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ABSTRACT 

This article examines the theoretical and applied aspects of building distributed high-performance systems capable of 
processing large volumes of data with minimal latency while maintaining real-time consistency guarantees. The relevance of the 
research is determined by the rapid growth of data-intensive domains such as high-frequency trading, telemedicine, smart cities, the 

Internet of Things, and autonomous transport, where even millisecond delays can have critical consequences. The study focuses on 
the analysis of modern architectural models, including microservices, CQRS, Lambda and Kappa architectures, and event-driven 
systems with Apache Kafka. Methods of performance optimization are explored in detail, covering asynchronous request handling, 
caching, replication, and load balancing, with special attention to edge computing and 5G-based infrastructures. Particular emphasis 
is placed on theoretical and practical aspects of data consistency, including CAP-theorem (Consistency Availability Partition 
tolerance) trade-offs, consensus algorithms (Paxos, Raft), and CRDT (Conflict-free Replicated Data Type) structures. The results 
demonstrate that no universal architectural solution exists, but hybrid approaches combining strong and eventual consistency models 
can ensure reliability in mission-critical domains. The proposed analytical model for evaluating performance under different 

workload profiles enables the selection of optimal system configurations, balancing throughput, latency, and consistency 
requirements. The scientific novelty of the research lies in the integrated framework that unites architectural patterns, optimization 
techniques, and consensus mechanisms, as well as in the development of an analytical evaluation model that had not been sufficiently 
presented in previous studies. The practical significance is manifested in the formulation of recommendations for the design of fault-
tolerant, scalable infrastructures for finance, telecommunications, healthcare, IoT, and smart cities. 
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INTRODUCTION 

In the era of rapid growth of digital 

technologies, the development of information 

systems is increasingly focused on the efficient 

processing of vast amounts of data in real time. The 

emergence of new domains – such as high-frequency 

trading, decentralized financial technologies (DeFi), 

telemedicine, smart cities, the Internet of Things 

(IoT), and autonomous transportation systems – has 

created an urgent need for high-performance, 

scalable, and fault-tolerant information architectures. 

Distributed computing systems, operating under 

conditions of geographically dispersed nodes, offer 

opportunities for scalability, parallelism, and fault 

tolerance. However, these advantages are 

accompanied by challenges related to ensuring data 

consistency, performance, and low latency. These 

issues become especially critical in systems 

designed to process millions of transactions per  
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second – for example, in stock exchange or 

cryptocurrency platforms, where even a delay of a 

few milliseconds can have critical consequences. 

Traditional monolithic data-processing models 

are increasingly being replaced by decentralized and 

event-driven approaches. At the same time, the 

introduction of microservice technologies, 

containerization, serverless  

architectures, and progress in dataflow and 

infrastructure management in cloud environments 

have paved the way for building dynamic, reactive 

systems capable of adapting to workloads in real 

time. 

Ensuring data consistency in such environments 

is a task that requires careful design, the correct 

choice of synchronization strategies, thoughtful data 

replication, and in-depth monitoring. It is important 

to achieve a balance between consistency, 

availability, and fault tolerance, avoiding situations 

where improving one parameter leads to the 

deterioration of another (the well-known 

compromise defined by the CAP theorem). 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk) 
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LITERATURE REVIEW AND PROBLEM 

STATEMENT 

The issue of building distributed high-

performance systems with data consistency 

guarantees has attracted researchers’ attention for 

decades. The classical works of Tanenbaum and Van 

Steen laid the theoretical foundations for designing 

such systems, defining the basic approaches to 

organizing distributed computations, their 

architectures, and principles of interaction between 

nodes. A significant contribution to the development 

of this field was made by Abadi, Vogels, and 

Brewer, who examined the trade-offs between 

consistency, availability, and partition tolerance. 

Brewer’s CAP theorem, later expanded in 

subsequent studies, became the starting point for 

modern discussions on balancing performance and 

data consistency. 

The practical side of the problem is reflected in 

works dedicated to building specific platforms. For 

instance, Amazon Dynamo, Apache Cassandra, and 

Google Spanner have demonstrated different 

approaches to achieving consistency on the scale of 

global distributed databases. Kleppmann’s research 

emphasized the combination of reliability, 

scalability, and maintainability in systems operating 

with intensive data streams. Meanwhile, works 

devoted to Apache Kafka highlighted the 

effectiveness of event-driven architectures in 

building high-performance event-processing 

pipelines. 

Summarizing the existing scientific 

contributions, it can be stated that the problem of 

data consistency in distributed systems remains open 

and multifaceted. Contemporary literature covers 

both the formal aspects of consensus theory and 

applied solutions for specific domains; however, no 

final universal approach has been achieved. This 

confirms the relevance of further research and the 

need for a deeper analysis of the trade-offs between 

various architectural models. 

Modern information systems operate in an 

environment where data volumes are constantly 

increasing, and the requirements for processing 

speed are becoming increasingly stringent. For 

domains such as financial technologies, 

telecommunications, medical services, or the 

Internet of Things infrastructure, the ability to 

process information flows in real time without losing 

consistency and availability is critical. Traditional 

centralized data-processing models cannot provide 

the required level of scalability and fault tolerance, 

while known architectural solutions always involve 

a compromise between performance and 

consistency. 

The problem lies in the development and 
optimization of architectural and algorithmic 

approaches that would combine high throughput 

with guaranteed data consistency. It is necessary to 
find a balance between different consistency models, 

determine the role of consensus algorithms, and 

evaluate the effectiveness of existing technological 

solutions in the context of specific application 
domains. This problem statement defines the goal of 

the study, which is to identify architectural models 

and synchronization mechanisms capable of 
ensuring the operation of mission-critical real-time 

systems. 

PROBLEM STATEMENT 

Based on the analysis of current trends in the 

field of distributed high-performance systems, it can 

be concluded that the problem of ensuring real-time 
data consistency remains open and multifaceted. 

Traditional centralized architectures cannot provide 

the required level of scalability and fault tolerance, 

while existing decentralized solutions always imply 
a trade-off between performance and data 

consistency. 

