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ABSTRACT 

Clustering methods based on gradient estimation are common in automated control and diagnostic systems, where reliable data 

processing is needed under noise and multimodality. Their use, however, is constrained by low robustness and high computational costs. 
Wavelet-based approaches are relevant because they enhance noise immunity and improve efficiency. The purpose of this work is to 
develop and study a clustering method that employs wavelet functions to introduce constraints and ensure stable performance under 
noisy conditions. The research included analysis of existing approaches, development of a wavelet-based method with inequality-type 
second-order constraints, creation of an algorithm for its implementation, and experimental evaluation. The proposed method relies on 
wavelet transforms with hyperbolic functions, which reduce the number of oracle calls, decrease computational stages, and accelerate 
convergence in classification and clustering problems. Experiments show that the method shortens the search time for the optimum by 
about one and a half to seven times at different signal-to-noise ratios, with a moderate increase in error of roughly five to fifteen percent 
for the De Jong test function. On synthetic datasets, the gain in computation time exceeded one point one compared with the baseline 

method. In a practical case of reliability assessment for resistors used in critical equipment, efficiency improved by nearly eight percent. 
Finally, the novelty lies in the clustering method with constraints-inequalities defined by wavelet processing. This can increase the 
computational speed in conditions of high noise levels, asymmetric objective functions, and small data samples. 

Keywords: Clustering; wavelet transform; second-order constraints; optimization; oracle calls; noise immunity. 
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INTRODUCTION 

The tasks of intelligent data analysis are 

addressed in a variety of application areas, including 

biomedical research [1], equipment condition 
assessment [2], [3], systems with visual information 

processing [4], smart region support systems [5], [6], 

and technical diagnostic systems [7]. These diverse 
applications share a common requirement: the need 

to extract meaningful patterns and insights from 

large and often noisy datasets. In many cases, 

pattern recognition methods serve as the primary 
tool for understanding data structures, and 

classification techniques with self-training 

mechanisms are employed. Such techniques 
typically involve two complementary procedures: 

clustering and classification. In clustering, the 

membership of a pattern, represented as a point in 
the feature space, is initially unknown. Therefore, it 

becomes necessary to determine the boundaries and 

relationships initially unknown. Therefore, it 

becomes necessary to determine the boundaries 
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and relationships between clusters based on intrinsic 

data characteristics. 

Within the field of intelligent data analysis, 

clustering algorithms generally group data into 
clusters based on measures of compactness and 

similarity. A considerable subset of these algorithms 

is designed around the optimization of a specific 
objective function, which quantifies the quality or 

validity of the clustering solution. The effectiveness 

of clustering critically depends on the choice of 

optimization method, which in turn is influenced by 
the mathematical properties of the objective 

function. In practical scenarios, this this function is 

often not explicitly defined; it may present a 
multimodal surface, exhibit irregularities, and 

contain significant noise, particularly in cases where 

clusters are poorly separable.  
Additionally, real-world datasets frequently 

display large imbalances in cluster sizes, which 

furthe complicates the accurate delineation of cluster 

boundaries. 
To overcome these challenges, methods based 

on wavelet functions have been proposed. The use of 

wavelet transforms allows for the introduction of 
constraints that enhance noise immunity, ensuring  
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that the clustering procedure remains robust even 

under adverse conditions [8]. Moreover, these 

constraints contribute to improved computational 
efficiency by reducing the number of necessary 

evaluations of the objective function. Building on 

these advantages, the present study proposes a 
clustering method that leverages wavelet-based 

optimization with inequality constraints. This 

approach provides both sufficient noise immunity 
for applied tasks and enhanced computational speed, 

making it suitable for practical applications where 

both accuracy and efficiency are critical. 

PROBLEM STATEMENT 

The purpose of this work is to develop and 

conduct a comprehensive study of a clustering 

method based on wavelet functions. The key idea is 
to enable the introduction of constraints through 

wavelet processing, which in turn ensures improved 

performance and enhanced robustness to noise in 

various applied tasks. The proposed method aims to 
address common limitations of conventional 

clustering algorithms, particularly their sensitivity to 

noisy data and computational inefficiency when 
dealing with complex, multimodal objective 

functions. 

To achieve this goal, the following tasks were 
systematically addressed: 

– Analysis of modern clustering methods: A 

detailed review of existing clustering approaches 

was carried out to identify their strengths and 
limitations, particularly with respect to noise 

resilience, computational requirements, and 

adaptability to poorly separable or imbalanced data 
clusters. This analysis provides the theoretical 

foundation for the development of an improved 

clustering approach. 
– Development and justification of a clustering 

method incorporating constraints derived from 

wavelet function processing. The core idea of the 

proposed method lies in using wavelet-based 
transformations to introduce inequality-type 

constraints. These constraints guide the clustering 

process, enhancing both accuracy and stability. A 
careful justification of the approach was provided, 

highlighting why wavelet functions are well-suited 

for improving noise immunity and convergence 

speed. 
– Development of a methodology and algorithm 

for the practical implementation of the proposed 

clustering method: A systematic methodology was 
formulated, detailing the algorithmic steps necessary 

to apply the proposed method in real-world 

scenarios. This includes the procedures for wavelet 
transformation, constraint application, and iterative 

optimization to achieve efficient clustering 

outcomes. 

