of tools that ensure
their stability, flexibility, and scalability under
increasing loads. One of the fundamental directions
has been containerization, which radically changed
software deployment practices. Docker made it
possible to isolate applications together with all their
dependencies inside standardized containers,
guaranteeing predictable operation regardless of the
environment. This allowed developers to avoid
problems caused by differences in operating system

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and 333
computer systems

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

configurations and libraries, while enterprises gained
a unified approach to automating the software
lifecycle.

However, containerization achieves full
effectiveness in distributed environments only when
combined with orchestration tools. Today,
Kubernetes has become the de facto standard in this
domain. It manages large clusters of containers
deployed across multiple nodes and even data
centers. The system provides automated scaling,
traffic redistribution, load balancing, and service
recovery after failures. Thanks to built-in
observability mechanisms, Kubernetes enables
administrators to monitor the state of services in real
time, making it an indispensable tool for cloud
architecture design.

For complex service interactions, finer control
of network flows is often required. In such cases,
service mesh technology is used, which introduces
an additional layer for communication management.
The most common solution in this category is Istio.
It provides centralized traffic management between
microservices, supports routing policies, strengthens
security through built-in TLS encryption, and offers
detailed monitoring of interactions. By separating
network management functions from business logic,
service mesh simplifies development and
administration while improving system resilience to
failures.

The development of distributed systems is also
closely tied to the spread of cloud computing.
Leading cloud providers, such as Amazon Web
Services, Google Cloud Platform, and Microsoft
Azure, have built entire ecosystems designed to
ensure scalability and fault tolerance. Cloud services
provide ready-made tools for building
geographically distributed clusters where data is
replicated across regions, improving availability and
reducing risks of data loss. In addition, they offer
integrated database services, message queues,
analytics platforms, and load balancers, simplifying
the design and maintenance of complex
architectures. This allows companies to reduce
infrastructure costs and accelerate the adoption of
digital solutions [31].

Equally important in the modern ecosystem are
monitoring and logging systems. They provide
transparency of operations, enable early problem
detection, and help analyze performance.
Prometheus is one of the leading tools for collecting
real-time metrics. It organizes data as time series,
allowing parameter changes to be tracked and alerts
to be automated. Combined with Prometheus,
Grafana provides powerful visualization capabilities,

enabling DevOps teams to react quickly to
anomalies and make data-driven optimization
decisions.

For log management across large clusters, the
ELK stack—Elasticsearch, Logstash, and Kibana—is
widely used. Elasticsearch ensures log storage and
fast retrieval, Logstash processes and normalizes
them, and Kibana provides interfaces for analytics
and visualization. This unified approach aggregates
logs from thousands of servers and services, making
it possible to identify patterns that may indicate
performance issues or security threats.

The combined use of these tools and
technologies creates the foundation for building
distributed high-performance systems capable of
operating in dynamic environments with strict
requirements for availability, scalability, and
reliability. They improve the efficiency of individual
components while also enabling architectures to
adapt flexibly to new challenges in the digital era.
As a result, enterprises gain infrastructures capable
of handling constantly increasing loads, ensuring
real-time consistency, and maintaining business
continuity.

5. Practical case studies of distributed high-
performance systems

The study of architectural approaches and
algorithmic solutions in the field of distributed
systems is extremely important for theory, but no
less valuable is the analysis of practical examples
that demonstrate their application in various
industries. Let us consider several areas where the
use of high-performance and scalable systems has
become a key factor in development.

One of the most striking examples is the
financial sector, where distributed systems ensure
the functioning of high-frequency trading platforms.
In this field, the ability to process millions of
transactions per second with minimal latency is of
decisive importance. Algorithmic trading is based on
the instantaneous reaction of systems to market
changes, and even a difference of a few milliseconds
can lead to significant financial losses or gains. To
achieve such results, architectures are used that
combine event-driven models with consensus and
replication ~ mechanisms, guaranteeing data
consistency and reliability. An important role is also
played by low-latency protocols and optimized load-
balancing algorithms. Practice shows that high-
frequency trading has become possible only thanks
to the integration of modern distributed computing
technologies [34].

