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ABSTRACT

Clustering methods based on gradient estimation are common in automated control and diagnostic systems, where reliable data
processing is needed under noise and multimodality. Their use, however, is constrained by low robustness and high computational costs.
Wavelet-based approaches are relevant because they enhance noise immunity and improve efficiency. The purpose of this work is to
develop and study a clustering method that employs wavelet functions to introduce constraints and ensure stable performance under
noisy conditions. The research included analysis of existing approaches, development of a wavelet-based method with inequality-type
second-order constraints, creation of an algorithm for its implementation, and experimental evaluation. The proposed method relies on
wavelet transforms with hyperbolic functions, which reduce the number of oracle calls, decrease computational stages, and accelerate
convergence in classification and clustering problems. Experiments show that the method shortens the search time for the optimum by
about one and a half to seven times at different signal-to-noise ratios, with a moderate increase in error of roughly five to fifteen percent
for the De Jong test function. On synthetic datasets, the gain in computation time exceeded one point one compared with the baseline
method. In a practical case of reliability assessment for resistors used in critical equipment, efficiency improved by nearly eight percent.
Finally, the novelty lies in the clustering method with constraints-inequalities defined by wavelet processing. This can increase the
computational speed in conditions of high noise levels, asymmetric objective functions, and small data samples.
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INTRODUCTION

The tasks of intelligent data analysis are
addressed in a variety of application areas, including
biomedical research [1], equipment condition
assessment [2], [3], systems with visual information
processing [4], smart region support systems [5], [6],
and technical diagnostic systems [7]. These diverse
applications share a common requirement: the need
to extract meaningful patterns and insights from
large and often noisy datasets. In many cases,
pattern recognition methods serve as the primary
tool for understanding data structures, and
classification  techniques  with  self-training
mechanisms are employed. Such technigues
typically involve two complementary procedures:
clustering and classification. In clustering, the
membership of a pattern, represented as a point in
the feature space, is initially unknown. Therefore, it
becomes necessary to determine the boundaries and
relationships initially unknown. Therefore, it
becomes necessary to determine the boundaries
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and relationships between clusters based on intrinsic
data characteristics.

Within the field of intelligent data analysis,
clustering algorithms generally group data into
clusters based on measures of compactness and
similarity. A considerable subset of these algorithms
is designed around the optimization of a specific
objective function, which quantifies the quality or
validity of the clustering solution. The effectiveness
of clustering critically depends on the choice of
optimization method, which in turn is influenced by
the mathematical properties of the objective
function. In practical scenarios, this this function is
often not explicitly defined; it may present a
multimodal surface, exhibit irregularities, and
contain significant noise, particularly in cases where
clusters are poorly separable.

Additionally, real-world datasets frequently
display large imbalances in cluster sizes, which
furthe complicates the accurate delineation of cluster
boundaries.

To overcome these challenges, methods based
on wavelet functions have been proposed. The use of
wavelet transforms allows for the introduction of
constraints that enhance noise immunity, ensuring
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that the clustering procedure remains robust even
under adverse conditions [8]. Moreover, these
constraints contribute to improved computational
efficiency by reducing the number of necessary
evaluations of the objective function. Building on
these advantages, the present study proposes a
clustering method that leverages wavelet-based
optimization with inequality constraints. This
approach provides both sufficient noise immunity
for applied tasks and enhanced computational speed,
making it suitable for practical applications where
both accuracy and efficiency are critical.

PROBLEM STATEMENT

The purpose of this work is to develop and
conduct a comprehensive study of a clustering
method based on wavelet functions. The key idea is
to enable the introduction of constraints through
wavelet processing, which in turn ensures improved
performance and enhanced robustness to noise in
various applied tasks. The proposed method aims to
address common limitations of conventional
clustering algorithms, particularly their sensitivity to
noisy data and computational inefficiency when
dealing with complex, multimodal objective
functions.

To achieve this goal, the following tasks were
systematically addressed:

— Analysis of modern clustering methods: A
detailed review of existing clustering approaches
was carried out to identify their strengths and
limitations, particularly with respect to noise
resilience,  computational  requirements, and
adaptability to poorly separable or imbalanced data
clusters. This analysis provides the theoretical
foundation for the development of an improved
clustering approach.

— Development and justification of a clustering
method incorporating constraints derived from
wavelet function processing. The core idea of the
proposed method lies in using wavelet-based
transformations  to  introduce inequality-type
constraints. These constraints guide the clustering
process, enhancing both accuracy and stability. A
careful justification of the approach was provided,
highlighting why wavelet functions are well-suited
for improving noise immunity and convergence
speed.

— Development of a methodology and algorithm
for the practical implementation of the proposed
clustering method: A systematic methodology was
formulated, detailing the algorithmic steps necessary
to apply the proposed method in real-world
scenarios. This includes the procedures for wavelet
transformation, constraint application, and iterative

optimization to achieve efficient
outcomes.

— Experimental evaluation of the proposed
method to assess its computation speed and noise
immunity: To validate the computation speed of the
proposed approach, a series of experiments was

conducted.

ANALYSIS OF MODERN CLUSTERING
METHODS

The initial data for clustering consists of a set of
data, each represented by a vector of characteristics
in the feature space. That is, the realizations of
images in the feature space correspond to
geometrically close points, forming so-called
“compact” clots [9], [10], [11].

The compactness hypothesis operates using
absolute distances between vectors in the feature
space. In cases where data must be divided into
clusters of complex shapes, the A-compactness
hypothesis is often applied, taking into account
normalized distances between images. However,
when the number of points in the feature space is
large (on the order of thousands), computational
costs increase significantly. Additional
complications arise when it is necessary to obtain
the number of clusters k >>2.