– Experimental evaluation of the proposed 
method to assess its computation speed and noise 

immunity: To validate the computation speed of the 

proposed approach, a series of experiments was 
conducted.  

ANALYSIS OF MODERN СLUSTERING 

METHODS 

The initial data for clustering consists of a set of 

data, each represented by a vector of characteristics 

in the feature space. That is, the realizations of 

images in the feature space correspond to 
geometrically close points, forming so-called 

“compact” clots [9], [10], [11]. 

The compactness hypothesis operates using 
absolute distances between vectors in the feature 

space. In cases where data must be divided into 

clusters of complex shapes, the λ-compactness 

hypothesis is often applied, taking into account 
normalized distances between images. However, 

when the number of points in the feature space is 

large (on the order of thousands), computational 
costs increase significantly. Additional 

complications arise when it is necessary to obtain 

the number of clusters k >>2. 
In such situations, dividing the data into 

clusters requires breaking 𝑘 − 1 edges. Enumerating 

all possible variants, the number of which equals the 

number of combinations from (𝑚 − 1) to (𝑘 − 1), 
also increases computational costs and reduces 

performance. 

Considering that, when dividing into clusters 
with non-intersecting convex hulls, the application 

of compactness or λ-compactness hypotheses 

produces the same results [12], this work adopts the 

hypothesis of compactness of the initial data in the 
feature space. 

The clustering problem is formulated as 

partitioning a set of data points in the feature space 
into clusters based on their inherent similarity. In a 

metric space, similarity is usually defined by 

distance. Distance can be calculated both between 
data points and between points and the cluster 

center. Typically, the coordinates of cluster centers 

are not known in advance and are determined 

simultaneously with the division of the data into 
clusters. 

To solve the clustering problem, it is necessary 

to determine an optimal vector 𝑐 = 𝑐𝑜𝑝𝑡  that, while 

satisfying the constraints, provides an extremum of 

the functional 𝐽(𝒄) = 𝑀𝑥{𝑄(𝒙,  𝒄)} [10], where 𝐽(𝒄) 

is the quality criterion, and 𝑄(𝒙,  𝒄) is the functional 
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of the variable vector 𝒄 = (𝑐1, … , 𝑐𝑁), depending on 

the vector of random variables 𝒙 = (𝑥1, … , 𝑥𝑀). 
Often, the sum of squared errors criterion is 

used for clustering [13]: 

𝐽 = ∑ ∑ ‖𝒙 − 𝒄𝑘‖

𝑥∈𝑋𝑘

𝑀

𝑘=1

2

, 

where 𝑛𝑘 is the number of elements in cluster 𝑘, and 

𝒄𝑘 =
1

𝑛𝑘
∑ 𝒙𝑥∈𝑋𝑘

 is the mean of the cluster. 

Thus, 𝐽 measures the total squared error 

resulting from representing the data by 𝑘 clusters 

with centers 𝒄𝑘. Clustering of this type is known as 

minimum variance clustering. This criterion is 

suitable when the data form compact clouds in the 
feature space, well separated from each other, and 

when the number of clusters is small (typically two 

or three). However, for elongated, noisy data with 
widely separated subgroups of points, this criterion 

may not yield satisfactory results. When there is a 

large difference in the number of elements among 
separated clusters, the larger cluster may be split 

[13]. 

In such cases, related minimum variance 

criteria are recommended, particularly a criterion 

based on 𝑠̄𝑘 – the mean squared distance between 

points in the k-th cluster [13]: 

𝐽 =
1

2
∑ 𝑛𝑘𝑠̄𝑘

𝑀

𝑘=1

, 

where 𝑠̄𝑘 =
1

𝑛𝑘
2

∑ ∑ ‖𝒙 − 𝒙/‖𝒙/∈𝑋𝑘𝒙∈𝑋𝑘

2
, 

Alternatively, 𝑠̄𝑘 may be replaced by the mean, 
median, or maximum distance between points in the 

cluster [13]. For further studies, and in the absence 

of prior information about cluster shapes, a criterion 

from the minimum variance–related group is 
adopted [10]. 