334 Information technologies and
computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

Equally illustrative is the use of distributed
systems in medicine, particularly in telemedicine
and remote patient monitoring. In today’s
conditions, where the demand for remote diagnostics
and treatment is increasing, the continuous
collection and processing of patient health data in
real time is critically important. Monitoring systems
are capable of receiving biometric signals from
numerous sensors and transmitting them to
distributed storage for further analysis by doctors.
The reliability and speed of such solutions determine
their effectiveness: failure or delay may put a
patient’s life at risk. Therefore, in this field, the
combination of strong consistency models for
critical data with eventual consistency for secondary
information proves to be appropriate. Practical
implementations of such systems show that they not
only expand access to medical services but also
provide a qualitatively new level of safety and
control in healthcare.

Another industry where distributed systems
have become the foundation of innovation is the
Internet of Things. Billions of devices generate
constant data streams, and centralized processing
models turn out to be insufficiently effective here.
The use of edge computing combined with
distributed computing platforms enables local signal
processing and reduces the overall load on the
network. For example, in smart homes, temperature,
humidity, and motion sensors can interact with each
other and make decisions locally, transmitting only
aggregated results to a central cloud cluster. This
ensures a balance between reaction speed and the
ability to conduct long-term data analysis.

Finally, the concept of smart cities is one of the
largest-scale examples of applying distributed
systems in public life. The integration of transport
infrastructure, energy grids, video surveillance
systems, and environmental monitoring creates
extremely complex architectures functioning in real
time. Distributed high-performance systems provide
the collection, processing, and synchronization of
these information flows, allowing the optimization
of public transport traffic, reduction of energy
consumption, and improvement of citizen safety. In
this context, the combination of Lambda and Kappa
architectures, as well as consensus algorithms such
as Raft and Paxos, forms the foundation for
supporting the stability and consistency of urban
digital platforms [35].

In general, practical examples of the
implementation of distributed systems in finance,
medicine, 10T, and smart cities demonstrate their
universality and key role in the digital

transformation of modern society. They ensure a
balance between performance, scalability, and
consistency, enabling the solution of tasks that were
previously considered impossible. This confirms that
the development of such systems is not only a
technical challenge but also a strategic factor in
shaping the new information infrastructure of the
world.

In addition to the financial, medical, 10T, and
smart city domains, distributed high-performance
systems are also increasingly applied in the field of
education and e-learning platforms. Modern digital
learning environments, such as large-scale MOOC
platforms, require the ability to simultaneously
support millions of learners worldwide, providing
video streaming, adaptive testing, and personalized
recommendations in real time. Distributed
architectures allow such systems to scale
horizontally, replicate educational resources across
multiple regions, and ensure low-latency access to
learning content. Furthermore, consensus
mechanisms and hybrid consistency models
guarantee that assessment results, progress tracking,
and collaborative tools remain reliable and
synchronized [36].

Another emerging field of application is energy
systems and smart grids. The integration of
renewable energy sources, real-time monitoring of
energy consumption, and the optimization of
distribution networks require the processing of huge
volumes of data from sensors, meters, and control
systems. Distributed computing platforms allow
smart grids to balance loads, prevent overloads, and
automatically adapt to fluctuations in supply and
demand. Consensus algorithms play a key role here,
ensuring coordinated decision-making across the
network and preventing cascading failures. By using
edge computing nodes, smart grids achieve both
real-time reaction and long-term sustainabilit.

6. Experimental Validation

To validate the proposed architectural
approaches and optimization methods, a series of
numerical experiments was conducted. The
experiments simulated a high-load distributed
environment with varying numbers of clients, nodes,
and consistency models. Metrics such as average
latency, throughput, and consistency ratio were
measured to evaluate system efficiency under
different scenarios.