In such situations, dividing the data into
clusters requires breaking k — 1 edges. Enumerating
all possible variants, the number of which equals the
number of combinations from (m — 1) to (k — 1),
also increases computational costs and reduces
performance.

Considering that, when dividing into clusters
with non-intersecting convex hulls, the application
of compactness or A-compactness hypotheses
produces the same results [12], this work adopts the
hypothesis of compactness of the initial data in the
feature space.

The clustering problem is formulated as
partitioning a set of data points in the feature space
into clusters based on their inherent similarity. In a
metric space, similarity is usually defined by
distance. Distance can be calculated both between
data points and between points and the cluster
center. Typically, the coordinates of cluster centers
are not known in advance and are determined
simultaneously with the division of the data into
clusters.

To solve the clustering problem, it is necessary
to determine an optimal vector ¢ = ¢,y that, while
satisfying the constraints, provides an extremum of
the functional J(c) = M,{Q(x, c)} [10], where J(c)
is the quality criterion, and Q(x, c) is the functional

clustering
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of the variable vector ¢ = (cy, ..., cy), depending on
the vector of random variables x = (x4, ..., xp).

Often, the sum of squared errors criterion is
used for clustering [13]:

M 2
J=) Dlx—cdl,
k

=1 x€Xy
where n,, is the number of elements in cluster k, and
1 .
Ck = n_ZxEXk x is the mean of the cluster.
k

Thus, J measures the total squared error
resulting from representing the data by k clusters
with centers cj. Clustering of this type is known as
minimum variance clustering. This criterion is
suitable when the data form compact clouds in the
feature space, well separated from each other, and
when the number of clusters is small (typically two
or three). However, for elongated, noisy data with
widely separated subgroups of points, this criterion
may not yield satisfactory results. When there is a
large difference in the number of elements among
separated clusters, the larger cluster may be split
[13].

In such cases, related minimum variance
criteria are recommended, particularly a criterion
based on 5, — the mean squared distance between
points in the k-th cluster [13]:

M
=3
] = 5 2, Sk
k=1

where S = nikzzxexkzx/exk”x - x/”Z’

Alternatively, 5, may be replaced by the mean,
median, or maximum distance between points in the
cluster [13]. For further studies, and in the absence
of prior information about cluster shapes, a criterion
from the minimum variance-related group is
adopted [10].

The choice of a clustering method is often
problem-oriented. Methods also differ in whether the
number of clusters is predetermined. If the number
of clusters is not known in advance, it can be
determined during algorithm execution based on the
distribution of the initial data, the compactness and
separability of individual clusters, or by starting with
a sufficiently large number of clusters and
sequentially combining them according to selected
similarity criteria.

At present, clustering methods are generally
divided into two groups. The first group includes
hierarchical methods of successive partitions, which
are based on data from the proximity matrix. Two

main strategies exist for initializing the initial
partition.

The first strategy is agglomerative: clustering
begins by assuming that each point in the feature
space forms a separate cluster. In this case, when
sequentially dividing n points in the feature space
into k clusters, the first partition produces n clusters
(each containing only one point). The next partition
produces n — 1 clusters, then n — 1, and so on, until
a single cluster containing all points is obtained.
That is, the first merging level corresponds to n
clusters, while the k-th level corresponds to a single
cluster. At any level, any two points in the feature
space will be grouped into the same cluster. If the
sequence has the property that, when two points are
combined into a cluster at level k, they remain
together at higher levels, such a sequence is called
hierarchical clustering.

The second strategy is divisive: initially, all
points in the feature space belong to a single cluster.
The partitioning of points is stopped once the
desired number of clusters is reached.

In addition to hierarchical clustering strategies,
there are other popular clustering methods.

The first of these popular methods can be
considered the nearest neighbor method. The
minimum (nearest neighbor) algorithm is one of the
classical approaches to clustering. Its basic principle
lies in successively merging points that have the
minimum distance between them, thus gradually
forming larger and larger groups.

If the algorithm terminates when the distance
between the nearest clusters exceeds a predefined
threshold, the procedure is known as the single-
linkage algorithm. This variation is widely used
because of its simplicity and ability to handle
clusters of arbitrary shapes. However, it may also be
sensitive to noise and outliers, since even a single
anomalous point can connect otherwise distinct
clusters.

To improve the likelihood of obtaining a correct
partitioning, a modification is introduced in which
not just the single closest point is considered, but
distances to several of the nearest neighbors. This
method is commonly referred to as the k-nearest
neighbors algorithm. By analyzing distances to k
points instead of just one, the algorithm reduces the
effect of accidental proximities and increases the
stability of the clustering process. Such an approach
makes it possible to obtain more reliable clusters,
especially in datasets where points are unevenly
distributed or where noise is present.

Thus, the minimum (nearest neighbor)
algorithm and its modifications form the foundation
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for many practical clustering methods, combining
conceptual simplicity with flexibility of application.

The next known method can be considered the
maximum (farthest neighbor) algorithm. That
method is based on the principle that points with the
maximum distance between them are assigned to
different clusters. The main advantage of this
method is its ability to form compact and spherical
clusters, ensuring that all points within a cluster
remain relatively close to each other. Consequently,
it is effective for datasets where groups of points are
clearly separated and do not exhibit elongated or
irregular shapes.

This approach has limitations. In particular, it
may produce unsatisfactory results when dealing
with elongated or chain-like clusters, as the method
tends to over-segment such structures into smaller
groups. Moreover, similar to the nearest-neighbor
method, that algorithm is highly sensitive to outliers
and noise, which can distort the cluster boundaries
and reduce the overall accuracy of partitioning [13].