The choice of a clustering method is often 

problem-oriented. Methods also differ in whether the 
number of clusters is predetermined. If the number 

of clusters is not known in advance, it can be 

determined during algorithm execution based on the 
distribution of the initial data, the compactness and 

separability of individual clusters, or by starting with 

a sufficiently large number of clusters and 

sequentially combining them according to selected 
similarity criteria. 

At present, clustering methods are generally 

divided into two groups. The first group includes 
hierarchical methods of successive partitions, which 

are based on data from the proximity matrix. Two 

main strategies exist for initializing the initial 

partition. 

The first strategy is agglomerative: clustering 
begins by assuming that each point in the feature 

space forms a separate cluster. In this case, when 

sequentially dividing n points in the feature space 
into k clusters, the first partition produces n clusters 

(each containing only one point). The next partition 

produces 𝑛 − 1 clusters, then 𝑛 − 1, and so on, until 

a single cluster containing all points is obtained. 
That is, the first merging level corresponds to n 

clusters, while the k-th level corresponds to a single 

cluster. At any level, any two points in the feature 
space will be grouped into the same cluster. If the 

sequence has the property that, when two points are 

combined into a cluster at level k, they remain 
together at higher levels, such a sequence is called 

hierarchical clustering. 

The second strategy is divisive: initially, all 

points in the feature space belong to a single cluster. 
The partitioning of points is stopped once the 

desired number of clusters is reached. 

In addition to hierarchical clustering strategies, 
there are other popular clustering methods. 

The first of these popular methods can be 

considered the nearest neighbor method. The 
minimum (nearest neighbor) algorithm is one of the 

classical approaches to clustering. Its basic principle 

lies in successively merging points that have the 

minimum distance between them, thus gradually 
forming larger and larger groups.  

If the algorithm terminates when the distance 

between the nearest clusters exceeds a predefined 
threshold, the procedure is known as the single-

linkage algorithm. This variation is widely used 

because of its simplicity and ability to handle 

clusters of arbitrary shapes. However, it may also be 
sensitive to noise and outliers, since even a single 

anomalous point can connect otherwise distinct 

clusters. 
To improve the likelihood of obtaining a correct 

partitioning, a modification is introduced in which 

not just the single closest point is considered, but 
distances to several of the nearest neighbors. This 

method is commonly referred to as the k-nearest 

neighbors algorithm. By analyzing distances to k 

points instead of just one, the algorithm reduces the 
effect of accidental proximities and increases the 

stability of the clustering process. Such an approach 

makes it possible to obtain more reliable clusters, 
especially in datasets where points are unevenly 

distributed or where noise is present. 

Thus, the minimum (nearest neighbor) 
algorithm and its modifications form the foundation 
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for many practical clustering methods, combining 

conceptual simplicity with flexibility of application. 

Тhe next known method can be considered the 
maximum (farthest neighbor) algorithm. That 

method is based on the principle that points with the 

maximum distance between them are assigned to 
different clusters. The main advantage of this 

method is its ability to form compact and spherical 

clusters, ensuring that all points within a cluster 
remain relatively close to each other. Consequently, 

it is effective for datasets where groups of points are 

clearly separated and do not exhibit elongated or 

irregular shapes. 
This approach has limitations. In particular, it 

may produce unsatisfactory results when dealing 

with elongated or chain-like clusters, as the method 
tends to over-segment such structures into smaller 

groups. Moreover, similar to the nearest-neighbor 

method, that algorithm is highly sensitive to outliers 

and noise, which can distort the cluster boundaries 
and reduce the overall accuracy of partitioning [13]. 

To address these drawbacks, especially the 

sensitivity to deviations and noisy data, other 
algorithms such as the average-linkage method and 

Ward’s method are commonly employed. These 

approaches balance the influence of individual 
distances, reducing the impact of extreme values and 

improving the stability of clustering results.  

When implementing the method, calculate 

𝑑𝑎𝑣𝑔(𝑋𝑖 , 𝑋𝑗) =
1

𝑛𝑖𝑛𝑗
∑ ∑ ‖𝑥 − 𝑥′‖𝑥′∈𝑋𝑗𝑥∈𝑋𝑖

, 

where: 𝑥 are points from cluster 𝑋𝑖; 𝑥′ are points 

from cluster 𝑋𝑗 and 𝑛𝑖   and 𝑛𝑗 are the numbers of 

points in clusters 𝑋𝑖 and 𝑋𝑗, respectively. 

Advantage: it can be used when distances are 

defined based on similarity measures such as the 

angle between two vectors [13]. 
There is also an algorithm that is based on the 

calculation 

𝑑𝑚𝑒𝑎𝑛(𝑋𝑖 , 𝑋𝑗) = ‖𝑚𝑖 − 𝑚𝑗‖, 

where: 𝑚𝑖  and 𝑚𝑗 are the means of clusters 𝑋𝑖 and 

𝑋𝑗, respectively. 