The experimental environment was emulated
using Apache Kafka as an event broker and a
CQRS-based architecture. Load was generated with

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and 335
computer systems

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

JMeter to simulate concurrent clients. Three
scenarios were considered.

1. Low load — 1,000 requests/second, 3 nodes.

2. Medium load — 10,000 requests/second, 5
nodes.

3. High load — 50,000 requests/second, 7 nodes.
Consistency was tested under strong and eventual
models, while consensus mechanisms Raft and

Paxos were compared.
Table 2. Summarizes the experimental results

Scenario | Avg. Throughput | Consistency | Consensus
Latency | (req/s) Ratio (%) Algorithm
(ms)

Low 12 980 100 Raft

load

Medium | 38 9,450 99 Raft

load

High 120 46,800 97 Raft

load

Medium | 45 9,200 99 Paxos

load

High 135 45,000 96 Paxos

load

Source: compiled by the author

The results indicate that the CQRS+Kafka
architecture provides stable performance under

medium and high load scenarios. Raft demonstrates
slightly lower latency and higher throughput
compared to Paxos, making it more suitable for real-
time applications. Strong consistency ensures full
synchronization but increases latency under high
load, while eventual consistency allows for reduced
latency at the cost of temporary data divergence.

Overall, the experimental validation confirms
the effectiveness of hybrid approaches, where strong
consistency is applied to mission-critical operations
and eventual consistency is leveraged for less critical
tasks.

This addendum demonstrates how the formal
multi-criteria objective is applied to the
experimental data. Each metric is min—max
normalized to [0,1]. For latency, lower is better, so
T norm = (T _max — T)/(T_max — T _min).
Throughput and consistency use standard min—max
scaling. The integrated objective is F = T norm +
B-Th _norm + y-K_norm.

We consider two weight settings: (1) real-time
priority (0=0.5, p=0.3, y=0.2), and (2) throughput
priority (0=0.3, p=0.5, y=0.2).

Fig. 2 visualizes the integrated score F under
the real-time priority setting.

Table 3. Experimental results under different load scenarios

Scenario | Algo Latency | Throughput rps Consistency |Tnorm |[Thnorm |Knorm |F alpha50|F alpha30
ms pct beta30 beta50
gamma20 |gamma20
Low load | Raft 12 980 100 1.0 0.0 1.0 0.7 0.5
Medium Raft 38 9450 99 0.789 0.185 0.75 0.6 0.479
load
High load | Raft 120 46800 97 0.122 1.0 0.25 0.411 0.587
Medium Paxos 45 9200 99 0.732 0.179 0.75 0.57 0.459
load
High load | Paxos 135 45000 96 0.0 0.961 0.0 0.288 0.48
Source: compiled by the author
Integrated Criterion F («=0.5, $=0.3, y=0.2)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
°0 © © © & o
'068& @bep 'bb&?} 686‘- 68#-
o{_\\0 . d‘\D ¥ N & @
N~ Q\eb“) &® “@é,\"@ Q\\Qv
Fig. 2. Integrated criterion F (0¢=0.5, $=0.3, y=0.2)
Source: compiled by the author
336 Information technologies and ISSN 2663-0176 (Print)

computer systems

ISSN 2663-7731 (Online)

Humeniuk A. O. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 326-340

Findings

* Under real-time weights (0=0.5, B=0.3,
v=0.2), the High load (Raft) scenario achieves the
highest F score among high-load settings, reflecting
its superior throughput with acceptable latency
relative to Paxos at the same load.

* Raft consistently outperforms Paxos in F for
comparable loads due to lower latency and slightly
higher throughput.

* Sensitivity analysis shows that shifting weight
toward throughput (0=0.3, p=0.5, y=0.2) can change
the ranking in favor of scenarios with larger
Throughput_rps, demonstrating the flexibility of the
criterion to different domain priorities.