In this context, the task arises to develop and 
optimize architectural and algorithmic approaches 

that will allow to: 

 ensure high system throughput with minimal 
latency; 

 achieve guaranteed data consistency through 

modern consensus models and replication 

mechanisms; 
 design an analytical model for evaluating 

the efficiency of various architectures depending on 

workload characteristics and domain specificity; 
 define practical recommendations for 

applying optimal solutions in mission-critical 

domains (financial technologies, 

telecommunications, IoT infrastructures, medical 
systems, etc.). 

Thus, the problem statement consists in 

identifying balanced architectural models and 
algorithmic mechanisms that combine the 

requirements for scalability, fault tolerance, and 

performance with the assurance of real-time data 
consistency. Formally, the problem can be expressed 

as a multi-criteria optimization task. 

Let:  

- R – the set of requests arriving in the system 
per unit of time,  
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- N – the set of nodes (servers, containers, or 

edge devices),  
- L(r,n) – latency of processing request r ∈  R 

on node n ∈  N,   

- C(n) – throughput capacity of node n,   
- S(r) – data size of request r,   

- Cons(r) – required consistency level for 

request r (e.g., strong, quorum, eventual).   

Decision variables: x_{r,n} ∈  {0,1} – binary 
variable indicating whether request r is processed on 

node n  Constraints:  

1. Each request must be assigned to at least one 
node: ∑_{n ∈  N} x_{r,n} ≥ 1, ∀  r ∈  R   

2. The workload of each node must not exceed 

its processing capacity:   

∑_{r ∈  R} S(r) · x_{r,n} ≤ C(n), ∀  n ∈  N.   
3. Consistency guarantees must satisfy 

minimum requirements:  

K ≥ K_min,   
where K denotes the ratio of successfully synchro-

nized transactions to the total number of transacti-

ons.   
Optimization criteria:  

The objective is to minimize average system 

latency T, maximize total throughput Th, and 

maximize the consistency index K.  min T = (1/|R|) 
∑_{r ∈  R} ∑_{n ∈  N} L(r,n) x_{r,n} max Th = 

∑_{n ∈  N} ∑_{r ∈  R} S(r) x_{r,n} max K = 

(Number of successfully synchronized transactions) 
/ (Total number of transactions).   

In practice, these conflicting objectives can be 

combined into a single weighted optimization 
criterion:   

F = α · (1/T) + β · Th + γ · K  →  max,    

where α, β, γ are weights reflecting the priority of 

latency, throughput, and consistency for a given 
application domain (e.g., finance, IoT, or 

telemedicine). 

RESEARCH AIM AND OBJECTIVES 

The aim of this study is to substantiate and 

develop approaches to building distributed high-

performance systems capable of ensuring data 

consistency in real time under high loads and in 

conditions of geographically distributed 

infrastructure. Achieving this aim involves finding a 

balance between performance, availability, and 

consistency, as well as identifying architectural 

models and algorithmic mechanisms that allow the 

creation of fault-tolerant information systems. 

Within this aim, several interrelated research 

objectives are addressed. First, it is necessary to 

analyze modern architectural approaches to 

designing distributed systems and to determine their 

advantages and limitations in the context of high 

performance. Second, an important task is to 

investigate performance optimization methods, 

including asynchronous processing mechanisms, 

caching systems, distributed message queues, and 

load-balancing technologies. Third, algorithmic 

approaches to ensuring consistency must be 

examined, including consistency models and 

consensus algorithms, and their suitability for 

different types of systems must be assessed. Fourth, 

the research seeks to identify opportunities for the 

practical application of the developed solutions in 

financial technologies, medicine, telecom-

munications, and the Internet of Things. 

Thus, the study combines theoretical analysis 

and practical testing of mechanisms for building 

distributed systems, which makes it possible to 

formulate recommendations for creating next-

generation infrastructures capable of meeting the 

growing demands of the digital era. 

MATERIALS AND METHODS 

To achieve the stated aim, a combination of 

theoretical and applied methods was used, enabling 

the integration of fundamental concept analysis with 
the evaluation of practical solutions in the field of 

distributed high-performance systems. The research 

materials included scientific publications by leading 
scholars in distributed system architecture, 

monographs, technical documentation, and official 

reports on the functioning of industrial platforms. 

Special attention was given to works addressing data 
consistency, consensus algorithms, and performance 

optimization in high-load environments. 

The methodological foundation was a systems 
approach, which made it possible to consider 

distributed systems as complex multi-level entities 

where architectural decisions, algorithmic models, 

and infrastructural tools are closely intertwined. 
Comparative modeling was applied to identify the 

advantages and limitations of different architectural 

approaches, including microservice, Lambda, and 
Kappa architectures. Performance evaluation 

considered response time, throughput, and fault 

tolerance parameters, which allowed an assessment 
of the suitability of each solution for systems with 

different load profiles. 

The study also employed abstract modeling of 

consistency algorithms, in particular Paxos and Raft, 
which enabled tracing the mechanisms of reaching 

consensus in geographically distributed nodes. 

Practical aspects were evaluated by analyzing open 
technical reports from companies such as Google, 

Amazon, and the Apache Foundation, describing the 
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operation of Spanner, DynamoDB, Cassandra, and 

Kafka platforms. Special attention was paid to 
research on edge computing solutions and the impact 

of 5G technology on reducing communication 

latency. 
The application of these methods made it 

possible to combine in-depth theoretical analysis 

with practical testing, ensuring the 

comprehensiveness and reliability of the results. 
Such an approach allowed for the formulation of 

conclusions that can be used both in academic 

research and in the practical design of mission-
critical real-time systems. 

RESEARCH RESULTS 

1. Architectural approaches to building 

distributed systems 

In the design of distributed high-performance 

systems, architecture plays a critically important  
role. It determines not only the system’s ability to 

process millions of transactions per second but also 

its reliability, consistency, and scalability. Modern 

distributed solutions are evolving toward 
decentralization, fault tolerance, and automated 

component management at all levels – from data 

transmission to processing logic [2]. 
In cloud environments and large-scale 

platforms focused on event stream processing, one 

of the most effective architectures is the 
microservice model, which ensures modularity, 

separation of responsibilities, and flexible scaling. 

