
Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

326 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

DOI: https://doi.org/10.15276/hait.08.2025.21

UDC 004.72:004.4'272:004.415

Development and optimization of distributed high-performance

systems with real-time data consistency

Andrii О. Humeniuk

ORCID: https://orcid.org/0009-0002-0985-1146; andy.gumenyuk@gmail.com

 DASTA Incorporated (“dub”). New York, NY, 10006, USA

ABSTRACT

This article examines the theoretical and applied aspects of building distributed high-performance systems capable of
processing large volumes of data with minimal latency while maintaining real-time consistency guarantees. The relevance of the
research is determined by the rapid growth of data-intensive domains such as high-frequency trading, telemedicine, smart cities, the

Internet of Things, and autonomous transport, where even millisecond delays can have critical consequences. The study focuses on
the analysis of modern architectural models, including microservices, CQRS, Lambda and Kappa architectures, and event-driven
systems with Apache Kafka. Methods of performance optimization are explored in detail, covering asynchronous request handling,
caching, replication, and load balancing, with special attention to edge computing and 5G-based infrastructures. Particular emphasis
is placed on theoretical and practical aspects of data consistency, including CAP-theorem (Consistency Availability Partition
tolerance) trade-offs, consensus algorithms (Paxos, Raft), and CRDT (Conflict-free Replicated Data Type) structures. The results
demonstrate that no universal architectural solution exists, but hybrid approaches combining strong and eventual consistency models
can ensure reliability in mission-critical domains. The proposed analytical model for evaluating performance under different

workload profiles enables the selection of optimal system configurations, balancing throughput, latency, and consistency
requirements. The scientific novelty of the research lies in the integrated framework that unites architectural patterns, optimization
techniques, and consensus mechanisms, as well as in the development of an analytical evaluation model that had not been sufficiently
presented in previous studies. The practical significance is manifested in the formulation of recommendations for the design of fault-
tolerant, scalable infrastructures for finance, telecommunications, healthcare, IoT, and smart cities.

Keywords: Distributed systems; high throughput; system architecture; data consistency; real-time synchronization;
performance optimization; CAP theorem; horizontal scaling; fault tolerance; consensus algorithms

For citation: Humeniuk A. O. “Development and optimization of distributed high-performance systems with real-time data consistency”.

Herald of Advanced Information Technology. 2025; Vol.8 No.3: 326–340. DOI: https://doi.org/10.15276/hait.08.2025.21

INTRODUCTION

In the era of rapid growth of digital

technologies, the development of information

systems is increasingly focused on the efficient

processing of vast amounts of data in real time. The

emergence of new domains – such as high-frequency

trading, decentralized financial technologies (DeFi),

telemedicine, smart cities, the Internet of Things

(IoT), and autonomous transportation systems – has

created an urgent need for high-performance,

scalable, and fault-tolerant information architectures.

Distributed computing systems, operating under

conditions of geographically dispersed nodes, offer

opportunities for scalability, parallelism, and fault

tolerance. However, these advantages are

accompanied by challenges related to ensuring data

consistency, performance, and low latency. These

issues become especially critical in systems

designed to process millions of transactions per

© Humeniuk A., 2025

second – for example, in stock exchange or

cryptocurrency platforms, where even a delay of a

few milliseconds can have critical consequences.

Traditional monolithic data-processing models

are increasingly being replaced by decentralized and

event-driven approaches. At the same time, the

introduction of microservice technologies,

containerization, serverless

architectures, and progress in dataflow and

infrastructure management in cloud environments

have paved the way for building dynamic, reactive

systems capable of adapting to workloads in real

time.

Ensuring data consistency in such environments

is a task that requires careful design, the correct

choice of synchronization strategies, thoughtful data

replication, and in-depth monitoring. It is important

to achieve a balance between consistency,

availability, and fault tolerance, avoiding situations

where improving one parameter leads to the

deterioration of another (the well-known

compromise defined by the CAP theorem).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

327

LITERATURE REVIEW AND PROBLEM

STATEMENT

The issue of building distributed high-

performance systems with data consistency

guarantees has attracted researchers’ attention for

decades. The classical works of Tanenbaum and Van

Steen laid the theoretical foundations for designing

such systems, defining the basic approaches to

organizing distributed computations, their

architectures, and principles of interaction between

nodes. A significant contribution to the development

of this field was made by Abadi, Vogels, and

Brewer, who examined the trade-offs between

consistency, availability, and partition tolerance.

Brewer’s CAP theorem, later expanded in

subsequent studies, became the starting point for

modern discussions on balancing performance and

data consistency.

The practical side of the problem is reflected in

works dedicated to building specific platforms. For

instance, Amazon Dynamo, Apache Cassandra, and

Google Spanner have demonstrated different

approaches to achieving consistency on the scale of

global distributed databases. Kleppmann’s research

emphasized the combination of reliability,

scalability, and maintainability in systems operating

with intensive data streams. Meanwhile, works

devoted to Apache Kafka highlighted the

effectiveness of event-driven architectures in

building high-performance event-processing

pipelines.

Summarizing the existing scientific

contributions, it can be stated that the problem of

data consistency in distributed systems remains open

and multifaceted. Contemporary literature covers

both the formal aspects of consensus theory and

applied solutions for specific domains; however, no

final universal approach has been achieved. This

confirms the relevance of further research and the

need for a deeper analysis of the trade-offs between

various architectural models.

Modern information systems operate in an

environment where data volumes are constantly

increasing, and the requirements for processing

speed are becoming increasingly stringent. For

domains such as financial technologies,

telecommunications, medical services, or the

Internet of Things infrastructure, the ability to

process information flows in real time without losing

consistency and availability is critical. Traditional

centralized data-processing models cannot provide

the required level of scalability and fault tolerance,

while known architectural solutions always involve

a compromise between performance and

consistency.

The problem lies in the development and
optimization of architectural and algorithmic

approaches that would combine high throughput

with guaranteed data consistency. It is necessary to
find a balance between different consistency models,

determine the role of consensus algorithms, and

evaluate the effectiveness of existing technological

solutions in the context of specific application
domains. This problem statement defines the goal of

the study, which is to identify architectural models

and synchronization mechanisms capable of
ensuring the operation of mission-critical real-time

systems.

PROBLEM STATEMENT

Based on the analysis of current trends in the

field of distributed high-performance systems, it can

be concluded that the problem of ensuring real-time
data consistency remains open and multifaceted.

Traditional centralized architectures cannot provide

the required level of scalability and fault tolerance,

while existing decentralized solutions always imply
a trade-off between performance and data

consistency.

In this context, the task arises to develop and
optimize architectural and algorithmic approaches

that will allow to:

 ensure high system throughput with minimal
latency;

 achieve guaranteed data consistency through

modern consensus models and replication

mechanisms;
 design an analytical model for evaluating

the efficiency of various architectures depending on

workload characteristics and domain specificity;
 define practical recommendations for

applying optimal solutions in mission-critical

domains (financial technologies,

telecommunications, IoT infrastructures, medical
systems, etc.).