Advantage: the simplest measure. 

Disadvantage: for certain similarity measures (e.g., 

angle between two vectors), the distance may be 

difficult or impossible to determine [13]. Other 

general drawbacks of these methods include 

computational complexity for large datasets and 

sensitivity to noise depending on the distance 

measure [13]. 

In iterative algorithms, data is divided into 

several clusters, and then elements are moved 

between clusters to minimize a objective function. 

Main drawbacks: sensitivity to initial conditions, 

sensitivity to noise, and convergence to a local rather 

than global extremum. To assess sensitivity to the 

initial point, clustering is repeated with different 

starting points, or the initial point is selected using 

the result of hierarchical clustering [13]. 

Considering the above, both groups of methods 

are sensitive to noise; therefore, it is advisable to 

develop techniques that reduce noise sensitivity 

during clustering. 

Minimization of a quality objective function 

represents an optimization problem. Iterative regular 

and subgradient optimization methods have been 

developed for such problems. However, both 

approaches have certain trade-offs. Regular search 

methods have high accuracy but low noise immunity 

and high sensitivity to local extrema and the initial 

search point. Subgradient methods are more noise-

resistant but have higher errors [7]. 

To reduce the influence of noise in such 

problems, a wavelet function (WF)–based approach 

is applied [1], [4], [7]. The objective function for 

optimization is typically spatially nonuniform, with 

localized global and local extrema. Wavelet 

transforms provide an adequate tool for analyzing 

such functions [1], [4], [7], [14]. 

However, for instance, the method proposed in 

[14] based on hyperbolic wavelet functions (HWF) 

may exhibit insufficient noise resistance for practical 

clustering tasks. Therefore, in [1], [4], [7], the 

direction of movement toward the target function 

extremum was estimated by sequential application 

of Haar WF and HWF, which may reduce the speed 

of clustering procedures. 

To improve performance by reducing the 

number of calls to the target function, [8] proposed 

searching for the extremum using constraints in the 

form of inequalities [10]. 

Since the search for methods that reduce the 

impact of the above problems remains relevant, this 

work proposes to develop and study a clustering 

method using wavelet functions based on the above 

approach [8]. 

DEVELOPMENT AND JUSTIFICATION OF 

THE CLUSTERING METHOD 

Initial stages of the constrained оptimization 

method 

This optimization method is defined by an 
iterative scheme [2]: 
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𝑐[𝑛] = 𝑐[𝑛 − 1] − 

−𝛾[𝑛] ∑ 𝛼𝑚[𝑛]𝛻̃𝑐−
+𝑄(𝑥[𝑛], 𝑐[𝑛 − 1], 𝑎[𝑛 − 𝑚]),

𝑠𝛼

𝑚=1

 
(1) 

where ∑ 𝛼𝑚[𝑛]𝛻̃𝑐−
+𝑄(𝑥[𝑛], 𝑐[𝑛 − −1], 𝑎[n-m])

𝑠𝛼
𝑚=1  

is the wavelet transform of the implementation 
𝑄(𝑥, 𝑐) of 𝑐𝑖 ,  𝑖 = 1, … ,  𝑁; 𝑄(𝑥, 𝑐) is the functional 

of the vector 𝑐 = (𝑐1, … , 𝑐𝑁), depending on the 

vector of random sequences or processes 𝑥 =
(𝑥1, … , 𝑥𝑀); 𝑐[𝑛 − 1] is the coordinate of the 

minimum; 𝛼𝑚[𝑛], 𝑚 = 1, … , 𝑠𝑎   are the components 

of the vector 𝛼[𝑛], obtained as a result of the 

discretization of the wavelet function. 
To refine the coordinate of the extremum, it is 

advisable to use a wavelet transform with spatial-

frequency localization [1], [4], [7]. Real wavelets in 

the form of odd symmetric functions with compact 
or effective support possess this property. Examples 

include Haar, Gaussian, split Gaussian basis 

functions (GBF), bounded sine wavelet, hyperbolic 
basis functions (HWT), and others. These functions 

satisfy the necessary conditions (localization, 

admissibility, oscillation, and boundedness) [17]. 
However, they differ in frequency-selective 

properties; for instance, the Gaussian wavelet 

“blurs” details compared to Haar and hyperbolic 

wavelets [18]. The extremum can be treated as a 
highly localized phenomenon in space. 

The use of Haar wavelet allows saving 

multiplication operations. However, due to 
asymmetry in the objective function, the extremum 

coordinate may be shifted. For more accurate 

determination, the hyperbolic wavelet function is 
recommended [4]. 