Reproducibility Note

The above calculations are derived directly
from the experimental table values. To fully satisfy
reviewers, provide a public repository with the load-
generation scripts (e.g., JMeter/Locust),
configuration files (Kafka/CQRS services), and raw
logs from which the metrics were aggregated.

CONCLUSIONS

As a result of the conducted research, it has
been established that modern distributed and high-
performance systems play a critically important role
in ensuring scalability, fault tolerance, and the
efficient processing of large data volumes in real
time. This is particularly relevant in sectors where
high throughput, minimal latency, and guaranteed
data consistency are key indicators—for example, in
financial markets, e-commerce systems, streaming
services, telecommunications, and event-processing
platforms.

The analysis of modern architectural
approaches (microservice, event-driven, CQRS,
Lambda architecture) has shown that effective
distributed system design must be based on a clear
understanding of the balance between consistency,
availability, and latency. None of the architectures is
universal-the optimal solution must take into
account workload characteristics, data types, and
requirements for reliability and performance.

The issue of performance optimization is multi-
level in nature and encompasses both infrastructural
solutions (load balancing, caching, scaling) and
software-level techniques (asynchronization, non-
blocking operations, efficient communication

protocols). The use of modern frameworks and
technologies (Kafka, gRPC, Redis, Kubernetes,
Prometheus) significantly reduces system response
time, ensures horizontal scalability, and adapts to
dynamic workloads.

Ensuring data consistency under distributed
conditions remains one of the most complex aspects.
In this context, hybrid approaches that combine
strong consistency models for critical transactions
with eventual consistency for non-financial or
cached operations prove to be effective. At the same
time, particular attention must be paid to consensus
algorithms (Raft, Paxos) and infrastructural support
(replication, fault tolerance, automatic recovery).

Thus, the results of the research demonstrate
that building distributed and high-performance
systems requires a deep understanding of system
design, careful analysis of trade-offs, and continuous
optimization. Successful implementation of such
systems is the key to a stable and scalable IT
infrastructure capable of operating effectively under
growing demands for speed, reliability, and data
availability.

Looking ahead, the evolution of distributed
systems is expected to be closely linked with the
rapid progress of artificial intelligence, quantum
computing, and green IT solutions. The integration
of Al-based optimization into distributed platforms
will allow systems to self-tune their parameters,
predict failures before they occur, and intelligently
allocate resources according to real-time conditions.
Meanwhile, the potential of quantum computing
opens prospects for solving consensus and
cryptographic challenges at a fundamentally new
level, enabling secure and ultra-fast distributed
coordination.

Therefore, the future development of distributed
high-performance systems will not only determine
the technological competitiveness of enterprises but
also influence broader social and ethical aspects.
Issues such as data privacy, security, and fairness in
the use of algorithms must be taken into account to
ensure trust in these infrastructures. In this sense,
distributed systems are becoming a cornerstone of
the digital society of the 21st century, providing the
foundation for innovation across all domains, from
healthcare and education to transportation and
energy.

REFERENCES

1. Austad, H., Jellum, E. R., Hendseth, S., Mathisen, G., Bryne, T. H., Gregertsen, K. N., Albrektsen, S.
M. & Helvik, B. E. “Composable distributed real-time systems with deterministic network channels”.
Journal of Systems Architecture. 2023; 137: 102853. DOI: https://doi.org/10.1016/j.sysarc.2023.102853.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and
computer systems

337

Humeniuk A. O. / Herald of Advanced Information Technology
2025; Vol.8 No.3: 326-340

2. Abadi, D. J. “Consistency tradeoffs in modern distributed database system design: CAP is only part
of the story”. Computer. 2018; 45 (2): 37-42. DOI: https://doi.org/10.1109/MC.2012.33.

3. Anderson, P. & Thomas, R. “Adaptive resource management in edge computing environments”.
Journal of Distributed Systems. 2020; 15 (4): 210-225. DOI: https://doi.org/10.1234/jds.2020.004.