Microservices allow individual system elements to 

be modified without interfering with others, 
reducing failure risks and shortening release cycles. 

However, scaling microservices introduces the need 

for effective event management and inter-service 
communication. This is why technologies such as 

Kafka—a distributed message broker capable of 

handling millions of events per second while 
guaranteeing delivery and near-real-time data 

processing – are increasingly important. 

For managing commands and queries 

separately, which is particularly relevant in financial 
systems, the CQRS (Command Query 

Responsibility Segregation) architectural model is 

often applied. It separates responsibilities between 
modules that change the system state and those that 

only read data. Combined with Kafka, this model 

enables maximum performance without sacrificing 

consistency.  
Fig. 1 illustrates the architectural scheme of 

such a CQRS implementation with Kafka in a 

financial system. 

This scheme clearly demonstrates the 

separation of the command and query streams, 
enabling efficient independent scaling of system 

components, with Kafka serving as a reliable 

mediator that guarantees event order and their 
processing by all necessary subsystems. Such an 

approach significantly reduces the risk of 

bottlenecks in high-load environments, especially in 

financial platforms or real-time analytics systems, 
where thousands of events per second must be 

processed without compromising accuracy. 

When choosing an architectural approach for a 
distributed system, it is necessary to consider not 

only technical requirements but also industry-

specific features, expected transaction volumes, and 

criticality regarding latency, consistency, and 
scalability. These factors directly influence the 

efficiency of the selected model, the complexity of 

its maintenance, and its adaptability to future 
workload growth. The main advantages and 

disadvantages of the considered architectures are 

summarized in Table 1, which provides a 
comparative overview of microservice, CQRS, 

event-driven, monolithic, and Lambda-based 

solutions. 

As shown in Table 1, microservice and CQRS 
architectures offer high scalability and efficient load 

isolation but require complex orchestration and 

synchronization logic. Event-driven models, 
particularly with Kafka, provide excellent 

throughput and asynchronicity but may complicate 

state tracking. In contrast, monolithic solutions are 
easier to implement but lack flexibility and 

scalability in large-scale deployments. Lambda and 

Kappa architectures combine real-time 

responsiveness with batch analytics, though at the 
expense of implementation complexity and potential 

duplication of logic.  
One of the important directions in the 

development of distributed system architectures has 

been the emergence of models oriented toward 

processing large data streams in real time. Among 

them, the most well-known and widely used are the 
Lambda architecture and its simplified variant – the 

Kappa architecture. They were developed as a 

response to the need to combine high-speed 
information processing with the ability to store data 

in the long term for subsequent analytical use [11]. 

The Lambda architecture was proposed as a 
universal approach to building systems capable of 

working with big data at enterprise scale. Its key 

idea lies in combining two different processing paths 

– batch processing and real-time streaming. The 
batch layer stores the full dataset, which is 
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periodically processed in large portions to generate 

aggregated results. This enables maximum accuracy 
and consistency since all data is reprocessed with 

each update. In parallel, the real-time layer provides 

quick reactions to new events. Data streams are 
processed in near-real-time, giving users immediate 

results. A service layer then combines both layers to 

provide final responses. 

Fig. 1. Implementation of command query 

responsibility segregation with 

kafka in a financial system 
Source: compiled by the author 

Table 1. Below provides a comparative overview 

of key architectural models in the context of their 

use in high-performance distributed systems 

Architecture Advantages Disadvantages 

Microservice Scalability, service 
independence, fast 
deployment 

Complicated 
orchestration, need for 
a service mesh 

CQRS Optimized read/write 
operations, load 
isolation 

Complex 
synchronization logic, 
doubled effort for 
maintaining models 

Event-driven 

(Kafka) 

High performance, 
asynchronicity, 
reliable event 

delivery 

Complicated state 
tracking, potential 
delays in consistency 

Monolithic Simple 
implementation, no 
network overhead 

Limited scalability, 
difficult to maintain 
as the project grows 

Lambda 

Architecture 

Combines real-time 
and batch processing 

High implementation 
complexity, 
duplicated logic 

Source: compiled by the author 

A practical example of the Lambda architecture 

is recommendation systems in large online 
platforms. For instance, a streaming service may 

collect all user viewing history in the batch layer to 

periodically recalculate long-term preferences and 
profiles, while the real-time layer processes the most 

recent actions – such as views over the last few 

minutes or hours – to update recommendations 

instantly. The combination of both layers provides 
users with personalized suggestions that reflect both 

long-term trends and current interests. 

Despite its effectiveness, the Lambda 
architecture has a significant drawback in the form 

of duplicated logic. Developers must maintain two 

parallel processing pipelines – batch and streaming – 

which complicates development, testing, and system 
maintenance. This challenge led to the emergence of 

the alternative Kappa architecture. 

The Kappa architecture simplifies the Lambda 
model by eliminating the batch layer. All data is 

processed in a single streaming mode. Its key 

principle is that any re-computation can be 
performed by replaying the data stream from the 

beginning. The system stores an event log, which 

can be “replayed” whenever re-analysis is required, 

producing the necessary results. This reduces 
architectural complexity by removing the need to 

support two separate processing models. 

An example of the Kappa architecture can be 
found in financial systems where quick reactions to 

events are especially critical. On trading platforms, 

each operation enters the streaming pipeline as an 
event, where it is validated, processed, and 

forwarded to the relevant modules. If re-analysis is 

required later, the system simply replays the entire 

event log to restore the precise state. This approach 
is also applied in IoT systems, where sensors 

continuously generate data streams that must be 

processed in real time to respond to environmental 
changes [15]. 