Thus, the problem statement consists in

identifying balanced architectural models and
algorithmic mechanisms that combine the

requirements for scalability, fault tolerance, and

performance with the assurance of real-time data
consistency. Formally, the problem can be expressed

as a multi-criteria optimization task.

Let:

- R – the set of requests arriving in the system
per unit of time,

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

328 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

- N – the set of nodes (servers, containers, or

edge devices),
- L(r,n) – latency of processing request r ∈ R

on node n ∈ N,

- C(n) – throughput capacity of node n,
- S(r) – data size of request r,

- Cons(r) – required consistency level for

request r (e.g., strong, quorum, eventual).

Decision variables: x_{r,n} ∈ {0,1} – binary
variable indicating whether request r is processed on

node n Constraints:

1. Each request must be assigned to at least one
node: ∑_{n ∈ N} x_{r,n} ≥ 1, ∀ r ∈ R

2. The workload of each node must not exceed

its processing capacity:

∑_{r ∈ R} S(r) · x_{r,n} ≤ C(n), ∀ n ∈ N.
3. Consistency guarantees must satisfy

minimum requirements:

K ≥ K_min,
where K denotes the ratio of successfully synchro-

nized transactions to the total number of transacti-

ons.
Optimization criteria:

The objective is to minimize average system

latency T, maximize total throughput Th, and

maximize the consistency index K. min T = (1/|R|)
∑_{r ∈ R} ∑_{n ∈ N} L(r,n) x_{r,n} max Th =

∑_{n ∈ N} ∑_{r ∈ R} S(r) x_{r,n} max K =

(Number of successfully synchronized transactions)
/ (Total number of transactions).

In practice, these conflicting objectives can be

combined into a single weighted optimization
criterion:

F = α · (1/T) + β · Th + γ · K → max,

where α, β, γ are weights reflecting the priority of

latency, throughput, and consistency for a given
application domain (e.g., finance, IoT, or

telemedicine).

RESEARCH AIM AND OBJECTIVES

The aim of this study is to substantiate and

develop approaches to building distributed high-

performance systems capable of ensuring data

consistency in real time under high loads and in

conditions of geographically distributed

infrastructure. Achieving this aim involves finding a

balance between performance, availability, and

consistency, as well as identifying architectural

models and algorithmic mechanisms that allow the

creation of fault-tolerant information systems.

Within this aim, several interrelated research

objectives are addressed. First, it is necessary to

analyze modern architectural approaches to

designing distributed systems and to determine their

advantages and limitations in the context of high

performance. Second, an important task is to

investigate performance optimization methods,

including asynchronous processing mechanisms,

caching systems, distributed message queues, and

load-balancing technologies. Third, algorithmic

approaches to ensuring consistency must be

examined, including consistency models and

consensus algorithms, and their suitability for

different types of systems must be assessed. Fourth,

the research seeks to identify opportunities for the

practical application of the developed solutions in

financial technologies, medicine, telecom-

munications, and the Internet of Things.

Thus, the study combines theoretical analysis

and practical testing of mechanisms for building

distributed systems, which makes it possible to

formulate recommendations for creating next-

generation infrastructures capable of meeting the

growing demands of the digital era.

MATERIALS AND METHODS

To achieve the stated aim, a combination of

theoretical and applied methods was used, enabling

the integration of fundamental concept analysis with
the evaluation of practical solutions in the field of

distributed high-performance systems. The research

materials included scientific publications by leading
scholars in distributed system architecture,

monographs, technical documentation, and official

reports on the functioning of industrial platforms.

Special attention was given to works addressing data
consistency, consensus algorithms, and performance

optimization in high-load environments.

The methodological foundation was a systems
approach, which made it possible to consider

distributed systems as complex multi-level entities

where architectural decisions, algorithmic models,

and infrastructural tools are closely intertwined.
Comparative modeling was applied to identify the

advantages and limitations of different architectural

approaches, including microservice, Lambda, and
Kappa architectures. Performance evaluation

considered response time, throughput, and fault

tolerance parameters, which allowed an assessment
of the suitability of each solution for systems with

different load profiles.

The study also employed abstract modeling of

consistency algorithms, in particular Paxos and Raft,
which enabled tracing the mechanisms of reaching

consensus in geographically distributed nodes.

Practical aspects were evaluated by analyzing open
technical reports from companies such as Google,

Amazon, and the Apache Foundation, describing the

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

329

operation of Spanner, DynamoDB, Cassandra, and

Kafka platforms. Special attention was paid to
research on edge computing solutions and the impact

of 5G technology on reducing communication

latency.
The application of these methods made it

possible to combine in-depth theoretical analysis

with practical testing, ensuring the

comprehensiveness and reliability of the results.
Such an approach allowed for the formulation of

conclusions that can be used both in academic

research and in the practical design of mission-
critical real-time systems.

RESEARCH RESULTS

1. Architectural approaches to building

distributed systems

In the design of distributed high-performance

systems, architecture plays a critically important
role. It determines not only the system’s ability to

process millions of transactions per second but also

its reliability, consistency, and scalability. Modern

distributed solutions are evolving toward
decentralization, fault tolerance, and automated

component management at all levels – from data

transmission to processing logic [2].
In cloud environments and large-scale

platforms focused on event stream processing, one

of the most effective architectures is the
microservice model, which ensures modularity,

separation of responsibilities, and flexible scaling.

Microservices allow individual system elements to

be modified without interfering with others,
reducing failure risks and shortening release cycles.

However, scaling microservices introduces the need

for effective event management and inter-service
communication. This is why technologies such as

Kafka—a distributed message broker capable of

handling millions of events per second while
guaranteeing delivery and near-real-time data

processing – are increasingly important.

For managing commands and queries

separately, which is particularly relevant in financial
systems, the CQRS (Command Query

Responsibility Segregation) architectural model is

often applied. It separates responsibilities between
modules that change the system state and those that

only read data. Combined with Kafka, this model

enables maximum performance without sacrificing

consistency.
Fig. 1 illustrates the architectural scheme of

such a CQRS implementation with Kafka in a

financial system.

This scheme clearly demonstrates the

separation of the command and query streams,
enabling efficient independent scaling of system

components, with Kafka serving as a reliable

mediator that guarantees event order and their
processing by all necessary subsystems. Such an

approach significantly reduces the risk of

bottlenecks in high-load environments, especially in

financial platforms or real-time analytics systems,
where thousands of events per second must be

processed without compromising accuracy.

When choosing an architectural approach for a
distributed system, it is necessary to consider not

only technical requirements but also industry-

specific features, expected transaction volumes, and

criticality regarding latency, consistency, and
scalability. These factors directly influence the

efficiency of the selected model, the complexity of

its maintenance, and its adaptability to future
workload growth. The main advantages and

disadvantages of the considered architectures are

summarized in Table 1, which provides a
comparative overview of microservice, CQRS,

event-driven, monolithic, and Lambda-based

solutions.