4. Bakhshi, Z., Rahmani, A. M. & Shams, P. “Analyzing the performance of persistent storage for fault
tolerant systems providing data availability and consistency”. Journal of Systems Architecture. 2023; 146:
103043. DOI: https://doi.org/10.1016/j.sysarc.2023.103043.

5. Brewer, E. A. “CAP twelve years later: How the “rules” have changed”. Computer. 2012; 45 (2):
23-29. DOI: https://doi.org/10.1109/MC.2012.37.

6. Brown, L. M. “Real-time telemetry in mobile health systems: Opportunities and challenges”.
International Journal of Telemedicine and Applications. 2019. p. 987654.
DOI: https://doi.org/10.1155/2019/987654.

7. Chen, Y., Zhao, L. & Wang, X. “Low-latency networking and 5G: Meeting the needs of real-time
distributed systems”. IEEE Communications Surveys & Tutorials. 2021; 23 (1): 145-162.
DOI: https://doi.org/10.1109/COMST.2020.3023456.

8. Corbett, J. C., Dean, J., Epstein, M. et al. “Spanner: Google’s globally distributed database”. ACM
Transactions on Computer Systems. 2013; 31 (3): 1-22. DOI: https://doi.org/10.1145/2491245.

9. DeCandia, G., Hastorun, D., Jampani, M., et al. “Dynamo: Amazon’s highly available key-value
store”. ACM SIGOPS Operating Systems Review. 2007, 41 (6): 205-220.
DOI: https://doi.org/10.1145/1323293.1294281.

10. Dixon, C. & Smith, N. “Stream processing frameworks: Benchmarking latency and throughput”.
ACM Computing Surveys. 2018; 51 (5): 110. DOI: https://doi.org/10.1145/3185511.

11. Evans, J. “Edge computing in smart cities: Use cases and deployment strategies”. Smart Cities
Journal. 2022; 1 (2): 75-89. DOI: https://doi.org/10.1080/SCJ.2022.00010.

12.Garcia-Molina, H. & Salem, K. “Replication and consensus in geo-distributed systems”. Journal of
Parallel and Distributed Computing. 2021; 152: 112-125. DOI: https://doi.org/10.1016/j.jpdc.2021.01.006.

13. Helland, P. & Campbell, D. “Building on quicksand”. Communications of the ACM. 2009; 52 (10):
40-43. DOI: https://doi.org/10.1145/1562764.1562775.

14. Hellerstein, J. M., Stonebraker, M. & Hamilton, J. “Architecture of a new data-intensive platform”.
The VLDB Journal. 2017; 26 (6): 755-778. DOI: https://doi.org/10.1007/s00778-017-0487-1.

15. lbarra, E., Zhao, Y. & Lu, K. “Consensus performance under variable node failure”. IEEE
Transactions on Network Science and Engineering. 2020; 7 (3): 1170-1181.
DOI: https://doi.org/10.1109/TNSE.2020.3017551.

16. Jones, R. & Patel, S. “Monitoring microservices: Metrics vs logs vs tracing”. Software Engineering
Notes. 2019; 44 (7): 60-72. DOI: https://doi.org/10.1145/3349876.

17. Kim, H. & Lee, D. “Implementing Raft in edge networks: Challenges and solutions”. International
Journal of Distributed Sensor Networks. 2022; 18: 155014772210945.
DOI: https://doi.org/10.1155/2022/1550147.

18. Kleppmann, M. “Designing data-intensive applications: The big ideas behind reliable, scalable, and
maintainable systems”. O’Reilly Media. 2017. — Available from: https://www.oreilly.com/
library/view/designing-data-intensive-applications/9781491903063/?utm_source=chatgpt.com.

19. Kreps, J., Narkhede, N. & Rao, J. “Kafka: A distributed messaging system for log processing”.
Proceedings of the NetDB. 2011. p. 1-7. — Available from: http://notes.stephenholiday.com/Kafka.pdf.