After initializing the method parameters in 

scheme (1), convolution with Haar’s wavelet 

function is used in a neighborhood determined by 
the length of its carrier to estimate the search 

direction. The minimum obtained at this stage is 

adjusted for asymmetry in the functional. Based on 
the minimum coordinate obtained after convolution 

of the functional under study with the Haar’s 

wavelet function, according to the technique 

described in [4], the new goal (objective) function 
Q1(·) is formed that allows this coordinate to be 

taken into account as a constraint, 

𝑄1(𝑥[𝑛], 𝑐[𝑛], 𝑔(𝑥[𝑛], 𝑐𝐻
∗ [𝑛 − 1])) = 

= − 𝑙𝑛( 𝑄(𝑥[𝑛], 𝑐[𝑛]) − 𝑄(𝒙[𝑛], 𝒄𝐻
∗ [𝑛 − 1])) − 

− 𝑙𝑛( 𝑔(𝑥[𝑛], 𝑐𝐻
∗ [𝑛 − 1])) 

where 𝑄(𝑥[𝑛], 𝑐[𝑛]) is the initial goal function at the 

search step 𝑛; 𝑄(𝑥[𝑛], 𝑐𝐻
∗ [𝑛 − 1]) is the value of the 

goal function at the minimum point obtained after 

convolution with the Haar’s wavelet function; 

𝑔(𝑥[𝑛], 𝑐𝐻
∗ [𝑛 − 1]) = 𝑐𝐻

∗ [𝑛 − 1] − 𝑥[𝑛]. 
Аs defined later in thіs work, the relative error 

of determining the extremum of the asymmetric 

function during weighted summation with the Haar 

wavelet is directly proportional to the coefficient of 
asymmetry of the objective function in the search 

area.  

The iterative scheme (1), using the gradient 

method [16] as the basic approach to optimization. 
At this stage, the weighted sum of values Q1(·) with 

the hyperbolic wavelet function Ψ(j)=1/αx is 

weighted, unlike previous works, not regularized 
using the lifting scheme [5], but, to increase the 

speed, is calculated only with the initial scale α=1. 

The optimum is then searched according to 

scheme (1), using the gradient method [16] as the 
basic optimization approach. At this stage, the 

weighted sum of 𝑄1(𝑥[𝑛], 𝑐[𝑛], 𝑔(𝑥[𝑛], 𝑐𝐻
∗ [𝑛 −

1]))values with the hyperbolic wavelet function 

𝛹(𝑗) =
1

𝛼𝑥
, regularized via the lifting scheme [5], is 

calculated at the initial scale 𝛼 = 1. The starting 

point is the previous stage’s minimum obtained with 
Haar’s wavelet. 

Improving performance for optimization at 

the stage with HWT 

In the basic WT optimization method, if the 
minimum coordinate differs from the previous stage 

by no more than δ, the search ends; otherwise, the 

scale for the hyperbolic wavelet function is 
increased by 1 (up to scale = 5). This transition 

moves from noise-immune Haar optimization to 

high-accuracy hyperbolic differentiation (if 𝛼 → ∞, 

then 
1

𝛼𝑥
 tends to the differentiator). 

Since multi-stage evaluation of the search 

direction with HWT is used (five stages in [5], α 

increasing from 1 to 5), the number of oracle calls to 
obtain functional values remains significant and 

depends on the wavelet carrier length N. During 

Haar processing, the carrier length ensures noise 

immunity. In the hyperbolic stage, extremum 
refinement allows reducing oracle calls and 

adjusting computation time based on the noise level. 

The aim of this study is to investigate the 
optimization method with wavelet functions under 

second-kind constraints to improve search speed and 

reduce oracle invocations. 

Main stages of the clustering method 

In clustering [10], based on the feature vectors 

𝑥 ∈ 𝑋, the centers of the sets 𝑋𝑘  and their boundaries 

𝐽(𝒄) are determined so that. 
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𝐽(𝑐) = 𝐸{𝑄(𝑥, 𝑐1, …, 𝑐𝑀)},                (2) 

where 𝑄(𝒙, 𝑐1, … , 𝑐𝑀) =
∑ 𝜀𝑘(𝒙, 𝑐1, … , 𝑐𝑀) 𝐹𝑘(𝒙, 𝑐1, … , 𝑐𝑀)𝑀

𝑘=1   is the 

implementation of the quality functional; 

𝐹𝑘(x, 𝑐1, … , 𝑐𝑀) is the distance function of elements 

x of the set X from the “centers” 𝑐𝑘 of the subsets 𝑋𝑘 

(clusters); 𝜀𝑘(⋅) are characteristic functions [19]. 