To address these drawbacks, especially the
sensitivity to deviations and noisy data, other
algorithms such as the average-linkage method and
Ward’s method are commonly employed. These
approaches balance the influence of individual
distances, reducing the impact of extreme values and
improving the stability of clustering results.

When implementing the method, calculate

1
davg(Xi'Xj) = Fnjzxexi Zx’EXj”x —x'[l,

where: x are points from cluster X;; x' are points
from cluster X; and n; and n; are the numbers of
points in clusters X; and X;, respectively.
Advantage: it can be used when distances are
defined based on similarity measures such as the
angle between two vectors [13].

There is also an algorithm that is based on the
calculation

dmean(Xier) = ”ml —m;

)

where: m; and m; are the means of clusters X; and
X;, respectively.

Advantage: the simplest measure.
Disadvantage: for certain similarity measures (e.g.,
angle between two vectors), the distance may be
difficult or impossible to determine [13]. Other
general drawbacks of these methods include
computational complexity for large datasets and
sensitivity to noise depending on the distance
measure [13].

In iterative algorithms, data is divided into
several clusters, and then elements are moved

between clusters to minimize a objective function.
Main drawbacks: sensitivity to initial conditions,
sensitivity to noise, and convergence to a local rather
than global extremum. To assess sensitivity to the
initial point, clustering is repeated with different
starting points, or the initial point is selected using
the result of hierarchical clustering [13].

Considering the above, both groups of methods
are sensitive to noise; therefore, it is advisable to
develop techniques that reduce noise sensitivity
during clustering.

Minimization of a quality objective function
represents an optimization problem. Iterative regular
and subgradient optimization methods have been
developed for such problems. However, both
approaches have certain trade-offs. Regular search
methods have high accuracy but low noise immunity
and high sensitivity to local extrema and the initial
search point. Subgradient methods are more noise-
resistant but have higher errors [7].

To reduce the influence of noise in such
problems, a wavelet function (WF)-based approach
is applied [1], [4], [7]. The objective function for
optimization is typically spatially nonuniform, with
localized global and local extrema. Wavelet
transforms provide an adequate tool for analyzing
such functions [1], [4], [7], [14].

However, for instance, the method proposed in
[14] based on hyperbolic wavelet functions (HWF)
may exhibit insufficient noise resistance for practical
clustering tasks. Therefore, in [1], [4], [7], the
direction of movement toward the target function
extremum was estimated by sequential application
of Haar WF and HWF, which may reduce the speed
of clustering procedures.

To improve performance by reducing the
number of calls to the target function, [8] proposed
searching for the extremum using constraints in the
form of inequalities [10].

Since the search for methods that reduce the
impact of the above problems remains relevant, this
work proposes to develop and study a clustering
method using wavelet functions based on the above
approach [8].

DEVELOPMENT AND JUSTIFICATION OF
THE CLUSTERING METHOD

Initial stages of the constrained optimization
method

This optimization method is defined by an
iterative scheme [2]:
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c[n] =cn—-1] —
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vl ) annl7: Qxlnl, cln — 1], aln — m),

m=1

@)

where X9 am[n]V,+Q(x[n], c[n — —1], a[n-m])
is the wavelet transform of the implementation
Q(x,c)of ¢;, i=1,.., N; Q(x,c) is the functional
of the vector ¢ = (cy,...,cy), depending on the
vector of random sequences or processes x =
(x4, -, xy); c[n—1] is the coordinate of the
minimum; a,,[n],m =1, ...,s, are the components
of the vector a[n], obtained as a result of the
discretization of the wavelet function.

To refine the coordinate of the extremum, it is
advisable to use a wavelet transform with spatial-
frequency localization [1], [4], [7]. Real wavelets in
the form of odd symmetric functions with compact
or effective support possess this property. Examples
include Haar, Gaussian, split Gaussian basis
functions (GBF), bounded sine wavelet, hyperbolic
basis functions (HWT), and others. These functions
satisfy the necessary conditions (localization,
admissibility, oscillation, and boundedness) [17].
However, they differ in frequency-selective
properties; for instance, the Gaussian wavelet
“blurs” details compared to Haar and hyperbolic
wavelets [18]. The extremum can be treated as a
highly localized phenomenon in space.

The use of Haar wavelet allows saving
multiplication  operations. However, due to
asymmetry in the objective function, the extremum
coordinate may be shifted. For more accurate
determination, the hyperbolic wavelet function is
recommended [4].

After initializing the method parameters in
scheme (1), convolution with Haar’s wavelet
function is used in a neighborhood determined by
the length of its carrier to estimate the search
direction. The minimum obtained at this stage is
adjusted for asymmetry in the functional. Based on
the minimum coordinate obtained after convolution
of the functional under study with the Haar’s
wavelet function, according to the technique
described in [4], the new goal (objective) function
Qi(*) is formed that allows this coordinate to be
taken into account as a constraint,

Q1 (x[n, c[nl, g(x[n], ¢y [n — 1D) =
= —In(Q(x[n], c[n]) — Q(x[n], cx[n —1])) -
—In(g(x[n], cy[n —1]))
where Q (x[n], c[n]) is the initial goal function at the

search step n; Q(x[n], ci[n — 1]) is the value of the
goal function at the minimum point obtained after

convolution with the Haar’s wavelet function;
g(x[n], cy[n —1]) = cy[n — 1] = x[n].