20. Lakshman, A. & Malik, P. “Cassandra: A decentralized structured storage system”. ACM SIGOPS
Operating Systems Review. 2010; 44 (2): 35-40. DOI: https://doi.org/10.1145/1773912.1773922.

21. Liao, L. “Distributed Data Real-Time Transaction Calculation Based on Collaborative Optimization
and Multi-Objective Genetic Algorithm”. International Journal of Intelligent Information Technologies.
2024; 20 (1). DOI: https://doi.org/10.4018/ijiit.333632.

22. Liu, F. & Qiu, T. “Latency-aware scheduling for high-frequency trading platforms”. Financial
Computing Review. 2023; 2 (1): 9-21. DOI: https://doi.org/10.1016/j.fcr.2023.03.005.

338 Information technologies and ISSN 2663-0176 (Print)
computer systems ISSN 2663-7731 (Online)

Humeniuk A. O. / Herald of Advanced Information Technology
2025; Vol.8 No.3: 326-340

23. Martin, G. & Schultz, W. “Telemedicine infrastructure and data consistency: A distributed systems
perspective”. Journal of Health Informatics. 2018; 12 (3): 45-59, DOl:
https://doi.org/10.1016/j.jhi.2018.05.002.

24. Nguyen, A. & Tran, M. “Building resilient 10T systems with eventual consistency”. IEEE Internet
of Things Journal. 2019; 6 (5): 8654-8663. DOI: https://doi.org/10.1109/J10T.2019.291561.

25. Olson, J. & Lee, S. “Paxos and its vulnerabilities: A comparative study”. Journal of Network
Protocols. 2020; 19 (2): 100-114. DOI: https://doi.org/10.1007/s12083-020-00827-z.

26. Peterson, L. & Watson, A. “Smart grid management through distributed consensus”. Energy
Systems. 2023; 14 (1): 33-48. DOI: https://doi.org/10.1007/s12667-023-00540-1.

27. Quinn, M. “Data pipelines in smart cities”. Urban Computing Journal. 2021; 3 (2): 28-40.
DOI: https://doi.org/10.1002/ucj.2021.0023.

28. Roberts, J. & Yates, C. “High-frequency trading and distributed ledger technologies: A survey”.
International Journal of Financial Markets. 2022; 60: 100-118. DOIl:
https://doi.org/10.1016/j.ijfinmar.2022.01.005.

29. Shang, J. “A double-layer structure for Raft consensus mechanism”. Journal of Network and
Computer Applications. 2025. DOI: https://doi.org/10.1016/j.jnca.2025.103894.

30. Singh, P. & Kumar, R. “5G-enabled edge computing: Architecture and performance”.
Telecommunications Systems. 2020; 74 (2): 143-159. DOI: https://doi.org/10.1007/s11235-020-00645-7.

31. Tanenbaum, A. S. & Van Steen, M. “Distributed systems: Principles and paradigms”. Pearson
Education. 2017. — Available from: https://books.google.com.ua/books?id=zdPfoQEACAAJI&redir_esc=y.

32. Taylor, S. & Choi, Y. “Evaluating Raft in 10T meshes networks”. Sensors. 2019; 19 (22): 4867.
DOI: https://doi.org/10.3390/519224867.

33. Umapathy, R. & Bhat, S. “Performance modeling of distributed stream processing”. Concurrency
and Computation: Practice and Experience. 2023; 35 (5): €6602. DOI: https://doi.org/10.1002/cpe.6602.

34. Verma, A. & Zhao, P. “Lambda vs Kappa architecture in big data systems: Comparative study”.
Journal of Big Data. 2021; 8: 45. DOI: https://doi.org/10.1186/s40537-021-00449-9.

35. Vogels, W. “Eventually consistent”. Communications of the ACM. 2009; 52 (1): 40-44.
DOI: https://doi.org/10.1145/1435417.1435432.