As shown in Table 1, microservice and CQRS
architectures offer high scalability and efficient load

isolation but require complex orchestration and

synchronization logic. Event-driven models,
particularly with Kafka, provide excellent

throughput and asynchronicity but may complicate

state tracking. In contrast, monolithic solutions are
easier to implement but lack flexibility and

scalability in large-scale deployments. Lambda and

Kappa architectures combine real-time

responsiveness with batch analytics, though at the
expense of implementation complexity and potential

duplication of logic.
One of the important directions in the

development of distributed system architectures has

been the emergence of models oriented toward

processing large data streams in real time. Among

them, the most well-known and widely used are the
Lambda architecture and its simplified variant – the

Kappa architecture. They were developed as a

response to the need to combine high-speed
information processing with the ability to store data

in the long term for subsequent analytical use [11].

The Lambda architecture was proposed as a
universal approach to building systems capable of

working with big data at enterprise scale. Its key

idea lies in combining two different processing paths

– batch processing and real-time streaming. The
batch layer stores the full dataset, which is

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

330 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

periodically processed in large portions to generate

aggregated results. This enables maximum accuracy
and consistency since all data is reprocessed with

each update. In parallel, the real-time layer provides

quick reactions to new events. Data streams are
processed in near-real-time, giving users immediate

results. A service layer then combines both layers to

provide final responses.

Fig. 1. Implementation of command query

responsibility segregation with

kafka in a financial system
Source: compiled by the author

Table 1. Below provides a comparative overview

of key architectural models in the context of their

use in high-performance distributed systems

Architecture Advantages Disadvantages

Microservice Scalability, service
independence, fast
deployment

Complicated
orchestration, need for
a service mesh

CQRS Optimized read/write
operations, load
isolation

Complex
synchronization logic,
doubled effort for
maintaining models

Event-driven

(Kafka)

High performance,
asynchronicity,
reliable event

delivery

Complicated state
tracking, potential
delays in consistency

Monolithic Simple
implementation, no
network overhead

Limited scalability,
difficult to maintain
as the project grows

Lambda

Architecture

Combines real-time
and batch processing

High implementation
complexity,
duplicated logic

Source: compiled by the author

A practical example of the Lambda architecture

is recommendation systems in large online
platforms. For instance, a streaming service may

collect all user viewing history in the batch layer to

periodically recalculate long-term preferences and
profiles, while the real-time layer processes the most

recent actions – such as views over the last few

minutes or hours – to update recommendations

instantly. The combination of both layers provides
users with personalized suggestions that reflect both

long-term trends and current interests.

Despite its effectiveness, the Lambda
architecture has a significant drawback in the form

of duplicated logic. Developers must maintain two

parallel processing pipelines – batch and streaming –

which complicates development, testing, and system
maintenance. This challenge led to the emergence of

the alternative Kappa architecture.

The Kappa architecture simplifies the Lambda
model by eliminating the batch layer. All data is

processed in a single streaming mode. Its key

principle is that any re-computation can be
performed by replaying the data stream from the

beginning. The system stores an event log, which

can be “replayed” whenever re-analysis is required,

producing the necessary results. This reduces
architectural complexity by removing the need to

support two separate processing models.

An example of the Kappa architecture can be
found in financial systems where quick reactions to

events are especially critical. On trading platforms,

each operation enters the streaming pipeline as an
event, where it is validated, processed, and

forwarded to the relevant modules. If re-analysis is

required later, the system simply replays the entire

event log to restore the precise state. This approach
is also applied in IoT systems, where sensors

continuously generate data streams that must be

processed in real time to respond to environmental
changes [15].

The comparison of Lambda and Kappa

architectures shows that each has its advantages and

limitations. Lambda is more suitable when
maximum accuracy combined with real-time

responsiveness is required, though at the cost of

higher complexity. Kappa is simpler and more
elegant in implementation but may be less

convenient for tasks requiring in-depth analytics

over complete datasets. In practice, enterprises often
adopt hybrid solutions that combine elements of

both architectures, adapting the system to specific

business and user needs.

Thus, the expansion of architectural approaches
in distributed systems reflects the constant evolution

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

331

of data-processing requirements in the digital era.

Lambda and Kappa architectures play leading roles
in building flexible, scalable, and high-performance

systems that provide both rapid response to events

and long-term data accumulation for analysis. They
have become indispensable tools in e-commerce,

finance, telecommunications, healthcare, and IoT,

confirming their universality and potential for

further development.

2. Performance optimization

Performance in distributed high-load systems is

not limited to increasing request processing speed. It
requires a holistic approach that spans all stages –

from architectural design to the optimization of

individual components and interaction protocols.

Performance is a critical parameter in such systems,
as even millisecond delays can lead to lost trades on

financial markets, failures in real-time data delivery,

or the inability to scale business operations.
One of the key strategies for improving

performance is load distribution among services.

Instead of processing requests centrally, the system
delegates processing to independent microservices

or micro-frontends, which can be scaled

horizontally. This enables the use of independent

resources for different tasks without creating
bottlenecks. For instance, in cryptocurrency trading

systems, individual microservices may be

responsible exclusively for transaction validation,
digital asset signing, or order book processing [18].

Another crucial aspect is query optimization in

databases. In systems with intensive reads and
writes, especially when implementing CQRS

architecture, it is advisable to separate storage for

reading and writing. This prevents transaction

blocking and reduces resource contention. High-
speed read operations are supported through caching

systems such as Redis or Memcached, as well as

search indexes like Elasticsearch, which can process
complex queries almost instantly.

Asynchronous event processing mechanisms,

implemented via message brokers such as Apache

Kafka, also play a fundamental role in improving
performance. Event transmission in asynchronous

mode allows the user to receive confirmation

immediately, while the system continues internal
computations in the background. For example, when

creating an order, the user instantly gets a

confirmation, while the “OrderCreated” event is
processed asynchronously – triggering invoicing,

balance updates, and logging across services.

Significant benefits are also achieved through

intelligent load balancing. In complex distributed

systems, workloads may be unevenly distributed

over time or across geographic regions. Dynamic
traffic balancing algorithms between data centers,

hosts, or containers make optimal use of resources

and prevent performance degradation. In cloud
infrastructures, such tasks are often handled by

automated systems based on Kubernetes, which

scale services according to load metrics (CPU,

latency, IOPS).
Performance optimization also involves

selecting appropriate communication protocols. In

systems with minimal latency requirements and high
traffic volumes, traditional HTTP requests may be

replaced with more efficient protocols such as gRPC

or WebSocket. gRPC ensures compact message

exchange through Protocol Buffers, reducing
network load by an order of magnitude compared to

JSON messages.

Overall, performance optimization is not a one-
time action but a continuous process involving

component profiling, metric monitoring, and

refactoring of bottlenecks. Metrics such as response
time, failure rate, and events per second must be

integrated into monitoring systems (e.g.,

Prometheus, Grafana), enabling DevOps teams to

detect performance degradation before it affects end
users.

Well-implemented performance optimization

strategies not only meet user expectations but also
enhance reliability, scalability, and competitiveness.

For distributed real-time systems, performance

optimization is not a luxury but a necessity without
which further development is impossible.

One of the most important modern optimization

trends in distributed high-load systems is the use of

edge computing. Traditionally, all data from client
devices or sensors was transmitted to central data

centers for processing and response generation.