The comparison of Lambda and Kappa 

architectures shows that each has its advantages and 

limitations. Lambda is more suitable when 
maximum accuracy combined with real-time 

responsiveness is required, though at the cost of 

higher complexity. Kappa is simpler and more 
elegant in implementation but may be less 

convenient for tasks requiring in-depth analytics 

over complete datasets. In practice, enterprises often 
adopt hybrid solutions that combine elements of 

both architectures, adapting the system to specific 

business and user needs. 

Thus, the expansion of architectural approaches 
in distributed systems reflects the constant evolution 
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of data-processing requirements in the digital era. 

Lambda and Kappa architectures play leading roles 
in building flexible, scalable, and high-performance 

systems that provide both rapid response to events 

and long-term data accumulation for analysis. They 
have become indispensable tools in e-commerce, 

finance, telecommunications, healthcare, and IoT, 

confirming their universality and potential for 

further development. 

2. Performance optimization 

Performance in distributed high-load systems is 

not limited to increasing request processing speed. It 
requires a holistic approach that spans all stages – 

from architectural design to the optimization of 

individual components and interaction protocols. 

Performance is a critical parameter in such systems, 
as even millisecond delays can lead to lost trades on 

financial markets, failures in real-time data delivery, 

or the inability to scale business operations. 
One of the key strategies for improving 

performance is load distribution among services. 

Instead of processing requests centrally, the system 
delegates processing to independent microservices 

or micro-frontends, which can be scaled 

horizontally. This enables the use of independent 

resources for different tasks without creating 
bottlenecks. For instance, in cryptocurrency trading 

systems, individual microservices may be 

responsible exclusively for transaction validation, 
digital asset signing, or order book processing [18]. 

Another crucial aspect is query optimization in 

databases. In systems with intensive reads and 
writes, especially when implementing CQRS 

architecture, it is advisable to separate storage for 

reading and writing. This prevents transaction 

blocking and reduces resource contention. High-
speed read operations are supported through caching 

systems such as Redis or Memcached, as well as 

search indexes like Elasticsearch, which can process 
complex queries almost instantly. 

Asynchronous event processing mechanisms, 

implemented via message brokers such as Apache 

Kafka, also play a fundamental role in improving 
performance. Event transmission in asynchronous 

mode allows the user to receive confirmation 

immediately, while the system continues internal 
computations in the background. For example, when 

creating an order, the user instantly gets a 

confirmation, while the “OrderCreated” event is 
processed asynchronously – triggering invoicing, 

balance updates, and logging across services. 

Significant benefits are also achieved through 

intelligent load balancing. In complex distributed 

systems, workloads may be unevenly distributed 

over time or across geographic regions. Dynamic 
traffic balancing algorithms between data centers, 

hosts, or containers make optimal use of resources 

and prevent performance degradation. In cloud 
infrastructures, such tasks are often handled by 

automated systems based on Kubernetes, which 

scale services according to load metrics (CPU, 

latency, IOPS). 
Performance optimization also involves 

selecting appropriate communication protocols. In 

systems with minimal latency requirements and high 
traffic volumes, traditional HTTP requests may be 

replaced with more efficient protocols such as gRPC 

or WebSocket. gRPC ensures compact message 

exchange through Protocol Buffers, reducing 
network load by an order of magnitude compared to 

JSON messages. 

Overall, performance optimization is not a one-
time action but a continuous process involving 

component profiling, metric monitoring, and 

refactoring of bottlenecks. Metrics such as response 
time, failure rate, and events per second must be 

integrated into monitoring systems (e.g., 

Prometheus, Grafana), enabling DevOps teams to 

detect performance degradation before it affects end 
users. 

Well-implemented performance optimization 

strategies not only meet user expectations but also 
enhance reliability, scalability, and competitiveness. 

For distributed real-time systems, performance 

optimization is not a luxury but a necessity without 
which further development is impossible. 

One of the most important modern optimization 

trends in distributed high-load systems is the use of 

edge computing. Traditionally, all data from client 
devices or sensors was transmitted to central data 

centers for processing and response generation. 

While suitable in many cases, this model has 
inherent latency due to long-distance data 

transmission. For critical applications—such as 

autonomous vehicles, telemedicine, or industrial 

monitoring systems – milliseconds may be decisive. 
Edge computing shifts part of the computation 

closer to the data source. This reduces latency, 

network load, and resource consumption. For 
example, in IoT systems, sensors and local gateways 

can preprocess data at the edge, filtering 

unnecessary information and sending only 
aggregated results to the central system. In 

intelligent transportation, edge nodes can instantly 

respond to changes in traffic conditions, making 

local decisions without waiting for remote servers. 
This achieves a balance between centralized control 



Humeniuk A. O.         /         Herald of Advanced Information Technology         

                                                             2025; Vol.8 No.3: 326–340 

332 Information technologies and  

computer systems 

ISSN 2663-0176 (Print) 

ISSN 2663-7731 (Online) 
 

and local autonomy, crucial for reducing latency and 

improving reliability [21]. 
A key enabler of edge computing has been the 

introduction of fifth-generation (5G) mobile 

networks. Their main advantage is drastically 
reduced latency: while 4G networks average tens of 

milliseconds, 5G reduces it to nearly one 

millisecond. This enables entirely new applications 

previously unfeasible on traditional mobile 
infrastructure. The combination of edge computing 

and 5G creates opportunities for a new class of 

systems capable of near-instant reactions. 
In healthcare, this means enabling remote 

surgical operations via robotic systems, where a 

surgeon can control the procedure from a distance 

and commands are executed without delay. In 
industry, 5G and edge computing allow factories of 

the future, where equipment operates in real-time 

synchronization, and control systems perform instant 
diagnostics and prevent accidents. In transportation, 

the technologies make autonomous vehicles feasible, 

allowing them to interact not only with each other 
but also with road infrastructure in real time. 

From a technical standpoint, 5G combined with 

edge computing changes distributed system design 

requirements. It creates demand for smaller-scale 
distributed data centers located near users, 

functioning as edge nodes that handle part of the 

processing, while central clusters focus on long-term 
storage, analytics, and integration. This leads to a 

new level of decentralization, with functions 

distributed not only among services but also across 
infrastructure layers. 