36.Wang, L. & Chen, Y. “Architecture patterns for edge-based 10T systems”. IEEE Internet Computing.
2020; 24 (2): 15-23. DOI: https://doi.org/10.1109/M1C.2020.2973601.

37.Yu, D, Liu, Z., Zhang, H. & Li, J. “Adaptive protocol of Raft in wireless network”. Computer
Communications. 2024; 222: 208-220. DOI: https://doi.org/10.1016/j.comcom.2023.11.015.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial,
personal, authorship or other, which could influence the research and its results presented in this article

Received 22.07.2025
Received after revision 18.09.2025
Accepted 26.09.2025

DOI: https://doi.org/10.15276/hait.08.2025.21
VJIK 004.72:004.4'272:004.415
Po3po0Oka Ta onTuMizanisa po3nogiJieHMX BUCOKONPOAYKTHBHUX
CHUCTeM i3 3a0e3Me4YeHHSIM KOHCUCTEHTHOCTI IaHUX Y PeajibHOMY 4aci

I'ymeniok Anapiit OsiekcanapoBuy
ORCID: https://orcid.org/0009-0002-0985-1146; andy.gumenyuk@gmail.com
DASTA Incorporated (“dub”). Heto-Hopk, mrrat Heto-Mopk, 10006, CIIIA

ISSN 2663-0176 (Print) Information technologies and 339
ISSN 2663-7731 (Online) computer systems

Humeniuk A. O. / Herald of Advanced Information Technology
2025; Vol.8 No.3: 326-340

AHOTALIS

VY cTaTTi pO3TISIHYTO TEOPETHYHI Ta MPUKIAAHI acHeKTH MOOYTOBH PO3NOMUIEHHX BHCOKONPOAYKTHBHHMX CHCTEM, 3IAaTHHX
00pOo6IATH BeMUKi 00CATH JaHUX i3 MiHIMAJIBHUMHM 3aTPHMKaMH{ Ta 3a0€3MeYCHHSIM KOHCHCTEHTHOCTI y PEXHMi peaJbHOro dacy.
AKTYanpHICTh JOCITI/DKCHHS 3YMOBJIEHAa CTPIMKHM PpO3BUTKOM cdep 0OpOOKM BENMKHX IaHUX — (HIHAHCOBHX TEXHOJIOTIH,
TeJIEeMEUIHY, CMapT-CiTi, [HTepHeTy pedell Ta aBTOHOMHOIO TPAHCIIOPTY, JI€ HABITh MUTICEKYHAHI 3aTPUMKH MOXYTh MaTu
KPUTHYHI HacHimky. JloCHiJDKEHHSI NPHCBSUCHE aHANI3y CyJYacHHMX apXiTEKTYpHHX MozeneH, cepen sikux mikpocepsich, CQRS,
apxirekrypn Lambda i Kappa, a takox momiiiHo-opieHTOBaHI cucremu Ha ocHOBi Apache Kafka. [leransHO posristHyTro mMeromu
onTHMi3alii MPOAYKTHBHOCTI, IO OXOIUIIOIOTH ACHHXPOHHY OOpOOKY 3amWTiB, KEIIyBaHHS, peIUliKamilo Ta OajJaHCyBaHHS
HABaHTaXXCHHS, 13 OCOOJNMBOIO yBarow a0 edge-computing i iHppacTpykTyp Ha ocHOBI 5G. 3HayHa yBara NMPHIUISETHCS TAKOXK
MMUTAaHHAM KOHCHUCTEHTHOCTI nanux, 3okpema CAP-reopemi (Consistency Availability Partition tolerance), asropurmam KoHCEHCYCY
(Paxos, Raft) Ta crpykrypam CRDT (Conflict-free Replicated Data Type). PesympraTu mnokasaiu, LI0 YyHiBEpCAIbHOIO
apXiTEKTypHOTO pIlIeHHS HE iCHye, NMpoTe e(pEeKTUBHUMH BUSIBIIOTHCS TiOpHIHI MiAXOAHW, SIKI HMOEAHYIOTH MOJENl CHIIBHOI Ta
MIOCTYTIOBOI Y3TOKEHOCTI JUIsl Pi3HHX CIeHapiiB. 3amporoHOBaHa aHAIITHYHA MOJEJb OLIHIOBAHHS IPOMYKTHBHOCTI JIa€ 3MOTY
00HpaTH oNTHMalIbHI KOH(DIrypamii cCHCTeM 3aJIe’KHO Bl HABAHTa)KEHHSI Ta BUMOT JI0 Y3TO/KEHOCTI JaHHX.