As defined later in this work, the relative error
of determining the extremum of the asymmetric
function during weighted summation with the Haar
wavelet is directly proportional to the coefficient of
asymmetry of the objective function in the search
area.

The iterative scheme (1), using the gradient
method [16] as the basic approach to optimization.
At this stage, the weighted sum of values Qi(-) with
the hyperbolic wavelet function Y(j)=1/ox is
weighted, unlike previous works, not regularized
using the lifting scheme [5], but, to increase the
speed, is calculated only with the initial scale o=1.

The optimum is then searched according to
scheme (1), using the gradient method [16] as the
basic optimization approach. At this stage, the
weighted sum of Q(x[n], c[n], g(x[n], cj;[n —
1]))va|ues with the hyperbolic wavelet function
Y3 = é regularized via the lifting scheme [5], is
calculated at the initial scale @ = 1. The starting
point is the previous stage’s minimum obtained with
Haar’s wavelet.

Improving performance for optimization at
the stage with HWT

In the basic WT optimization method, if the
minimum coordinate differs from the previous stage
by no more than ¢, the search ends; otherwise, the
scale for the hyperbolic wavelet function is
increased by 1 (up to scale = 5). This transition
moves from noise-immune Haar optimization to
high-accuracy hyperbolic differentiation (if @ — oo,

then é tends to the differentiator).

Since multi-stage evaluation of the search
direction with HWT is used (five stages in [5], «
increasing from 1 to 5), the number of oracle calls to
obtain functional values remains significant and
depends on the wavelet carrier length N. During
Haar processing, the carrier length ensures noise
immunity. In the hyperbolic stage, extremum
refinement allows reducing oracle calls and
adjusting computation time based on the noise level.

The aim of this study is to investigate the
optimization method with wavelet functions under
second-kind constraints to improve search speed and
reduce oracle invocations.

Main stages of the clustering method

In clustering [10], based on the feature vectors
x € X, the centers of the sets X, and their boundaries
J(c) are determined so that.
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J(©) =E{Q(x, c1, ., em)}, (2)
where Q(x, c1)e, Cy) =
M e(x, cqy e, cy) Fr(x, cq, .y cy)  is the
implementation of the quality functional;

Fr (X, cq, ..., cp) is the distance function of elements
x of the set X from the “centers” ¢, of the subsets X,
(clusters); &, (+) are characteristic functions [19].

_ 1, ifXEXk,
ca={g rex. ©

Since the optimality criterion is given in an
implicit form, only implementations of the quality
functional Q(x, ¢) are known. Therefore, V.J(c), the
gradient of the functional, is unknown and can only
be estimated using the gradient of the implementation

V.0(x,c) = (a%(zd""' a‘(?3(C’I‘M’C)).Because in noisy

conditions or in the case of discontinuities it is often
impossible to calculate, search methods for
clustering are used.

For example, for the number of clusters M=2,
the search clustering algorithm for determining the
values of cluster centers c;, and c; is:

Sk(x, C1y et

gnl=¢n-1-n [n]\?HQ(x[n], aln—1], n—- 1])} ) (4)
c;[n] = ca[n — 1] = y2[n]Ve1 4 Q(x[n], c1[n —1], c;[n —1])
where y[n] (for k = 1,2) is the step size; n is the
iteration number; V..,Q(x[n], c;[n —1], cz[n—
1) and Ve, Q(x[n], ci[n—1], co[n—1]) are
estimates of the implementation gradient [10].
Regular iterative search methods [20], [21] are
based on using gradient estimation. An approximate
gradient estimate in search methods is obtained by
the difference method [10, 15]:

Ver (c,a) = HESEED, - (g)
where Ji(c,a) = (J(c +aeq),...,.J(c+
aeN)), ]—(C' a) = U(C - ael)' ...,](C - aeN))

are the values of the functional at modified vectors
c; a is scalar; e, are basis vectors e; = (1,0, ...,0);
e, =(0,1,...,0); ...; ey = (0,0, ...,1).

The main disadvantages of regular iterative
search methods are sensitivity to local extrema and
the initial search point, low convergence rate, and
low noise immunity due to the low robustness of
gradient estimation by the difference method [10],
[15].

As the basic algorithm for estimating the
extremum coordinates, the method [16], [24] was
used. The initial data for the algorithm are: the initial
minimum value of the function, initial step size
y = 1, the coefficient g = 0.5 defining step size

change near the minimum, the accuracy of gradient
estimation ¢, and the number of iterations i.

The procedure for computing the minimum
during clustering includes: selection of the initial
coordinate of the optimum, calculation of the
gradient estimate using wavelet functions;

o if the gradient estimate is less than ¢ — stop;

o calculation of the step size: the initial step
= 1; compute the auxiliary function increment A
[16]; if 4<0 — y[n] =y and proceed to the next
stage, otherwise y[n] = y and return to the previous
stage;

e calculation of the optimum coordinate at
iteration i;

e i=1i+1and return to the initial stage.

According to the iterative scheme (1), at the
first stage, to determine the gradient estimate, a
weighted summation of the values of the function to
be minimized using Haar wavelets is applied [25].
This allows the search to move to the extremum
region with an error determined by the asymmetry of
the objective function in this region. Studies of a
synthesized test function showed that the relative
error of determining the extremum of an asymmetric
function with weighted summation using [22], [23]
Haar wavelets is directly proportional to the
asymmetry coefficient of the objective function in
the search area.