𝜀𝑘(x, 𝑐1, … , 𝑐𝑀) = {
1,  if x ∈ 𝑋𝑘 ,

0,  if x ∉ 𝑋𝑘 .
        (3) 

Since the optimality criterion is given in an 
implicit form, only implementations of the quality 

functional Q(x, c) are known. Therefore, 𝛻𝑐𝐽(𝑐), the 

gradient of the functional, is unknown and can only 

be estimated using the gradient of the implementation 

𝛻𝑐𝑄(𝑥, 𝑐) = (
𝜕𝑄(𝑥,𝑐)

𝜕𝑐1
, ⋯ , 

𝜕𝑄(𝑥,𝑐)

𝜕𝑐𝑀
). Because in noisy 

conditions or in the case of discontinuities it is often 
impossible to calculate, search methods for 

clustering are used. 

For example, for the number of clusters M=2, 
the search clustering algorithm for determining the 

values of cluster centers 𝑐1
∗, and 𝑐2

∗ is: 

𝑐1[𝑛] = 𝑐1[𝑛 − 1] − 𝛾1[𝑛]𝛻̃𝑐1+𝑄(𝒙[𝑛],  𝑐1[𝑛 − 1], 𝑐2[𝑛 − 1])

𝑐2[𝑛] = 𝑐2[𝑛 − 1] − 𝛾2[𝑛]𝛻̃𝑐1+𝑄(𝒙[𝑛],  𝑐1[𝑛 − 1], 𝑐2[𝑛 − 1])
} , (4) 

where 𝛾𝑘[𝑛] (for k = 1,2) is the step size; n is the 

iteration number; 𝛻̃𝑐1+𝑄(𝑥[𝑛], 𝑐1[𝑛 − 1], 𝑐2[𝑛 −
1]) and 𝛻̃𝑐2+𝑄(𝑥[𝑛], 𝑐1[𝑛 − 1], 𝑐2[𝑛 − 1]) are 

estimates of the implementation gradient [10]. 
Regular iterative search methods [20], [21] are 

based on using gradient estimation. An approximate 

gradient estimate in search methods is obtained by 
the difference method [10, 15]: 

𝛻𝑐±𝐽(𝑐, 𝑎) =
𝐽+(𝑐,𝑎)−𝐽−(𝑐,𝑎)

2𝑎
,              (5) 

where 𝐽+(𝑐, 𝑎) = (𝐽(𝑐 + 𝑎𝑒1), … , 𝐽(𝑐 +
𝑎𝑒𝑁)), 𝐽−(𝑐, 𝑎) = (𝐽(𝑐 − 𝑎𝑒1), … , 𝐽(𝑐 − 𝑎𝑒𝑁)) 
are the values of the functional at modified vectors 

c; a is scalar; ev are basis vectors 𝑒1 = (1,0, … ,0); 
𝑒2 = (0,1, … ,0); … ; 𝑒𝑁 = (0,0, … ,1). 

The main disadvantages of regular iterative 
search methods are sensitivity to local extrema and 

the initial search point, low convergence rate, and 

low noise immunity due to the low robustness of 
gradient estimation by the difference method [10], 

[15]. 

As the basic algorithm for estimating the 

extremum coordinates, the method [16], [24] was 
used. The initial data for the algorithm are: the initial 

minimum value of the function, initial step size  

γ = 1, the coefficient β = 0.5 defining step size 

change near the minimum, the accuracy of gradient 

estimation ε, and the number of iterations i. 

The procedure for computing the minimum 
during clustering includes: selection of the initial 

coordinate of the optimum, calculation of the 

gradient estimate using wavelet functions; 
 if the gradient estimate is less than ε – stop; 

 calculation of the step size: the initial step γ 

= 1; compute the auxiliary function increment Δ 

[16]; if Δ<0 –  𝛾[𝑛] = 𝛾 and proceed to the next 

stage, otherwise 𝛾[𝑛] = 𝛾 and return to the previous 

stage; 

 calculation of the optimum coordinate at 
iteration i; 

 i = i + 1 and return to the initial stage. 

According to the iterative scheme (1), at the 

first stage, to determine the gradient estimate, a 
weighted summation of the values of the function to 

be minimized using Haar wavelets is applied [25]. 

This allows the search to move to the extremum 
region with an error determined by the asymmetry of 

the objective function in this region. Studies of a 

synthesized test function showed that the relative 

error of determining the extremum of an asymmetric 
function with weighted summation using [22], [23] 

Haar wavelets is directly proportional to the 

asymmetry coefficient of the objective function in 
the search area. 

Due to this property, at the second stage of 

clustering, to find the coordinate of the cluster 
center, the procedure of weighted summation of the 

function to be minimized with a hyperbolic function 

𝛹(𝑖) =
1

𝛼𝑥
 at scale α = 1 is used.  