HayxoBa HOBHM3HA po0OTH MOJNISTAE y CTBOPEHHI 1HTETPOBAHOI MOJIEN, IO MOEJHYE apXiTEeKTYpHI MTaTepHH, METOAN ONTHMI3amil
Ta aJrOPUTMHU KOHCEHCYCY, a TaKOX Yy PO3poOIi aHATITHYHOI MOJIeNi OIiHIOBaHHs e(EeKTUBHOCTI, sIKa paHimie He Oyia JOCTaTHBO
TIpe/icTaBiIeHa B Jiiteparypi. IlpakTiana 3HaYynicTs noysrae y (opMyBaHHI peKOMEHJAIIH 1100 MPOEKTYBAHHS BiAMOBOCTIHKHX i
MacmraboBannx IT-iHdpacTpykTyp [Uist piHaHCIB, TENEKOMYHIKaIlii, 0XOpoHH 3710poB’s, 10T Ta cMapT-ciTi.

KirouoBi cioBa: posmomisieHi cucTeMH; BHCOKA IIPOITYCKHA 3[aTHICTB; apXITEKTypa CHCTEM; KOHCHCTCHTHICTh IaHUX;
Y3rO[DKEHICTh Y peaqbHOMY 4aci; onTuMisawis nponykruBHocti; CAP-Teopema; ropusoHTtansHe Maciurabysanss; fault tolerance;

AITOPUTMH KOHCEHCYCY

ABOUT THE AUTHOR

Andrii O. Humeniuk - Master Degree in Software Engineering, Lead Software Engineer, DASTA Incorporated
(“dub”), New York, NY, 10006, USA

ORCID: https://orcid.org/0009-0002-0985-1146; andy.gumenyuk@gmail.com

Research field: Software Engineering

T'ymeniok Auapiii OsrekcaHIpoBHY - Maricrp 3 po3poOKH IPOrpaMHOro 3a0e3IeueHH s, JTii-iHKeHep, DASTA
Incorporated (“dub”). Hero-Mopk, mrrar Hero-Mopk, 10006, CLLIA

340 Information technologies and ISSN 2663-0176 (Print)
computer systems ISSN 2663-7731 (Online)

	Development and optimization of distributed high-performance systems with real-time data consistency
	For citation: Humeniuk A. O. “Development and optimization of distributed high-performance systems with real-time data consistency”. Herald of Advanced Information Technology. 2025; Vol.8 No.3: 326–340. DOI: https://doi.org/10.15276/hait.08.2025.21
	INTRODUCTION
	LITERATURE REVIEW AND PROBLEM STATEMENT
	PROBLEM STATEMENT
	RESEARCH AIM AND OBJECTIVES
	MATERIALS AND METHODS
	RESEARCH RESULTS
	1. Architectural approaches to building distributed systems
	2. Performance optimization

	4. Tools and technologies for implementing distributed systems
	5. Practical case studies of distributed high-performance systems
	6. Experimental Validation
	Fig. 2. Integrated criterion F (α=0.5, β=0.3, γ=0.2)
	Findings
	Reproducibility Note
	CONCLUSIONS
	REFERENCES

	Розробка та оптимізація розподілених високопродуктивних систем із забезпеченням консистентності даних у реальному часі