Due to this property, at the second stage of
clustering, to find the coordinate of the cluster
center, the procedure of weighted summation of the
function to be minimized with a hyperbolic function

Y@ = L atscale o« = 1 is used.
ax

The search includes: weighting the function to
be minimized J[x] with the function ¥(i):

HWT(x) = J[x] * ¥ (D), (6)

where * is the weighted summation operation;
determination of the cluster center coordinate using
the hyperbolic wavelet function according to the
scheme:

x[k + 1] = x[k] + y[k]HWT (x[k]), (7)

where HWT(x[K]) is the value of the weighted sum
with the wavelet function at x/k/, y/k] is the step.

If the cluster center coordinate found at this
stage differs from the coordinate found at the
previous stage by no more than J, the search process
ends. Here ¢ is the specified search accuracy of the
cluster center coordinate. After performing the
conditions for determining constraint (2), the search
for the extremum coordinate using the hyperbolic
wavelet function at scale « = 1 is performed. If the
stopping condition for the cluster center coordinate
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at o = 1 is not reached, the estimate is performed
according to scheme (4), after which the search
ends.

During such a search, a sequential transition
from the search for the cluster center coordinate
using Haar wavelets, which provide high noise
immunity [26], to a search using a differentiator,
which provides maximum accuracy, is carried out.

The clustering method using wavelet functions
with parameters: initial values of cluster centers
c1[1], c,[1];scale of the hyperbolic wavelet
function a = I; optimum search accuracy; length of
the wavelet function support N; maximum number
of iterations; is as follows:

e initialize method parameters;

o for each of i elements of the weighted sum
with the wavelet function, determine the values of
characteristic functions &;(x, ¢1, ¢3), [ =1,2 (3).
For this, according to [10], the pairs of values
ci[n —1], ca[n—1]; ¢n—1]%
iejaln], c3[n—1], ci[n—1], c;[n—1] %
ie,a[n] i = 1, N for a given x[n] are substituted into
f(x, c1, ¢3) = llx[n]-c,lI? = llx[n]-c, % 2. The
function f(x, ¢y, c;) equals zero at the boundary
and has different signs in different regions.
Therefore, if f(x,c1, ;) <0, & =1, & =0; if
positive, &g = 0, &, = 1[10];

o calculate the value of the Haar function and, if
necessary, the hyperbolic function ¥(i) at o = I,

and i =1, N determine the weighted sum of the
function to be minimized (objective function) with
this function ¥ (i);

e determine the approximation of the cluster
center value according to scheme (4);

e check the above-mentioned condition of
cluster center accuracy (if not reached — transition
from weighted summation with Haar wavelet to
weighted summation with hyperbolic function, and
further according to scheme (5) by discrete
differentiation; if reached — stop).

To study the increase in performance of the
developed method during clustering, a set of
unnamed data was formed, consisting of two groups
of 15 points in a two-dimensional feature space
(Fig. 1).

As seen from Fig. 1, the clusters are linearly
separable in the feature space.

When data clustering using the developed
method with second-kind constraints, compared to
the basic clustering method, the gain in computation
time was more than 1.14 times. During the search
for the optimum, the discretization step dx = 6 and
the length of the Haar wavelet function support

when searching for the optimum with the hyperbolic
wavelet function dx = 1 were adopted.

45

401 ® 1

2% ® @ ® -
20+ 1
15F 4
10 ORo >
c®8200%
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Fig. 1. Data in clustering

Source: compiled by the authors

Furthermore, the dependence of the relative
error of the minimum search on amplitude was
investigated for both optimization approaches using
wavelet functions (the basic and the constrained
versions). The results of this analysis are presented
in Fig. 2a. A performance evaluation in terms of
computational time (in seconds) for both approaches
is given in Fig. 2b, where curves 1 and 2 correspond
to the basic and constrained methods, respectively.

The analysis revealed that for signal-to-noise
ratios ranging from 2 to 14, the time required to
determine the optimum decreased significantly — by
a factor of 7 to 1.5 compared with the basic
optimization method. At the same time, this
improvement in speed was accompanied by a
moderate increase in the relative error of minimum
determination for the De Jong test function, which
rose from 5 % to 15 %. Such a trade-off between
computational efficiency and accuracy is common in
optimization problems; however, the results suggest
that the constrained method provides a reasonable
balance, making it suitable for practical applications
where reduced processing time is of high priority.

CONCLUSIONS

A clustering method based on wavelet functions
has been successfully developed and thoroughly
investigated. During the course of this work, a
complete  methodology and algorithm  for
implementing the proposed method were designed,
ensuring a systematic approach for practical
applications. In addition, extensive experimental
studies were carried out to assess the method’s noise
immunity, accuracy, and computational efficiency
under various conditions.
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Fig. 2. Results of evaluating the properties of the optimization method with wavelet functions using
iterative constraint estimation and the basic method:
a— error of minimum search depending on the signal-to-noise ratio by amplitude;

b — time of minimum search in seconds depending on the signal-to-noise ratio by amplitude.
Source: compiled by the authors

It has been established that, for a signal-to-
noise ratio (SNR) in amplitude ranging from 2 to 14,
the optimization search time is significantly reduced,
ranging from a factor of 7 at low SNR values to 1.5
at higher SNR values, compared to the basic
optimization method. At the same time, the relative
error of minimum estimation for the De Jong test
function increases moderately from 5% to 15%,
demonstrating that the proposed method provides a
favorable trade-off between speed and accuracy,
particularly in noisy environments. This finding
confirms the method’s suitability for tasks where
rapid clustering is critical, even when data contain
substantial noise.

For synthesized datasets, clustering using the
developed method with the consideration of second-
type constraints showed a notable gain in calculation
time, exceeding 1.14 compared to the basic
clustering approach. This improvement indicates
that the introduction of constraints via wavelet
processing effectively reduces redundant
computational steps and accelerates convergence,
making the method more practical for real-time or
large-scale applications.