The search includes: weighting the function to 

be minimized 𝐽[𝑥] with the function Ψ(i): 

𝐻𝑊𝑇(𝑥) = 𝐽[𝑥] ∗ 𝛹(𝑖),                      (6) 

where * is the weighted summation operation; 

determination of the cluster center coordinate using 
the hyperbolic wavelet function according to the 

scheme: 

𝑥[𝑘 + 1] = 𝑥[𝑘] + 𝛾[𝑘]𝐻𝑊𝑇(𝑥[𝑘]),      (7) 

where HWT(x[k]) is the value of the weighted sum 
with the wavelet function at x[k], γ[k] is the step. 

If the cluster center coordinate found at this 

stage differs from the coordinate found at the 
previous stage by no more than δ, the search process 

ends. Here δ is the specified search accuracy of the 

cluster center coordinate. After performing the 

conditions for determining constraint (2), the search 
for the extremum coordinate using the hyperbolic 

wavelet function at scale α = 1 is performed. If the 

stopping condition for the cluster center coordinate 
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at α = 1 is not reached, the estimate is performed 

according to scheme (4), after which the search 

ends. 
During such a search, a sequential transition 

from the search for the cluster center coordinate 

using Haar wavelets, which provide high noise 
immunity [26], to a search using a differentiator, 

which provides maximum accuracy, is carried out. 

The clustering method using wavelet functions 
with parameters: initial values of cluster centers 

𝑐1[1], 𝑐2[1]; scale of the hyperbolic wavelet 

function α = 1; optimum search accuracy; length of 

the wavelet function support N; maximum number 
of iterations; is as follows:  

 initialize method parameters; 

 for each of i elements of the weighted sum 
with the wavelet function, determine the values of 

characteristic functions 𝜀𝑙(x, 𝑐1, 𝑐2),  𝑙 = 1,2 (3). 

For this, according to [10], the pairs of values 

 𝑐1[𝑛 − 1], 𝑐2[𝑛 − 1];  𝑐1[𝑛 − 1] ±
𝑖𝑒1𝑎[𝑛],  𝑐2[𝑛 − 1],  𝑐1[𝑛 − 1], 𝑐2[𝑛 − 1] ±

𝑖𝑒2𝑎[𝑛] 𝑖 = 1, 𝑁 for a given x[n] are substituted into 

𝑓(x, 𝑐1, 𝑐2) = ‖𝑥[𝑛]-c1‖2 − ‖𝑥[𝑛]-c2‖2 2. The 

function 𝑓(x, 𝑐1, 𝑐2) equals zero at the boundary 
and has different signs in different regions. 

Therefore, if 𝑓(x, 𝑐1, 𝑐2) < 0, 𝜀1 = 1, 𝜀2 = 0; if 

positive, 𝜀1 = 0, 𝜀2 = 1 [10]; 
 calculate the value of the Haar function and, if 

necessary, the hyperbolic function 𝛹(𝑖) at α = 1, 

and 𝑖 = 1, 𝑁 determine the weighted sum of the 

function to be minimized (objective function) with 

this function 𝛹(𝑖); 

 determine the approximation of the cluster 

center value according to scheme (4); 
 check the above-mentioned condition of 

cluster center accuracy (if not reached – transition 

from weighted summation with Haar wavelet to 
weighted summation with hyperbolic function, and 

further according to scheme (5) by discrete 

differentiation; if reached – stop). 
To study the increase in performance of the 

developed method during clustering, a set of 

unnamed data was formed, consisting of two groups 

of 15 points in a two-dimensional feature space 
(Fig. 1). 

As seen from Fig. 1, the clusters are linearly 

separable in the feature space. 
When data clustering using the developed 

method with second-kind constraints, compared to 

the basic clustering method, the gain in computation 
time was more than 1.14 times. During the search 

for the optimum, the discretization step dx = 6 and 

the length of the Haar wavelet function support 

when searching for the optimum with the hyperbolic 

wavelet function dx = 1 were adopted. 

 
Fig. 1. Data in clustering 

Source: compiled by the authors 

Furthermore, the dependence of the relative 

error of the minimum search on amplitude was 

investigated for both optimization approaches using 

wavelet functions (the basic and the constrained 
versions). The results of this analysis are presented 

in Fig. 2a. A performance evaluation in terms of 

computational time (in seconds) for both approaches 
is given in Fig. 2b, where curves 1 and 2 correspond 

to the basic and constrained methods, respectively. 

The analysis revealed that for signal-to-noise 
ratios ranging from 2 to 14, the time required to 

determine the optimum decreased significantly – by 

a factor of 7 to 1.5 compared with the basic 

optimization method. At the same time, this 
improvement in speed was accompanied by a 

moderate increase in the relative error of minimum 

determination for the De Jong test function, which 
rose from 5 % to 15 %. Such a trade-off between 

computational efficiency and accuracy is common in 

optimization problems; however, the results suggest 
that the constrained method provides a reasonable 

balance, making it suitable for practical applications 

where reduced processing time is of high priority. 