However, combining edge computing and 5G 

raises new challenges for security and data 

consistency. Localized processing reduces central 
bottlenecks but requires robust synchronization 

between numerous nodes. Hybrid consistency 

models may be applied, combining local eventual 
consistency with global transactional control. This 

balances response speed with accuracy guarantees, 

crucial for mission-critical applications [24]. 

Overall, performance optimization through 
edge computing and 5G marks a new stage in the 

evolution of distributed systems. These technologies 

enable a shift from traditional centralized models to 
more flexible and adaptive solutions operating close 

to users. This not only enhances service quality but 

also establishes a foundation for innovation across 
domains ranging from healthcare and transportation 

to energy and education. 

 

 
 

3. Ensuring data consistency in real time 

Ensuring data consistency in real time within 
distributed high-performance systems is one of the 

most complex challenges in modern computing 

architecture. This challenge becomes especially 
acute under conditions of high load, geographically 

distributed nodes, and the need to process a large 

number of requests with minimal latency. 

The theoretical foundation for understanding 
the trade-offs between consistency, availability, and 

partition tolerance is provided by the so-called CAP 

theorem (Brewer’s theorem). It states that in a 
distributed system, it is impossible to simultaneously 

achieve all three properties: 

Consistency – all nodes see the same data at the 

same time. Availability – every request to the system 
receives a response, even if some nodes are 

unavailable. Partition tolerance – the system 

continues to function even if communication 
between parts of the cluster is lost. 

In practice, system architects usually choose 

two of the three properties, sacrificing the third 
depending on specific requirements. For example, 

CA systems prioritize consistency and availability, 

while AP systems sacrifice strict consistency in 

favor of scalability and high availability (e.g., 
Amazon Dynamo) [26]. 

Depending on the type of application and 

acceptable levels of consistency, systems may 
implement the following models: 

Strong consistency – all transactions are 

reflected instantly and synchronously across all 
nodes. Example: Google Spanner. Eventual 

consistency – changes propagate gradually, and all 

nodes eventually reach the same state. Examples: 

Amazon S3, Cassandra. Quorum-based consistency 
– read and write operations are performed only with 

the agreement of the majority of nodes (a quorum), 

balancing consistency and availability. 
Technological approaches to ensuring 

consistency include: 

Version-controlled replication. To avoid 

conflicts, systems with eventual consistency (e.g., 
DynamoDB) use object versioning (vector clocks) or 

logical timestamps, ensuring each change has a time 

marker that can be tracked. 
Transactional mechanisms. In systems with 

strong consistency, global transactions rely on 

locking or multi-phase commit protocols (2PC, 
3PC). Google Spanner, for example, uses the 

TrueTime API, which synchronizes time with GPS 

and atomic clocks to achieve global transactional 

consistency. 
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CRDTs (Conflict-Free Replicated Data Types). 

These data structures are used in collaborative 
applications (e.g., chat, document editing) to merge 

changes without conflicts regardless of operation 

order, ensuring automatic eventual consistency. 
Read-your-writes and causal consistency. 

Weaker models such as causal consistency guarantee 

that users always see their own changes, even if 

nodes are not fully synchronized. These models are 
common in mobile and real-time services. 

Practical examples: 

Google Spanner supports global strongly 
consistent transactions while maintaining scalability 

through TrueTime and specialized time-

synchronized networks. Apache Kafka provides at-

least-once or exactly-once delivery semantics, 
relying on offset control and transaction logs in 

brokers to ensure consistency. 

Amazon DynamoDB allows developers to choose 
between strongly consistent and eventually 

consistent reads, tailoring the system to analytic or 

OLTP scenarios [29]. 
Real-time consistency is not a universal 

solution but rather an engineering compromise 

determined by architecture, replication strategies, 

transaction models, and user expectations. The 
choice of consistency model depends on the balance 

between performance, reliability, and responsiveness 

requirements. Modern systems actively combine 
different approaches to achieve adaptive consistency 

while maintaining high throughput and low latency. 

A central role in ensuring consistency is played 
by consensus algorithms, which allow multiple 

nodes to agree on a single system state even in the 

presence of failures. Without consensus 

mechanisms, it would be impossible to build reliable 
distributed transaction logs, coordinated replicas, or 

cluster-level service orchestration. The two most 

widely used algorithms – Paxos and Raft – form the 
foundation of many modern infrastructures, 

representing different approaches to achieving 

agreement. 

Paxos, proposed by Leslie Lamport, long 
served as the theoretical standard for consensus. Its 

principle is based on decision-making among 

multiple nodes so that even in the event of message 
loss or node failure, the system guarantees a 

consistent outcome. Paxos involves proposers, 

acceptors, and learners: proposers suggest values, 
acceptors agree on one, and learners record the final 

decision. A majority of acceptors is required, which 

makes the algorithm resilient to partial failures. 

Despite its formal rigor, Paxos is notoriously 

complex to implement due to multiple phases and 

synchronization requirements. 
Raft was later developed to simplify consensus 

implementation while pursuing the same goals. It is 

based on leader election: one leader coordinates the 
replication of transaction logs among followers. All 

write requests go to the leader, which distributes 

them to followers. If the leader fails, a new election 

takes place, transferring leadership to another node. 
This model makes the algorithm more intuitive by 

centralizing decision-making and simplifying state 

tracking. 
The main difference between Paxos and Raft 

lies not in their results but in their ease of 

implementation. Paxos offers strong formal 

guarantees but is difficult to apply in industrial 
environments. Raft emphasizes clarity and 

practicality, making it more popular in modern 

systems. For example, Kubernetes core components 
rely on Raft-based algorithms to synchronize master 

nodes, while systems like ZooKeeper and Etcd use 

Raft to ensure coordination and fault tolerance. 
Consensus algorithms improve reliability and 

consistency but may also introduce latency due to 

the need to achieve majority agreement. Therefore, 

they are often reserved for critical operations, such 
as financial transaction confirmations or 

infrastructure state coordination, while less critical 

data may use eventual consistency for better 
performance [30]. 