The method was also validated in a practical
clustering problem. The proposed method was

applied to a batch of resistors intended for mission-
critical equipment [27]. Predictive parameters
included the noise level and the expected variation
in resistance within groups. Using the first control
data collected after 24 hours of operation under load,
the proposed method successfully clustered the
resistors into two distinct groups: the first cluster
included groups 1-8, and the second cluster included
group 9, based on the measured noise level.
Calculated failure rates were determined for both
clusters and the overall batch, highlighting the
practical applicability of the method. Compared to
the basic clustering method using wavelet functions,
the procedure’s speed was increased by 8%,
confirming the advantage of incorporating
constraints for computational speed improvement.

These results collectively demonstrate that the
proposed clustering method is effective and reliable,
providing both computational speed and robust
performance  under  challenging  conditions.
Consequently, the developed method can be
confidently recommended for a wide range of
practically significant classification and clustering
tasks, particularly those involving high noise levels,
asymmetric objective functions, and small sample
sizes, where conventional methods may fail or
become computationally prohibitive.

284

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)



Shcherbakova G. Y., Koshutina D. V. / Herald of Advanced Information Technology
2025; Vol.8 No.3; 277-287

REFERENCES

1. Hemanth, D. J., Gupta, D. & Balas, V. E. “Intelligent data analysis for biomedical applications”.
Academic Press. 2019, https://www.sciencedirect.com/book/9780128155530/intelligent-data-analysis-for-
biomedical-applications. DOI: https://doi.org/10.1016/C2017-0-03676-5.

2. Kharchenko, V., Fesenko, H. & Illiashenko, O. “Quality models for artificial intelligence systems:
Characteristic-based approach, development and application”. Sensors. 2022; 22: 4865. DOI:
https://doi.org/10.3390/s22134865.

3. llliashenko, O., Kharchenko, V., Babeshko, I., Fesenko, H. & Di Giandomenico, F. “Security-
informed safety analysis of autonomous transport systems considering Al-powered cyberattacks and
protection”. Entropy. 2023; 25: 1123. DOI: https://doi.org/10.3390/e25081123.

4. Huan, W., Shcherbakova, G., Sachenko, A., Yan, L., Volkova, N., Rusyn, B. & Molga, A. “Haar
wavelet-based classification method for visual information processing systems”. Applied Sciences. 2023;
13 (9): 5515. DOI: https://doi.org/10.3390/app13095515.

5. Zheng, Y., Shcherbakova, G., Rusyn, B., Sachenko, A., Volkova, N., Kliushnikov, I. & Antoshchuk,
S. “Wavelet transform cluster analysis of UAV images for sustainable development of smart regions due to
inspecting transport infrastructure.” Sustainability. 2025; 17: 927. DOI: https://doi.org/10.3390/su17030927.

6. Fesenko, H., Kharchenko, V., Sachenko, A., Hiromoto, R. & Kochan, V. “Dependable an internet of
drone-based multi-version post-severe accident monitoring system: structures and reliability.” loT for
Human and Industry:  Modeling,  Architecting, Implementation. = 2018. p.  197-218.
DOI: https://doi.org/10.1201/9781003337843.

7. Shcherbakova, G., Krylov, V., Qingi, W., Rusyn, B. & Sachenko, A. “Optimization methods on the
wavelet transformation base for technical diagnostic information systems.” 11th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), Cracow, Poland. 2021; 2: 767-773. DOI: https://doi.org/10.1109/IDAACS53288.2021.9660927.

8. Shcherbakova, G., Antoshchuk, S., Koshutina, D., Sakhno K. & Kondratiev, S. “Adaptive clustering
for distribution parameter estimation in technical diagnostics”. In: Dovgyi, S., Siemens, E., Globa, L.,
Kopiika, O., Stryzhak, O. (eds) Applied Innovations in Information and Communication Technology. ICAIIT.
Lecture Notes in Networks and Systems. Springer, Cham. 2024; 1338. DOI: https://doi.org/10.1007/978-3-
031-89296-7_19.

9. Jianyun, L. & Shiguo, L. “Wavelet clustering based on cluster signal”. 19th International Computer
Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). Chengdu,
China. 2022. p. 1-4. DOI: https://doi.org/10.1109/ICCWAMTIP56608.2022.10016578.

10. Tsypkin, Y. Z. “Adaptation and learning in the automatic systems”. New York and London:
Academic Press, Inc.

11. Radovanovic, A., Li, J., Milanovic, J. V., Milosavljevic, N. & Storchi, R. “Application of
agglomerative hierarchical clustering for clustering of time series data”. IEEE PES Innovative Smart Grid
Technologies Europe (ISGT-Europe). 2020. p. 640-644. DOI: https://doi.org/10.1109/ISGT-
Europe47291.2020.9248759.

12. Zagoruiko, N. G. “Problems in constructing an empirical theory of data mining.” In: Wolff, K. E.,
Palchunov, D. E., Zagoruiko, N. G. & Andelfinger, U. (eds) Knowledge Processing and Data Analysis.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. 2011; 6581. DOI:
https://doi.org/10.1007/978-3-642-22140-8_16.

13. Bhuyan, M. K. “Computer vision and image processing: Fundamentals and applications”. Boca
Raton: CRC Press/Taylor & Francis Group. 2019. DOI: https://doi.org/10.1201/9781351248396.