While suitable in many cases, this model has
inherent latency due to long-distance data

transmission. For critical applications—such as

autonomous vehicles, telemedicine, or industrial

monitoring systems – milliseconds may be decisive.
Edge computing shifts part of the computation

closer to the data source. This reduces latency,

network load, and resource consumption. For
example, in IoT systems, sensors and local gateways

can preprocess data at the edge, filtering

unnecessary information and sending only
aggregated results to the central system. In

intelligent transportation, edge nodes can instantly

respond to changes in traffic conditions, making

local decisions without waiting for remote servers.
This achieves a balance between centralized control

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

332 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

and local autonomy, crucial for reducing latency and

improving reliability [21].
A key enabler of edge computing has been the

introduction of fifth-generation (5G) mobile

networks. Their main advantage is drastically
reduced latency: while 4G networks average tens of

milliseconds, 5G reduces it to nearly one

millisecond. This enables entirely new applications

previously unfeasible on traditional mobile
infrastructure. The combination of edge computing

and 5G creates opportunities for a new class of

systems capable of near-instant reactions.
In healthcare, this means enabling remote

surgical operations via robotic systems, where a

surgeon can control the procedure from a distance

and commands are executed without delay. In
industry, 5G and edge computing allow factories of

the future, where equipment operates in real-time

synchronization, and control systems perform instant
diagnostics and prevent accidents. In transportation,

the technologies make autonomous vehicles feasible,

allowing them to interact not only with each other
but also with road infrastructure in real time.

From a technical standpoint, 5G combined with

edge computing changes distributed system design

requirements. It creates demand for smaller-scale
distributed data centers located near users,

functioning as edge nodes that handle part of the

processing, while central clusters focus on long-term
storage, analytics, and integration. This leads to a

new level of decentralization, with functions

distributed not only among services but also across
infrastructure layers.

However, combining edge computing and 5G

raises new challenges for security and data

consistency. Localized processing reduces central
bottlenecks but requires robust synchronization

between numerous nodes. Hybrid consistency

models may be applied, combining local eventual
consistency with global transactional control. This

balances response speed with accuracy guarantees,

crucial for mission-critical applications [24].

Overall, performance optimization through
edge computing and 5G marks a new stage in the

evolution of distributed systems. These technologies

enable a shift from traditional centralized models to
more flexible and adaptive solutions operating close

to users. This not only enhances service quality but

also establishes a foundation for innovation across
domains ranging from healthcare and transportation

to energy and education.

3. Ensuring data consistency in real time

Ensuring data consistency in real time within
distributed high-performance systems is one of the

most complex challenges in modern computing

architecture. This challenge becomes especially
acute under conditions of high load, geographically

distributed nodes, and the need to process a large

number of requests with minimal latency.

The theoretical foundation for understanding
the trade-offs between consistency, availability, and

partition tolerance is provided by the so-called CAP

theorem (Brewer’s theorem). It states that in a
distributed system, it is impossible to simultaneously

achieve all three properties:

Consistency – all nodes see the same data at the

same time. Availability – every request to the system
receives a response, even if some nodes are

unavailable. Partition tolerance – the system

continues to function even if communication
between parts of the cluster is lost.

In practice, system architects usually choose

two of the three properties, sacrificing the third
depending on specific requirements. For example,

CA systems prioritize consistency and availability,

while AP systems sacrifice strict consistency in

favor of scalability and high availability (e.g.,
Amazon Dynamo) [26].

Depending on the type of application and

acceptable levels of consistency, systems may
implement the following models:

Strong consistency – all transactions are

reflected instantly and synchronously across all
nodes. Example: Google Spanner. Eventual

consistency – changes propagate gradually, and all

nodes eventually reach the same state. Examples:

Amazon S3, Cassandra. Quorum-based consistency
– read and write operations are performed only with

the agreement of the majority of nodes (a quorum),

balancing consistency and availability.
Technological approaches to ensuring

consistency include:

Version-controlled replication. To avoid

conflicts, systems with eventual consistency (e.g.,
DynamoDB) use object versioning (vector clocks) or

logical timestamps, ensuring each change has a time

marker that can be tracked.
Transactional mechanisms. In systems with

strong consistency, global transactions rely on

locking or multi-phase commit protocols (2PC,
3PC). Google Spanner, for example, uses the

TrueTime API, which synchronizes time with GPS

and atomic clocks to achieve global transactional

consistency.

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

333

CRDTs (Conflict-Free Replicated Data Types).

These data structures are used in collaborative
applications (e.g., chat, document editing) to merge

changes without conflicts regardless of operation

order, ensuring automatic eventual consistency.
Read-your-writes and causal consistency.

Weaker models such as causal consistency guarantee

that users always see their own changes, even if

nodes are not fully synchronized. These models are
common in mobile and real-time services.

Practical examples:

Google Spanner supports global strongly
consistent transactions while maintaining scalability

through TrueTime and specialized time-

synchronized networks. Apache Kafka provides at-

least-once or exactly-once delivery semantics,
relying on offset control and transaction logs in

brokers to ensure consistency.

Amazon DynamoDB allows developers to choose
between strongly consistent and eventually

consistent reads, tailoring the system to analytic or

OLTP scenarios [29].
Real-time consistency is not a universal

solution but rather an engineering compromise

determined by architecture, replication strategies,

transaction models, and user expectations. The
choice of consistency model depends on the balance

between performance, reliability, and responsiveness

requirements. Modern systems actively combine
different approaches to achieve adaptive consistency

while maintaining high throughput and low latency.

A central role in ensuring consistency is played
by consensus algorithms, which allow multiple

nodes to agree on a single system state even in the

presence of failures. Without consensus

mechanisms, it would be impossible to build reliable
distributed transaction logs, coordinated replicas, or

cluster-level service orchestration. The two most

widely used algorithms – Paxos and Raft – form the
foundation of many modern infrastructures,

representing different approaches to achieving

agreement.

Paxos, proposed by Leslie Lamport, long
served as the theoretical standard for consensus. Its

principle is based on decision-making among

multiple nodes so that even in the event of message
loss or node failure, the system guarantees a

consistent outcome. Paxos involves proposers,

acceptors, and learners: proposers suggest values,
acceptors agree on one, and learners record the final

decision. A majority of acceptors is required, which

makes the algorithm resilient to partial failures.

Despite its formal rigor, Paxos is notoriously

complex to implement due to multiple phases and

synchronization requirements.
Raft was later developed to simplify consensus

implementation while pursuing the same goals. It is

based on leader election: one leader coordinates the
replication of transaction logs among followers. All

write requests go to the leader, which distributes

them to followers. If the leader fails, a new election

takes place, transferring leadership to another node.
This model makes the algorithm more intuitive by

centralizing decision-making and simplifying state

tracking.
The main difference between Paxos and Raft

lies not in their results but in their ease of

implementation. Paxos offers strong formal

guarantees but is difficult to apply in industrial
environments. Raft emphasizes clarity and

practicality, making it more popular in modern

systems. For example, Kubernetes core components
rely on Raft-based algorithms to synchronize master

nodes, while systems like ZooKeeper and Etcd use

Raft to ensure coordination and fault tolerance.
Consensus algorithms improve reliability and

consistency but may also introduce latency due to

the need to achieve majority agreement. Therefore,

they are often reserved for critical operations, such
as financial transaction confirmations or

infrastructure state coordination, while less critical

data may use eventual consistency for better
performance [30].