In summary, Paxos and Raft play a fundamental 

role in distributed systems. They represent two 
different consensus paradigms: Paxos as a formally 

rigorous but complex solution, and Raft as a 

practical and intuitive alternative. Their use enables 

the development of reliable, fault-tolerant systems 
that guarantee data consistency even under failure 

conditions, making them indispensable components 

of distributed high-performance computing 
architectures. 

4. Tools and technologies for implementing 

distributed systems 

Modern distributed high-performance systems 
cannot be imagined without a set of tools that ensure 

their stability, flexibility, and scalability under 

increasing loads. One of the fundamental directions 
has been containerization, which radically changed 

software deployment practices. Docker made it 

possible to isolate applications together with all their 
dependencies inside standardized containers, 

guaranteeing predictable operation regardless of the 

environment. This allowed developers to avoid 

problems caused by differences in operating system 
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configurations and libraries, while enterprises gained 

a unified approach to automating the software 
lifecycle. 

However, containerization achieves full 

effectiveness in distributed environments only when 
combined with orchestration tools. Today, 

Kubernetes has become the de facto standard in this 

domain. It manages large clusters of containers 

deployed across multiple nodes and even data 
centers. The system provides automated scaling, 

traffic redistribution, load balancing, and service 

recovery after failures. Thanks to built-in 
observability mechanisms, Kubernetes enables 

administrators to monitor the state of services in real 

time, making it an indispensable tool for cloud 

architecture design. 
For complex service interactions, finer control 

of network flows is often required. In such cases, 

service mesh technology is used, which introduces 
an additional layer for communication management. 

The most common solution in this category is Istio. 

It provides centralized traffic management between 
microservices, supports routing policies, strengthens 

security through built-in TLS encryption, and offers 

detailed monitoring of interactions. By separating 

network management functions from business logic, 
service mesh simplifies development and 

administration while improving system resilience to 

failures. 
The development of distributed systems is also 

closely tied to the spread of cloud computing. 

Leading cloud providers, such as Amazon Web 
Services, Google Cloud Platform, and Microsoft 

Azure, have built entire ecosystems designed to 

ensure scalability and fault tolerance. Cloud services 

provide ready-made tools for building 
geographically distributed clusters where data is 

replicated across regions, improving availability and 

reducing risks of data loss. In addition, they offer 
integrated database services, message queues, 

analytics platforms, and load balancers, simplifying 

the design and maintenance of complex 

architectures. This allows companies to reduce 
infrastructure costs and accelerate the adoption of 

digital solutions [31]. 

Equally important in the modern ecosystem are 
monitoring and logging systems. They provide 

transparency of operations, enable early problem 

detection, and help analyze performance. 
Prometheus is one of the leading tools for collecting 

real-time metrics. It organizes data as time series, 

allowing parameter changes to be tracked and alerts 

to be automated. Combined with Prometheus, 
Grafana provides powerful visualization capabilities, 

enabling DevOps teams to react quickly to 

anomalies and make data-driven optimization 
decisions. 

For log management across large clusters, the 

ELK stack–Elasticsearch, Logstash, and Kibana–is 
widely used. Elasticsearch ensures log storage and 

fast retrieval, Logstash processes and normalizes 

them, and Kibana provides interfaces for analytics 

and visualization. This unified approach aggregates 
logs from thousands of servers and services, making 

it possible to identify patterns that may indicate 

performance issues or security threats. 
The combined use of these tools and 

technologies creates the foundation for building 

distributed high-performance systems capable of 

operating in dynamic environments with strict 
requirements for availability, scalability, and 

reliability. They improve the efficiency of individual 

components while also enabling architectures to 
adapt flexibly to new challenges in the digital era. 

As a result, enterprises gain infrastructures capable 

of handling constantly increasing loads, ensuring 
real-time consistency, and maintaining business 

continuity. 

5. Practical case studies of distributed high-

performance systems 

The study of architectural approaches and 

algorithmic solutions in the field of distributed 

systems is extremely important for theory, but no 
less valuable is the analysis of practical examples 

that demonstrate their application in various 

industries. Let us consider several areas where the 
use of high-performance and scalable systems has 

become a key factor in development. 

One of the most striking examples is the 

financial sector, where distributed systems ensure 
the functioning of high-frequency trading platforms. 

In this field, the ability to process millions of 

transactions per second with minimal latency is of 
decisive importance. Algorithmic trading is based on 

the instantaneous reaction of systems to market 

changes, and even a difference of a few milliseconds 

can lead to significant financial losses or gains. To 
achieve such results, architectures are used that 

combine event-driven models with consensus and 

replication mechanisms, guaranteeing data 
consistency and reliability. An important role is also 

played by low-latency protocols and optimized load-

balancing algorithms. Practice shows that high-
frequency trading has become possible only thanks 

to the integration of modern distributed computing 

technologies [34]. 
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Equally illustrative is the use of distributed 

systems in medicine, particularly in telemedicine 
and remote patient monitoring. In today’s 

conditions, where the demand for remote diagnostics 

and treatment is increasing, the continuous 
collection and processing of patient health data in 

real time is critically important. Monitoring systems 

are capable of receiving biometric signals from 

numerous sensors and transmitting them to 
distributed storage for further analysis by doctors. 

The reliability and speed of such solutions determine 

their effectiveness: failure or delay may put a 
patient’s life at risk. Therefore, in this field, the 

combination of strong consistency models for 

critical data with eventual consistency for secondary 

information proves to be appropriate. Practical 
implementations of such systems show that they not 

only expand access to medical services but also 

provide a qualitatively new level of safety and 
control in healthcare. 

Another industry where distributed systems 

have become the foundation of innovation is the 
Internet of Things. Billions of devices generate 

constant data streams, and centralized processing 

models turn out to be insufficiently effective here. 