14. Krylov, V. N. & Volkova, N. P. “Vector-difference texture segmentation method in technical and
medical express diagnostic systems”. Herald of Advanced Information Technology. 2020; 3 (4): 226-239.
DOI: https://doi.org/ 10.15276/hait.04.2020.2.

15. Yuan, Q., Yang, Z., & Xiao, Y. “Solving the newsvendor problem using stochastic approximation:
A Kiefer-Wolfowitz Algorithm Approach”. American Journal of Applied Mathematics and Statistics. 2024,
12 (2): 24-27. DOI: https://doi.org/10.12691/ajams-12-2-1.

ISSN 2663-0176 (Print) Theoretical aspects of computer science, 285
ISSN 2663-7731 (Online) programming and data analysis


https://www.sciencedirect.com/book/9780128155530/intelligent-data-analysis-for-biomedical-applications
https://www.sciencedirect.com/book/9780128155530/intelligent-data-analysis-for-biomedical-applications
https://doi.org/10.1016/C2017-0-03676-5
https://doi.org/10.3390/s22134865
https://doi.org/10.3390/e25081123
https://doi.org/10.3390/app13095515
https://doi.org/10.3390/su17030927
https://doi.org/10.1201/9781003337843
https://doi.org/10.1007/978-3-031-89296-7_19
https://doi.org/10.1007/978-3-031-89296-7_19
https://doi.org/10.1109/ISGT-Europe47291.2020.9248759
https://doi.org/10.1109/ISGT-Europe47291.2020.9248759
https://doi.org/10.1007/978-3-642-22140-8_16
https://doi.org/10.1201/9781351248396
https://doi.org/10.12691/ajams-12-2-1

Shcherbakova G. Y., Koshutina D. V. / Herald of Advanced Information Technology
2025; Vol.8 No.3; 277-287

16. Polak, E. “Computational Methods in Optimization: A Unified Approach”. New York, NY:
Academic Press. 1971.

17. Martinez-Rios, E. A., Bustamante-Bello, R., Navarro-Tuch S. & Perez-Meana, H. “Applications of
the Generalized Morse Wavelets: A Review”. |EEE Access. 2023; 11: 667-688. DOI:
https://doi.org/10.1109/ACCESS.2022.3232729.

18. Prashar, N., Sood, M. & Jain, S. “Design and implementation of a robust noise removal system in
ECG signals using dual-tree complex wavelet transform.” Biomedical Signal Processing and Control. 2021;
63. DOI: https://doi.org/10.1016/j.bspc.2020.102212.

19. Singh, D., Singh, A., Singh, A. P., Garg, R., Prashar, D. , Khan, A. A. & Yimam, F. A. “A smooth
penalty function algorithm for computing nonlinear inequality constraint optimization problem”.
Mathematical Problems in Engineering. 2024. DOI: https://doi.org/10.1155/2024/1224408

20. Emiola, I. & Adem, R. “Comparison of minimization methods for rosenbrock functions.” arXiv.
2021. DOI: https://arxiv.org/abs/2101.10546.

21. Rao, S. S. “Engineering Optimization Theory and Practice”. John Wiley & Sons, Inc. 2020. DOI:
https://doi.org/10.1002/9781119454816.

22. Stoer, J. “On the relation between quadratic termination and convergence properties of
minimization algorithms”. Numer. Math. 1977; 28: 343-366. DOI: https://doi.org/10.1007/BF01389973.

23. Berahas, A. S., Cao, L., Choromanski, K. & Scheinberg, K. “A theoretical and empirical
comparison of gradient approximations in derivative-free optimization.” ISE Technical Report 19T-004,
Lehigh University. 2019.

24. Xi, M., Sun,W., & Chen, J., “Survey of derivative-free optimization”. 2020; 10 (4): 537-555.
DOI: https://doi.org/10.3934/naco.2020050.

25. Liu, W. Li, S. Chen, M. Fang, Y. Cha L. & Wang, Z. “Fault diagnosis for attitude sensors based on
analytical redundancy and wavelet transform”. Chinese Automation Congress (CAC). Shanghai, China.
2020. p. 6471-6476. DOI: https://doi.org/ 10.1109/CAC51589.2020.9327370.

26. Kumar, M., Pachori, R. B. & Acharya, U. R. “Automated diagnosis of myocardial infarction ECG
signals using sample entropy in flexible analytic wavelet transform framework.” Entropy. 2017; 19 (9): 488.
DOI: https://doi.org/10.3390/e19090488.

27. Shcherbakova, G., Antoshchuk, S., Koshutina, D. & Sakhno, K. “Adaptive clustering for
distribution parameter estimation in technical diagnostics”. Proceedings of International Conference on
Applied Innovation in IT.. Koethen, Germany. 2024; 12 (1): 123-127. DOI: https://doi.org/10.25673/115650.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Received 22.07.2025
Received after revision 04.09.2025
Accepted 18.09.2025

DOI: https://doi.org/10.15276/hait.08.2025.17
VJIK 519.6:004.93

IHigBumeHHs e(peKTUBHOCTI KJIacTepu3auii y
BeHBJIET-IOMEHI i3 32CTOCYBAHHSAM HEPIBHICHMX 00MeKeHb

Illep6akoBa I'aimHa IOpi’l'BHal)

J-p TexH. HayK, mpodecop, kadenpu [aGopmariitHux cucrem

ORCID: https://orcid.org/0000-0003-0475-3854; galina.sherbakova@op.edu.ua. Scopus Author I1D: 27868185600
Komyrina /lap’s Ba.nepi'l'Bﬂal)

PhD crynent, kadenpu Indopmarniiftnux cucrem

ORCID: https://orcid.org/0009-0004-1326-8775; d.v.koshutina@op.edu.ua. Scopus Author 1D: 58289385400