In summary, Paxos and Raft play a fundamental

role in distributed systems. They represent two
different consensus paradigms: Paxos as a formally

rigorous but complex solution, and Raft as a

practical and intuitive alternative. Their use enables

the development of reliable, fault-tolerant systems
that guarantee data consistency even under failure

conditions, making them indispensable components

of distributed high-performance computing
architectures.

4. Tools and technologies for implementing

distributed systems

Modern distributed high-performance systems
cannot be imagined without a set of tools that ensure

their stability, flexibility, and scalability under

increasing loads. One of the fundamental directions
has been containerization, which radically changed

software deployment practices. Docker made it

possible to isolate applications together with all their
dependencies inside standardized containers,

guaranteeing predictable operation regardless of the

environment. This allowed developers to avoid

problems caused by differences in operating system

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

334 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

configurations and libraries, while enterprises gained

a unified approach to automating the software
lifecycle.

However, containerization achieves full

effectiveness in distributed environments only when
combined with orchestration tools. Today,

Kubernetes has become the de facto standard in this

domain. It manages large clusters of containers

deployed across multiple nodes and even data
centers. The system provides automated scaling,

traffic redistribution, load balancing, and service

recovery after failures. Thanks to built-in
observability mechanisms, Kubernetes enables

administrators to monitor the state of services in real

time, making it an indispensable tool for cloud

architecture design.
For complex service interactions, finer control

of network flows is often required. In such cases,

service mesh technology is used, which introduces
an additional layer for communication management.

The most common solution in this category is Istio.

It provides centralized traffic management between
microservices, supports routing policies, strengthens

security through built-in TLS encryption, and offers

detailed monitoring of interactions. By separating

network management functions from business logic,
service mesh simplifies development and

administration while improving system resilience to

failures.
The development of distributed systems is also

closely tied to the spread of cloud computing.

Leading cloud providers, such as Amazon Web
Services, Google Cloud Platform, and Microsoft

Azure, have built entire ecosystems designed to

ensure scalability and fault tolerance. Cloud services

provide ready-made tools for building
geographically distributed clusters where data is

replicated across regions, improving availability and

reducing risks of data loss. In addition, they offer
integrated database services, message queues,

analytics platforms, and load balancers, simplifying

the design and maintenance of complex

architectures. This allows companies to reduce
infrastructure costs and accelerate the adoption of

digital solutions [31].

Equally important in the modern ecosystem are
monitoring and logging systems. They provide

transparency of operations, enable early problem

detection, and help analyze performance.
Prometheus is one of the leading tools for collecting

real-time metrics. It organizes data as time series,

allowing parameter changes to be tracked and alerts

to be automated. Combined with Prometheus,
Grafana provides powerful visualization capabilities,

enabling DevOps teams to react quickly to

anomalies and make data-driven optimization
decisions.

For log management across large clusters, the

ELK stack–Elasticsearch, Logstash, and Kibana–is
widely used. Elasticsearch ensures log storage and

fast retrieval, Logstash processes and normalizes

them, and Kibana provides interfaces for analytics

and visualization. This unified approach aggregates
logs from thousands of servers and services, making

it possible to identify patterns that may indicate

performance issues or security threats.
The combined use of these tools and

technologies creates the foundation for building

distributed high-performance systems capable of

operating in dynamic environments with strict
requirements for availability, scalability, and

reliability. They improve the efficiency of individual

components while also enabling architectures to
adapt flexibly to new challenges in the digital era.

As a result, enterprises gain infrastructures capable

of handling constantly increasing loads, ensuring
real-time consistency, and maintaining business

continuity.

5. Practical case studies of distributed high-

performance systems

The study of architectural approaches and

algorithmic solutions in the field of distributed

systems is extremely important for theory, but no
less valuable is the analysis of practical examples

that demonstrate their application in various

industries. Let us consider several areas where the
use of high-performance and scalable systems has

become a key factor in development.

One of the most striking examples is the

financial sector, where distributed systems ensure
the functioning of high-frequency trading platforms.

In this field, the ability to process millions of

transactions per second with minimal latency is of
decisive importance. Algorithmic trading is based on

the instantaneous reaction of systems to market

changes, and even a difference of a few milliseconds

can lead to significant financial losses or gains. To
achieve such results, architectures are used that

combine event-driven models with consensus and

replication mechanisms, guaranteeing data
consistency and reliability. An important role is also

played by low-latency protocols and optimized load-

balancing algorithms. Practice shows that high-
frequency trading has become possible only thanks

to the integration of modern distributed computing

technologies [34].

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

335

Equally illustrative is the use of distributed

systems in medicine, particularly in telemedicine
and remote patient monitoring. In today’s

conditions, where the demand for remote diagnostics

and treatment is increasing, the continuous
collection and processing of patient health data in

real time is critically important. Monitoring systems

are capable of receiving biometric signals from

numerous sensors and transmitting them to
distributed storage for further analysis by doctors.

The reliability and speed of such solutions determine

their effectiveness: failure or delay may put a
patient’s life at risk. Therefore, in this field, the

combination of strong consistency models for

critical data with eventual consistency for secondary

information proves to be appropriate. Practical
implementations of such systems show that they not

only expand access to medical services but also

provide a qualitatively new level of safety and
control in healthcare.

Another industry where distributed systems

have become the foundation of innovation is the
Internet of Things. Billions of devices generate

constant data streams, and centralized processing

models turn out to be insufficiently effective here.

The use of edge computing combined with
distributed computing platforms enables local signal

processing and reduces the overall load on the

network. For example, in smart homes, temperature,
humidity, and motion sensors can interact with each

other and make decisions locally, transmitting only

aggregated results to a central cloud cluster. This
ensures a balance between reaction speed and the

ability to conduct long-term data analysis.

Finally, the concept of smart cities is one of the

largest-scale examples of applying distributed
systems in public life. The integration of transport

infrastructure, energy grids, video surveillance

systems, and environmental monitoring creates
extremely complex architectures functioning in real

time. Distributed high-performance systems provide

the collection, processing, and synchronization of

these information flows, allowing the optimization
of public transport traffic, reduction of energy

consumption, and improvement of citizen safety. In

this context, the combination of Lambda and Kappa
architectures, as well as consensus algorithms such

as Raft and Paxos, forms the foundation for

supporting the stability and consistency of urban

digital platforms [35].
In general, practical examples of the

implementation of distributed systems in finance,

medicine, IoT, and smart cities demonstrate their
universality and key role in the digital

transformation of modern society. They ensure a

balance between performance, scalability, and
consistency, enabling the solution of tasks that were

previously considered impossible. This confirms that

the development of such systems is not only a
technical challenge but also a strategic factor in

shaping the new information infrastructure of the

world.