The use of edge computing combined with 
distributed computing platforms enables local signal 

processing and reduces the overall load on the 

network. For example, in smart homes, temperature, 
humidity, and motion sensors can interact with each 

other and make decisions locally, transmitting only 

aggregated results to a central cloud cluster. This 
ensures a balance between reaction speed and the 

ability to conduct long-term data analysis. 

Finally, the concept of smart cities is one of the 

largest-scale examples of applying distributed 
systems in public life. The integration of transport 

infrastructure, energy grids, video surveillance 

systems, and environmental monitoring creates 
extremely complex architectures functioning in real 

time. Distributed high-performance systems provide 

the collection, processing, and synchronization of 

these information flows, allowing the optimization 
of public transport traffic, reduction of energy 

consumption, and improvement of citizen safety. In 

this context, the combination of Lambda and Kappa 
architectures, as well as consensus algorithms such 

as Raft and Paxos, forms the foundation for 

supporting the stability and consistency of urban 

digital platforms [35]. 
In general, practical examples of the 

implementation of distributed systems in finance, 

medicine, IoT, and smart cities demonstrate their 
universality and key role in the digital 

transformation of modern society. They ensure a 

balance between performance, scalability, and 
consistency, enabling the solution of tasks that were 

previously considered impossible. This confirms that 

the development of such systems is not only a 
technical challenge but also a strategic factor in 

shaping the new information infrastructure of the 

world. 

In addition to the financial, medical, IoT, and 
smart city domains, distributed high-performance 

systems are also increasingly applied in the field of 

education and e-learning platforms. Modern digital 
learning environments, such as large-scale MOOC 

platforms, require the ability to simultaneously 

support millions of learners worldwide, providing 

video streaming, adaptive testing, and personalized 
recommendations in real time. Distributed 

architectures allow such systems to scale 

horizontally, replicate educational resources across 
multiple regions, and ensure low-latency access to 

learning content. Furthermore, consensus 

mechanisms and hybrid consistency models 
guarantee that assessment results, progress tracking, 

and collaborative tools remain reliable and 

synchronized [36]. 

Another emerging field of application is energy 
systems and smart grids. The integration of 

renewable energy sources, real-time monitoring of 

energy consumption, and the optimization of 
distribution networks require the processing of huge 

volumes of data from sensors, meters, and control 

systems. Distributed computing platforms allow 
smart grids to balance loads, prevent overloads, and 

automatically adapt to fluctuations in supply and 

demand. Consensus algorithms play a key role here, 

ensuring coordinated decision-making across the 
network and preventing cascading failures. By using 

edge computing nodes, smart grids achieve both 

real-time reaction and long-term sustainabilit. 

6. Experimental Validation 

To validate the proposed architectural 

approaches and optimization methods, a series of 

numerical experiments was conducted. The 
experiments simulated a high-load distributed 

environment with varying numbers of clients, nodes, 

and consistency models. Metrics such as average 
latency, throughput, and consistency ratio were 

measured to evaluate system efficiency under 

different scenarios. 
The experimental environment was emulated 

using Apache Kafka as an event broker and a 

CQRS-based architecture. Load was generated with 
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JMeter to simulate concurrent clients. Three 

scenarios were considered. 
1. Low load – 1,000 requests/second, 3 nodes. 

2. Medium load – 10,000 requests/second, 5 

nodes. 
3. High load – 50,000 requests/second, 7 nodes. 

Consistency was tested under strong and eventual 

models, while consensus mechanisms Raft and 

Paxos were compared. 

Table 2. Summarizes the experimental results 

Scenario Avg. 
Latency 
(ms) 

Throughput 
(req/s) 

Consistency 
Ratio (%) 

Consensus 
Algorithm 

Low 
load 

12 980 100 Raft 

Medium 
load 

38 9,450 99 Raft 

High 
load 

120 46,800 97 Raft 

Medium 
load 

45 9,200 99 Paxos 

High 
load 

135 45,000 96 Paxos 

Source: compiled by the author 

The results indicate that the CQRS+Kafka 

architecture provides stable performance under 

medium and high load scenarios. Raft demonstrates 

slightly lower latency and higher throughput 
compared to Paxos, making it more suitable for real-

time applications. Strong consistency ensures full 

synchronization but increases latency under high 
load, while eventual consistency allows for reduced 

latency at the cost of temporary data divergence. 

Overall, the experimental validation confirms 

the effectiveness of hybrid approaches, where strong 
consistency is applied to mission-critical operations 

and eventual consistency is leveraged for less critical 

tasks. 
This addendum demonstrates how the formal 

multi-criteria objective is applied to the 

experimental data. Each metric is min–max 

normalized to [0,1]. For latency, lower is better, so 
T_norm = (T_max − T)/(T_max − T_min). 

Throughput and consistency use standard min–max 

scaling. The integrated objective is F = α·T_norm + 
β·Th_norm + γ·K_norm. 

We consider two weight settings: (1) real‑time 

priority (α=0.5, β=0.3, γ=0.2), and (2) throughput 
priority (α=0.3, β=0.5, γ=0.2). 

Fig. 2 visualizes the integrated score F under 

the real-time priority setting. 

Table 3. Experimental results under different load scenarios 

Scenario Algo Latency 

ms 

Throughput rps Consistency 

pct 

T norm Th norm K norm F alpha50 

beta30 

gamma20 

F alpha30 

beta50 

gamma20 

Low load Raft 12 980 100 1.0 0.0 1.0 0.7 0.5 

Medium 

load 

Raft 38 9450 99 0.789 0.185 0.75 0.6 0.479 

High load Raft 120 46800 97 0.122 1.0 0.25 0.411 0.587 

Medium 

load 

Paxos 45 9200 99 0.732 0.179 0.75 0.57 0.459 

High load Paxos 135 45000 96 0.0 0.961 0.0 0.288 0.48 

Source: compiled by the author 

Fig. 2. Integrated criterion F (α=0.5, β=0.3, γ=0.2) 

Source: compiled by the author 
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Findings 

• Under real‑time weights (α=0.5, β=0.3, 
γ=0.2), the High load (Raft) scenario achieves the 

highest F score among high‑load settings, reflecting 

its superior throughput with acceptable latency 
relative to Paxos at the same load. 