D HaujonansHuit yHiBepcuteT «OmecbKka momtexHikay, mp. lllesuenka, 1. Oxeca, Ykpaina, 65044

286 Theoretical aspects of computer science, ISSN 2663-0176 (Print)
programming and data analysis ISSN 2663-7731 (Online)


https://doi.org/10.1016/j.bspc.2020.102212
https://onlinelibrary.wiley.com/authored-by/Singh/Dharminder
https://onlinelibrary.wiley.com/authored-by/Singh/Amanpreet
https://onlinelibrary.wiley.com/authored-by/Singh/Amrit+Pal
https://onlinelibrary.wiley.com/authored-by/Garg/Rachit
https://onlinelibrary.wiley.com/authored-by/Prashar/Deepak
https://onlinelibrary.wiley.com/authored-by/Khan/Arfat+Ahmad
https://onlinelibrary.wiley.com/authored-by/Yimam/Frie+Ayalew
https://arxiv.org/abs/2101.10546
https://onlinelibrary.wiley.com/authored-by/
https://doi.org/10.1007/BF01389973
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://doi.org/10.3934/naco.2020050
https://doi.org/10.3390/e19090488
https://doi.org/#_blank

Shcherbakova G. Y., Koshutina D. V. / Herald of Advanced Information Technology
2025; Vol.8 No.3; 277-287

AHOTALIS

Mertonu KiacTepu3aliii, 3aCHOBaHI Ha OLIHIOBaHHI IPAJi€HTa, € MOMMPEHHMU B aBTOMATH30BAHUX CHCTEMax KepyBaHHS Ta
JIIarHOCTHUKH, Jie TIOTpiOHa HafjiiiHa 00poOKa JaHWX 3a HASBHOCTI IIyMy Ta MyJIBTUMOAAIBHOCTI. IIpoTe iX BUKOpHCTaHHS 0OMEKY€eThCS
HU3BbKOIO CTIMKICTIO T2 BUCOKUMHU OOYHCITIOBaJIEHUMHU BUTpaTaMu. XBHJIBJICTHI MiXONU € aKTyaJbHUMH, OCKUTGKH BOHH i IBUIIYIOTh
3aBaJIOCTIMKICTh Ta TIOKPAIYIOTh €(QEKTUBHICTh. MeTOr IIi€l po0OTH € po3poOKa Ta IOCTI/DKEHHS METOAy KIacTepH3allii, Mo
BHKOPHCTOBYE XBUIIBJICTHI (DYHKIIIT /11 BBEZICHHST OOMEKEHb 1 3a0e31edye crabuibHy poOoTy B yMoBax mymy. JlociiDKeHHS BKITFOUAJIO
aHaJI3 ICHYIOUMX MiAXOXIB, PO3POOKY XBHIIBJIETHOIO METOAY 3 OOMEKEHHSMHU IPYroro IMOpsAKY HEPIBHSHHOIO THUITY, CTBOPEHHS
ITOpUTMYy HOro peanizarii Ta eKCIepHIMEeHTAIBHY OLHKY. 3alpOIIOHOBAHUN METOJ IPYHTYETHCS HA XBHJIBJICTHHX IIEPETBOPEHHAX i3
rinepOomiYHIMHU (PYHKINISIMH, 11O JTO3BOJISIFOTH 3MEHINUTH KUIBKICTh BUKITMKIB OpaKyia JUisi OLIHKH IUTHOBOI (DYHKIIii, CKOPOTHUTH
OOYHCITIOBAJIBHI €TalmM Ta TPHCKOPHUTH 30DKHICTh Y 3amavax kiacudikaiii Ta kiacrepusamii. ExcriepuMeHTH TOKa3aiM, 10 METOM
CKOpOYYE Yac MOLIyKY ONTHMYMY IPHOJIN3HO Bij MIBTOpa 0 CEMH PasiB 3a Pi3HUX BiAHOMIEHb CHTHAJ/IIYM IIPH IIOMipHOMY 3pOCTaHHI
MOXUOKM Ha I SITh—IT ITHA/IIATH BIJCOTKIB I TectoBol (yHkmii [le Nonra. Ha cunTeTHunmMX Habopax JIaHWX BHTpall y dYaci
TIEPEBUIIUB OJHY LTy OJJHY JECSATY MOPIBHSIHO 3 6a30BUM METOJIOM. Y NPaKTHYHOMY BHIIAJIKY OL[HIOBAHHS HAIifHOCTI pe3NCTOPIB IJIs
KPUTHYHOTO oONafgHaHHA e(eKTHBHICTh MiJBMINMIACS Maibke Ha BICIM BIZCOTKIB. Y TMIJICYMKy, HOBH3HA TOJISTAa€ B METOAI
KJacteprzanii 3 OOMEKEHHSMHU-HEPIBHOCTSMHM, IO BH3HAYAIOTHCS BeWBIeT-00poOkoro. lle Moke 30IIbIIMTH  OOYHCIIOBATIBHY
MIBUJKICTh B YMOBAX BUCOKOT'O PiBHS LIIyMy, aCHMETPHYHUX LTbOBUX (DYHKIIiH Ta Masiix BUOIPOK JaHMX.

KirouoBi ciioBa: ximactepmzallis; BeWBIIET-TIEPETBOPEHHS; 0OMEXKEHHS JPyroro MOPS/IKY; ONTHMI3allis; BUKINKH OpaKyIna;
ITYMOCTIHKiCTh; 00YHCITIOBaIbHA €)EKTUBHICTD
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