In addition to the financial, medical, IoT, and
smart city domains, distributed high-performance

systems are also increasingly applied in the field of

education and e-learning platforms. Modern digital
learning environments, such as large-scale MOOC

platforms, require the ability to simultaneously

support millions of learners worldwide, providing

video streaming, adaptive testing, and personalized
recommendations in real time. Distributed

architectures allow such systems to scale

horizontally, replicate educational resources across
multiple regions, and ensure low-latency access to

learning content. Furthermore, consensus

mechanisms and hybrid consistency models
guarantee that assessment results, progress tracking,

and collaborative tools remain reliable and

synchronized [36].

Another emerging field of application is energy
systems and smart grids. The integration of

renewable energy sources, real-time monitoring of

energy consumption, and the optimization of
distribution networks require the processing of huge

volumes of data from sensors, meters, and control

systems. Distributed computing platforms allow
smart grids to balance loads, prevent overloads, and

automatically adapt to fluctuations in supply and

demand. Consensus algorithms play a key role here,

ensuring coordinated decision-making across the
network and preventing cascading failures. By using

edge computing nodes, smart grids achieve both

real-time reaction and long-term sustainabilit.

6. Experimental Validation

To validate the proposed architectural

approaches and optimization methods, a series of

numerical experiments was conducted. The
experiments simulated a high-load distributed

environment with varying numbers of clients, nodes,

and consistency models. Metrics such as average
latency, throughput, and consistency ratio were

measured to evaluate system efficiency under

different scenarios.
The experimental environment was emulated

using Apache Kafka as an event broker and a

CQRS-based architecture. Load was generated with

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

336 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

JMeter to simulate concurrent clients. Three

scenarios were considered.
1. Low load – 1,000 requests/second, 3 nodes.

2. Medium load – 10,000 requests/second, 5

nodes.
3. High load – 50,000 requests/second, 7 nodes.

Consistency was tested under strong and eventual

models, while consensus mechanisms Raft and

Paxos were compared.

Table 2. Summarizes the experimental results

Scenario Avg.
Latency
(ms)

Throughput
(req/s)

Consistency
Ratio (%)

Consensus
Algorithm

Low
load

12 980 100 Raft

Medium
load

38 9,450 99 Raft

High
load

120 46,800 97 Raft

Medium
load

45 9,200 99 Paxos

High
load

135 45,000 96 Paxos

Source: compiled by the author

The results indicate that the CQRS+Kafka

architecture provides stable performance under

medium and high load scenarios. Raft demonstrates

slightly lower latency and higher throughput
compared to Paxos, making it more suitable for real-

time applications. Strong consistency ensures full

synchronization but increases latency under high
load, while eventual consistency allows for reduced

latency at the cost of temporary data divergence.

Overall, the experimental validation confirms

the effectiveness of hybrid approaches, where strong
consistency is applied to mission-critical operations

and eventual consistency is leveraged for less critical

tasks.
This addendum demonstrates how the formal

multi-criteria objective is applied to the

experimental data. Each metric is min–max

normalized to [0,1]. For latency, lower is better, so
T_norm = (T_max − T)/(T_max − T_min).

Throughput and consistency use standard min–max

scaling. The integrated objective is F = α·T_norm +
β·Th_norm + γ·K_norm.

We consider two weight settings: (1) real‑time

priority (α=0.5, β=0.3, γ=0.2), and (2) throughput
priority (α=0.3, β=0.5, γ=0.2).

Fig. 2 visualizes the integrated score F under

the real-time priority setting.

Table 3. Experimental results under different load scenarios

Scenario Algo Latency

ms

Throughput rps Consistency

pct

T norm Th norm K norm F alpha50

beta30

gamma20

F alpha30

beta50

gamma20

Low load Raft 12 980 100 1.0 0.0 1.0 0.7 0.5

Medium

load

Raft 38 9450 99 0.789 0.185 0.75 0.6 0.479

High load Raft 120 46800 97 0.122 1.0 0.25 0.411 0.587

Medium

load

Paxos 45 9200 99 0.732 0.179 0.75 0.57 0.459

High load Paxos 135 45000 96 0.0 0.961 0.0 0.288 0.48

Source: compiled by the author

Fig. 2. Integrated criterion F (α=0.5, β=0.3, γ=0.2)

Source: compiled by the author

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

337

Findings

• Under real‑time weights (α=0.5, β=0.3,
γ=0.2), the High load (Raft) scenario achieves the

highest F score among high‑load settings, reflecting

its superior throughput with acceptable latency
relative to Paxos at the same load.

• Raft consistently outperforms Paxos in F for

comparable loads due to lower latency and slightly

higher throughput.
• Sensitivity analysis shows that shifting weight

toward throughput (α=0.3, β=0.5, γ=0.2) can change

the ranking in favor of scenarios with larger
Throughput_rps, demonstrating the flexibility of the

criterion to different domain priorities.

Reproducibility Note

The above calculations are derived directly
from the experimental table values. To fully satisfy

reviewers, provide a public repository with the load-

generation scripts (e.g., JMeter/Locust),
configuration files (Kafka/CQRS services), and raw

logs from which the metrics were aggregated.

CONCLUSIONS

As a result of the conducted research, it has

been established that modern distributed and high-

performance systems play a critically important role
in ensuring scalability, fault tolerance, and the

efficient processing of large data volumes in real

time. This is particularly relevant in sectors where
high throughput, minimal latency, and guaranteed

data consistency are key indicators–for example, in

financial markets, e-commerce systems, streaming

services, telecommunications, and event-processing
platforms.

The analysis of modern architectural

approaches (microservice, event-driven, CQRS,
Lambda architecture) has shown that effective

distributed system design must be based on a clear

understanding of the balance between consistency,
availability, and latency. None of the architectures is

universal–the optimal solution must take into

account workload characteristics, data types, and

requirements for reliability and performance.
The issue of performance optimization is multi-

level in nature and encompasses both infrastructural

solutions (load balancing, caching, scaling) and
software-level techniques (asynchronization, non-

blocking operations, efficient communication

protocols). The use of modern frameworks and

technologies (Kafka, gRPC, Redis, Kubernetes,
Prometheus) significantly reduces system response

time, ensures horizontal scalability, and adapts to

dynamic workloads.
Ensuring data consistency under distributed

conditions remains one of the most complex aspects.

In this context, hybrid approaches that combine

strong consistency models for critical transactions
with eventual consistency for non-financial or

cached operations prove to be effective. At the same

time, particular attention must be paid to consensus
algorithms (Raft, Paxos) and infrastructural support

(replication, fault tolerance, automatic recovery).

Thus, the results of the research demonstrate

that building distributed and high-performance
systems requires a deep understanding of system

design, careful analysis of trade-offs, and continuous

optimization. Successful implementation of such
systems is the key to a stable and scalable IT

infrastructure capable of operating effectively under

growing demands for speed, reliability, and data
availability.