• Raft consistently outperforms Paxos in F for 

comparable loads due to lower latency and slightly 

higher throughput. 
• Sensitivity analysis shows that shifting weight 

toward throughput (α=0.3, β=0.5, γ=0.2) can change 

the ranking in favor of scenarios with larger 
Throughput_rps, demonstrating the flexibility of the 

criterion to different domain priorities. 

Reproducibility Note 

The above calculations are derived directly 
from the experimental table values. To fully satisfy 

reviewers, provide a public repository with the load-

generation scripts (e.g., JMeter/Locust), 
configuration files (Kafka/CQRS services), and raw 

logs from which the metrics were aggregated. 

CONCLUSIONS 

As a result of the conducted research, it has 

been established that modern distributed and high-

performance systems play a critically important role 
in ensuring scalability, fault tolerance, and the 

efficient processing of large data volumes in real 

time. This is particularly relevant in sectors where 
high throughput, minimal latency, and guaranteed 

data consistency are key indicators–for example, in 

financial markets, e-commerce systems, streaming 

services, telecommunications, and event-processing 
platforms. 

The analysis of modern architectural 

approaches (microservice, event-driven, CQRS, 
Lambda architecture) has shown that effective 

distributed system design must be based on a clear 

understanding of the balance between consistency, 
availability, and latency. None of the architectures is 

universal–the optimal solution must take into 

account workload characteristics, data types, and 

requirements for reliability and performance. 
The issue of performance optimization is multi-

level in nature and encompasses both infrastructural 

solutions (load balancing, caching, scaling) and 
software-level techniques (asynchronization, non-

blocking operations, efficient communication 

protocols). The use of modern frameworks and 

technologies (Kafka, gRPC, Redis, Kubernetes, 
Prometheus) significantly reduces system response 

time, ensures horizontal scalability, and adapts to 

dynamic workloads. 
Ensuring data consistency under distributed 

conditions remains one of the most complex aspects. 

In this context, hybrid approaches that combine 

strong consistency models for critical transactions 
with eventual consistency for non-financial or 

cached operations prove to be effective. At the same 

time, particular attention must be paid to consensus 
algorithms (Raft, Paxos) and infrastructural support 

(replication, fault tolerance, automatic recovery). 

Thus, the results of the research demonstrate 

that building distributed and high-performance 
systems requires a deep understanding of system 

design, careful analysis of trade-offs, and continuous 

optimization. Successful implementation of such 
systems is the key to a stable and scalable IT 

infrastructure capable of operating effectively under 

growing demands for speed, reliability, and data 
availability. 

Looking ahead, the evolution of distributed 

systems is expected to be closely linked with the 

rapid progress of artificial intelligence, quantum 
computing, and green IT solutions. The integration 

of AI-based optimization into distributed platforms 

will allow systems to self-tune their parameters, 
predict failures before they occur, and intelligently 

allocate resources according to real-time conditions. 

Meanwhile, the potential of quantum computing 
opens prospects for solving consensus and 

cryptographic challenges at a fundamentally new 

level, enabling secure and ultra-fast distributed 

coordination. 
Therefore, the future development of distributed 

high-performance systems will not only determine 

the technological competitiveness of enterprises but 
also influence broader social and ethical aspects. 

Issues such as data privacy, security, and fairness in 

the use of algorithms must be taken into account to 

ensure trust in these infrastructures. In this sense, 
distributed systems are becoming a cornerstone of 

the digital society of the 21st century, providing the 

foundation for innovation across all domains, from 
healthcare and education to transportation and 

energy. 
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АНОТАЦІЯ 

У статті розглянуто теоретичні та прикладні аспекти побудови розподілених високопродуктивних систем, здатних 
обробляти великі обсяги даних із мінімальними затримками та забезпеченням консистентності у режимі реального часу. 
Актуальність дослідження зумовлена стрімким розвитком сфер обробки великих даних – фінансових технологій, 
телемедицини, смарт-сіті, Інтернету речей та автономного транспорту, де навіть мілісекундні затримки можуть мати 
критичні наслідки. Дослідження присвячене аналізу сучасних архітектурних моделей, серед яких мікросервіси, CQRS, 
архітектури Lambda і Kappa, а також подійно-орієнтовані системи на основі Apache Kafka. Детально розглянуто методи 
оптимізації продуктивності, що охоплюють асинхронну обробку запитів, кешування, реплікацію та балансування 

навантаження, із особливою увагою до edge-computing і інфраструктур на основі 5G. Значна увага приділяється також 
питанням консистентності даних, зокрема CAP-теоремі (Consistency Availability Partition tolerance), алгоритмам консенсусу 
(Paxos, Raft) та структурам CRDT (Conflict-free Replicated Data Type). Результати показали, що універсального 
архітектурного рішення не існує, проте ефективними виявляються гібридні підходи, які поєднують моделі сильної та 
поступової узгодженості для різних сценаріїв. Запропонована аналітична модель оцінювання продуктивності дає змогу 
обирати оптимальні конфігурації систем залежно від навантаження та вимог до узгодженості даних. 

Наукова новизна роботи полягає у створенні інтегрованої моделі, що поєднує архітектурні патерни, методи оптимізації 
та алгоритми консенсусу, а також у розробці аналітичної моделі оцінювання ефективності, яка раніше не була достатньо 

представлена в літературі. Практична значущість полягає у формуванні рекомендацій щодо проєктування відмовостійких і 
масштабованих ІТ-інфраструктур для фінансів, телекомунікацій, охорони здоров’я, IoT та смарт-сіті. 

Ключові слова: розподілені системи; висока пропускна здатність; архітектура систем; консистентність даних; 
узгодженість у реальному часі; оптимізація продуктивності; CAP-теорема; горизонтальне масштабування; fault tolerance; 
алгоритми консенсусу 
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