CONCLUSIONS 

A clustering method based on wavelet functions 

has been successfully developed and thoroughly 

investigated. During the course of this work, a 

complete methodology and algorithm for 

implementing the proposed method were designed, 

ensuring a systematic approach for practical 

applications. In addition, extensive experimental 

studies were carried out to assess the method’s noise 

immunity, accuracy, and computational efficiency 

under various conditions. 
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a b 
 

Fig. 2. Results of evaluating the properties of the optimization method with wavelet functions using 

iterative constraint estimation and the basic method: 

a – error of minimum search depending on the signal-to-noise ratio by amplitude; 

b – time of minimum search in seconds depending on the signal-to-noise ratio by amplitude. 
Source: compiled by the authors 

 

It has been established that, for a signal-to-

noise ratio (SNR) in amplitude ranging from 2 to 14, 

the optimization search time is significantly reduced, 

ranging from a factor of 7 at low SNR values to 1.5 

at higher SNR values, compared to the basic 

optimization method. At the same time, the relative 

error of minimum estimation for the De Jong test 

function increases moderately from 5% to 15%, 

demonstrating that the proposed method provides a 

favorable trade-off between speed and accuracy, 

particularly in noisy environments. This finding 

confirms the method’s suitability for tasks where 

rapid clustering is critical, even when data contain 

substantial noise. 

For synthesized datasets, clustering using the 

developed method with the consideration of second-

type constraints showed a notable gain in calculation 

time, exceeding 1.14 compared to the basic 

clustering approach. This improvement indicates 

that the introduction of constraints via wavelet 

processing effectively reduces redundant 

computational steps and accelerates convergence, 

making the method more practical for real-time or 

large-scale applications. 

The method was also validated in a practical 

clustering problem. The proposed method was  

 

 

applied to a batch of resistors intended for mission-

critical equipment [27]. Predictive parameters 

included the noise level and the expected variation 

in resistance within groups. Using the first control 

data collected after 24 hours of operation under load, 

the proposed method successfully clustered the 

resistors into two distinct groups: the first cluster 

included groups 1–8, and the second cluster included 

group 9, based on the measured noise level. 

Calculated failure rates were determined for both 

clusters and the overall batch, highlighting the 

practical applicability of the method. Compared to 

the basic clustering method using wavelet functions, 

the procedure’s speed was increased by 8%, 

confirming the advantage of incorporating 

constraints for computational speed improvement. 

These results collectively demonstrate that the 

proposed clustering method is effective and reliable, 

providing both computational speed  and robust 

performance under challenging conditions. 

Consequently, the developed method can be 

confidently recommended for a wide range of 

practically significant classification and clustering 

tasks, particularly those involving high noise levels, 

asymmetric objective functions, and small sample 

sizes, where conventional methods may fail or 

become computationally prohibitive. 
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АНОТАЦІЯ 

Методи кластеризації, засновані на оцінюванні градієнта, є поширеними в автоматизованих системах керування та 
діагностики, де потрібна надійна обробка даних за наявності шуму та мультимодальності. Проте їх використання обмежується 
низькою стійкістю та високими обчислювальними витратами. Хвильлетні підходи є актуальними, оскільки вони підвищують 
завадостійкість та покращують ефективність. Метою цієї роботи є розробка та дослідження методу кластеризації, що 
використовує хвильлетні функції для введення обмежень і забезпечує стабільну роботу в умовах шуму. Дослідження включало 
аналіз існуючих підходів, розробку хвильлетного методу з обмеженнями другого порядку нерівнянного типу, створення 

алгоритму його реалізації та експериментальну оцінку. Запропонований метод ґрунтується на хвильлетних перетвореннях із 
гіперболічними функціями, що дозволяють зменшити кількість викликів оракула для оцінки цільової функції, скоротити 
обчислювальні етапи та прискорити збіжність у задачах класифікації та кластеризації. Експерименти показали, що метод 
скорочує час пошуку оптимуму приблизно від півтора до семи разів за різних відношень сигнал/шум при помірному зростанні 
похибки на п’ять–п’ятнадцять відсотків для тестової функції Де Йонга. На синтетичних наборах даних виграш у часі 
перевищив одну цілу одну десяту порівняно з базовим методом. У практичному випадку оцінювання надійності резисторів для 
критичного обладнання ефективність підвищилася майже на вісім відсотків. У підсумку, новизна полягає в методі 
кластеризації з обмеженнями-нерівностями, що визначаються вейвлет-обробкою. Це може збільшити обчислювальну 

швидкість в умовах високого рівня шуму, асиметричних цільових функцій та малих вибірок даних. 
Ключові слова: кластеризація; вейвлет-перетворення; обмеження другого порядку; оптимізація; виклики оракула; 

шумостійкість; обчислювальна ефективність 
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