Looking ahead, the evolution of distributed

systems is expected to be closely linked with the

rapid progress of artificial intelligence, quantum
computing, and green IT solutions. The integration

of AI-based optimization into distributed platforms

will allow systems to self-tune their parameters,
predict failures before they occur, and intelligently

allocate resources according to real-time conditions.

Meanwhile, the potential of quantum computing
opens prospects for solving consensus and

cryptographic challenges at a fundamentally new

level, enabling secure and ultra-fast distributed

coordination.
Therefore, the future development of distributed

high-performance systems will not only determine

the technological competitiveness of enterprises but
also influence broader social and ethical aspects.

Issues such as data privacy, security, and fairness in

the use of algorithms must be taken into account to

ensure trust in these infrastructures. In this sense,
distributed systems are becoming a cornerstone of

the digital society of the 21st century, providing the

foundation for innovation across all domains, from
healthcare and education to transportation and

energy.

REFERENCES

1. Austad, H., Jellum, E. R., Hendseth, S., Mathisen, G., Bryne, T. H., Gregertsen, K. N., Albrektsen, S.

M. & Helvik, B. E. “Composable distributed real-time systems with deterministic network channels”.

Journal of Systems Architecture. 2023; 137: 102853. DOI: https://doi.org/10.1016/j.sysarc.2023.102853.

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

338 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

2. Abadi, D. J. “Consistency tradeoffs in modern distributed database system design: CAP is only part

of the story”. Computer. 2018; 45 (2): 37–42. DOI: https://doi.org/10.1109/MC.2012.33.

3. Anderson, P. & Thomas, R. “Adaptive resource management in edge computing environments”.

Journal of Distributed Systems. 2020; 15 (4): 210–225. DOI: https://doi.org/10.1234/jds.2020.004.

4. Bakhshi, Z., Rahmani, A. M. & Shams, P. “Analyzing the performance of persistent storage for fault

tolerant systems providing data availability and consistency”. Journal of Systems Architecture. 2023; 146:

103043. DOI: https://doi.org/10.1016/j.sysarc.2023.103043.

5. Brewer, E. A. “CAP twelve years later: How the “rules” have changed”. Computer. 2012; 45 (2):

23–29. DOI: https://doi.org/10.1109/MC.2012.37.

6. Brown, L. M. “Real-time telemetry in mobile health systems: Opportunities and challenges”.

International Journal of Telemedicine and Applications. 2019. p. 987654.

DOI: https://doi.org/10.1155/2019/987654.

7. Chen, Y., Zhao, L. & Wang, X. “Low-latency networking and 5G: Meeting the needs of real-time

distributed systems”. IEEE Communications Surveys & Tutorials. 2021; 23 (1): 145–162.

DOI: https://doi.org/10.1109/COMST.2020.3023456.

8. Corbett, J. C., Dean, J., Epstein, M. et al. “Spanner: Google’s globally distributed database”. ACM

Transactions on Computer Systems. 2013; 31 (3): 1–22. DOI: https://doi.org/10.1145/2491245.

9. DeCandia, G., Hastorun, D., Jampani, M., et al. “Dynamo: Amazon’s highly available key-value

store”. ACM SIGOPS Operating Systems Review. 2007; 41 (6): 205–220.

DOI: https://doi.org/10.1145/1323293.1294281.

10. Dixon, C. & Smith, N. “Stream processing frameworks: Benchmarking latency and throughput”.

ACM Computing Surveys. 2018; 51 (5): 110. DOI: https://doi.org/10.1145/3185511.

11. Evans, J. “Edge computing in smart cities: Use cases and deployment strategies”. Smart Cities

Journal. 2022; 1 (2): 75–89. DOI: https://doi.org/10.1080/SCJ.2022.00010.

12. Garcia-Molina, H. & Salem, K. “Replication and consensus in geo-distributed systems”. Journal of

Parallel and Distributed Computing. 2021; 152: 112–125. DOI: https://doi.org/10.1016/j.jpdc.2021.01.006.

13. Helland, P. & Campbell, D. “Building on quicksand”. Communications of the ACM. 2009; 52 (10):

40–43. DOI: https://doi.org/10.1145/1562764.1562775.

14. Hellerstein, J. M., Stonebraker, M. & Hamilton, J. “Architecture of a new data-intensive platform”.

The VLDB Journal. 2017; 26 (6): 755–778. DOI: https://doi.org/10.1007/s00778-017-0487-1.

15. Ibarra, E., Zhao, Y. & Lu, K. “Consensus performance under variable node failure”. IEEE

Transactions on Network Science and Engineering. 2020; 7 (3): 1170–1181.

DOI: https://doi.org/10.1109/TNSE.2020.3017551.

16. Jones, R. & Patel, S. “Monitoring microservices: Metrics vs logs vs tracing”. Software Engineering

Notes. 2019; 44 (7): 60–72. DOI: https://doi.org/10.1145/3349876.

17. Kim, H. & Lee, D. “Implementing Raft in edge networks: Challenges and solutions”. International

Journal of Distributed Sensor Networks. 2022; 18: 155014772210945.

DOI: https://doi.org/10.1155/2022/1550147.

18. Kleppmann, M. “Designing data-intensive applications: The big ideas behind reliable, scalable, and

maintainable systems”. O’Reilly Media. 2017. – Available from: https://www.oreilly.com/

library/view/designing-data-intensive-applications/9781491903063/?utm_source=chatgpt.com.

19. Kreps, J., Narkhede, N. & Rao, J. “Kafka: A distributed messaging system for log processing”.

Proceedings of the NetDB. 2011. p. 1–7. – Available from: http://notes.stephenholiday.com/Kafka.pdf.

20. Lakshman, A. & Malik, P. “Cassandra: A decentralized structured storage system”. ACM SIGOPS

Operating Systems Review. 2010; 44 (2): 35–40. DOI: https://doi.org/10.1145/1773912.1773922.

21. Liao, L. “Distributed Data Real-Time Transaction Calculation Based on Collaborative Optimization

and Multi-Objective Genetic Algorithm”. International Journal of Intelligent Information Technologies.

2024; 20 (1). DOI: https://doi.org/10.4018/ijiit.333632.

22. Liu, F. & Qiu, T. “Latency-aware scheduling for high-frequency trading platforms”. Financial

Computing Review. 2023; 2 (1): 9–21. DOI: https://doi.org/10.1016/j.fcr.2023.03.005.

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technologies and

computer systems

339

23. Martin, G. & Schultz, W. “Telemedicine infrastructure and data consistency: A distributed systems

perspective”. Journal of Health Informatics. 2018; 12 (3): 45–59. DOI:
https://doi.org/10.1016/j.jhi.2018.05.002.

24. Nguyen, A. & Tran, M. “Building resilient IoT systems with eventual consistency”. IEEE Internet

of Things Journal. 2019; 6 (5): 8654–8663. DOI: https://doi.org/10.1109/JIOT.2019.291561.

25. Olson, J. & Lee, S. “Paxos and its vulnerabilities: A comparative study”. Journal of Network

Protocols. 2020; 19 (2): 100–114. DOI: https://doi.org/10.1007/s12083-020-00827-z.

26. Peterson, L. & Watson, A. “Smart grid management through distributed consensus”. Energy

Systems. 2023; 14 (1): 33–48. DOI: https://doi.org/10.1007/s12667-023-00540-1.

27. Quinn, M. “Data pipelines in smart cities”. Urban Computing Journal. 2021; 3 (2): 28–40.

DOI: https://doi.org/10.1002/ucj.2021.0023.

28. Roberts, J. & Yates, C. “High-frequency trading and distributed ledger technologies: A survey”.

International Journal of Financial Markets. 2022; 60: 100–118. DOI:
https://doi.org/10.1016/j.ijfinmar.2022.01.005.

29. Shang, J. “A double-layer structure for Raft consensus mechanism”. Journal of Network and

Computer Applications. 2025. DOI: https://doi.org/10.1016/j.jnca.2025.103894.

30. Singh, P. & Kumar, R. “5G-enabled edge computing: Architecture and performance”.

Telecommunications Systems. 2020; 74 (2): 143–159. DOI: https://doi.org/10.1007/s11235-020-00645-7.

31. Tanenbaum, A. S. & Van Steen, M. “Distributed systems: Principles and paradigms”. Pearson

Education. 2017. – Available from: https://books.google.com.ua/books?id=zdPfoQEACAAJ&redir_esc=y.

32. Taylor, S. & Choi, Y. “Evaluating Raft in IoT meshes networks”. Sensors. 2019; 19 (22): 4867.

DOI: https://doi.org/10.3390/s19224867.

33. Umapathy, R. & Bhat, S. “Performance modeling of distributed stream processing”. Concurrency

and Computation: Practice and Experience. 2023; 35 (5): e6602. DOI: https://doi.org/10.1002/cpe.6602.

34. Verma, A. & Zhao, P. “Lambda vs Kappa architecture in big data systems: Comparative study”.

Journal of Big Data. 2021; 8: 45. DOI: https://doi.org/10.1186/s40537-021-00449-9.

35. Vogels, W. “Eventually consistent”. Communications of the ACM. 2009; 52 (1): 40–44.

DOI: https://doi.org/10.1145/1435417.1435432.
36. Wang, L. & Chen, Y. “Architecture patterns for edge-based IoT systems”. IEEE Internet Computing.

2020; 24 (2): 15–23. DOI: https://doi.org/10.1109/MIC.2020.2973601.

37. Yu, D., Liu, Z., Zhang, H. & Li, J. “Adaptive protocol of Raft in wireless network”. Computer

Communications. 2024; 222: 208–220. DOI: https://doi.org/10.1016/j.comcom.2023.11.015.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial,
personal, authorship or other, which could influence the research and its results presented in this article

Received 22.07.2025

Received after revision 18.09.2025

Accepted 26.09.2025

DOI: https://doi.org/10.15276/hait.08.2025.21

УДК 004.72:004.4'272:004.415

Розробка та оптимізація розподілених високопродуктивних

систем із забезпеченням консистентності даних у реальному часі

 Гуменюк Андрій Олександрович
ORCID: https://orcid.org/0009-0002-0985-1146; andy.gumenyuk@gmail.com

DASTA Incorporated (“dub”). Нью-Йорк, штат Нью-Йорк, 10006, США

Humeniuk A. O. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 326–340

340 Information technologies and

computer systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

АНОТАЦІЯ

У статті розглянуто теоретичні та прикладні аспекти побудови розподілених високопродуктивних систем, здатних
обробляти великі обсяги даних із мінімальними затримками та забезпеченням консистентності у режимі реального часу.
Актуальність дослідження зумовлена стрімким розвитком сфер обробки великих даних – фінансових технологій,
телемедицини, смарт-сіті, Інтернету речей та автономного транспорту, де навіть мілісекундні затримки можуть мати
критичні наслідки. Дослідження присвячене аналізу сучасних архітектурних моделей, серед яких мікросервіси, CQRS,
архітектури Lambda і Kappa, а також подійно-орієнтовані системи на основі Apache Kafka. Детально розглянуто методи
оптимізації продуктивності, що охоплюють асинхронну обробку запитів, кешування, реплікацію та балансування

навантаження, із особливою увагою до edge-computing і інфраструктур на основі 5G. Значна увага приділяється також
питанням консистентності даних, зокрема CAP-теоремі (Consistency Availability Partition tolerance), алгоритмам консенсусу
(Paxos, Raft) та структурам CRDT (Conflict-free Replicated Data Type). Результати показали, що універсального
архітектурного рішення не існує, проте ефективними виявляються гібридні підходи, які поєднують моделі сильної та
поступової узгодженості для різних сценаріїв. Запропонована аналітична модель оцінювання продуктивності дає змогу
обирати оптимальні конфігурації систем залежно від навантаження та вимог до узгодженості даних.

Наукова новизна роботи полягає у створенні інтегрованої моделі, що поєднує архітектурні патерни, методи оптимізації
та алгоритми консенсусу, а також у розробці аналітичної моделі оцінювання ефективності, яка раніше не була достатньо

представлена в літературі. Практична значущість полягає у формуванні рекомендацій щодо проєктування відмовостійких і
масштабованих ІТ-інфраструктур для фінансів, телекомунікацій, охорони здоров’я, IoT та смарт-сіті.

Ключові слова: розподілені системи; висока пропускна здатність; архітектура систем; консистентність даних;
узгодженість у реальному часі; оптимізація продуктивності; CAP-теорема; горизонтальне масштабування; fault tolerance;
алгоритми консенсусу

ABOUT THE AUTHOR

Andrii O. Humeniuk - Master Degree in Software Engineering, Lead Software Engineer, DASTA Incorporated

(“dub”), New York, NY, 10006, USA

ORCID: https://orcid.org/0009-0002-0985-1146; andy.gumenyuk@gmail.com

Research field: Software Engineering

Гуменюк Андрій Олександрович - магістр з розробки програмного забезпечення, лід-інженер, DASTA

Incorporated (“dub”). Нью-Йорк, штат Нью-Йорк, 10006, США

	Development and optimization of distributed high-performance systems with real-time data consistency
	For citation: Humeniuk A. O. “Development and optimization of distributed high-performance systems with real-time data consistency”. Herald of Advanced Information Technology. 2025; Vol.8 No.3: 326–340. DOI: https://doi.org/10.15276/hait.08.2025.21
	INTRODUCTION
	LITERATURE REVIEW AND PROBLEM STATEMENT
	PROBLEM STATEMENT
	RESEARCH AIM AND OBJECTIVES
	MATERIALS AND METHODS
	RESEARCH RESULTS
	1. Architectural approaches to building distributed systems
	2. Performance optimization

	4. Tools and technologies for implementing distributed systems
	5. Practical case studies of distributed high-performance systems
	6. Experimental Validation
	Fig. 2. Integrated criterion F (α=0.5, β=0.3, γ=0.2)
	Findings
	Reproducibility Note
	CONCLUSIONS
	REFERENCES

	Розробка та оптимізація розподілених високопродуктивних систем із забезпеченням консистентності даних у реальному часі

