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ABSTRACT

Recent advances in generative Al have led to the development of techniques to generate visually realistic synthetic video. As a
result, there is a growing demand for detectors capable of distinguishing between Al-generated videos. In this paper we propose a
compact, fragment-based representation of video frames that enables robust spatial-temporal analysis and new approach to
discrimination between real and synthetically generated footage. To achieve this goal, each frame is divided into fragments and a
square matrix of size BxB is formed. Next, we compute the dominant singular value for every fragment, yielding a square S-map.
This construction preserves local structure while normalizing geometry, so standard 2-D operators can be applied uniformly. We
analyze spatial organization via 2-D Discrete Cosine Transform (DCT) energies and temporal change with robust thresholding to
form a binary change mask. Then we apply Connected Component Labeling (CCL) on the binary change mask (4- or 8-connectivity)
and compute the area of the Largest Connected Component (LCC). We derive an LCC time series that measures the spatial
concentration of change. Empirically, synthetic videos exhibit higher rates of near-binary LCC toggling, longer plateaus, increased
mass at rational steps, and fewer unique levels than real videos - signatures consistent with temporal quantization and procedural
dynamics. The pipeline is lightweight (fragment-wise rank-1 SVD + CCL on a small grid), auditably interpretable, and suitable for
batch screening and edge devices. It attains ROC-AUC =~ 0.86 and TNR =~ 0.94 on mixed-resolution datasets with further gains from

per-granularity calibration.
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INTRODUCTION AND RELATED PAPERS

Synthetic video generation is progressing very
rapidly [1]. The latest models can produce realistic
high-resolution videos virtually indistinguishable
from real ones. These range from text-prompted
approaches such as Stable Video Diffusion [2],
VideoCrafter [3], or Sora [4] released by OpenAl, to
others such as LumaAl [5] and Gen3Al [6] NeRF-
based approaches, which allow synthetic videos to
be generated and manipulated based on a set of input
images. The emergence of synthetic video
generators  represents a major technological
advancement and a significant escalation in the
potential misinformation and disinformation threats
caused by generative Al.

Al-generated videos are distributed on social
networks and used in advertising production,
movies, etc. Sometimes, a criminal may forge a
document for entertainment or creative effects.
Recognizing whether the video is real or synthetic
becomes quite critical. Even in everyday life, while
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scrolling through the news feed, it would not be bad
to understand whether the video is real. In some
cases, we can immediately answer the artificial
origin of the video based on the content, Fig. 1. We
can guess from the content that the video is not real
because we know that fish cannot ride bicycles, and
rabbits cannot read newspapers while sitting in a
cafe.

Al-generated videos based on a scene-changing
prepared scenario, with precisely constructed
patterns for the specific model, have such a realistic
effect that it is practically impossible to distinguish
them from the real video with the naked eye.

Many online detectors [7] can detect synthetic
video with high efficiency. Most of them use the
search for specific patterns or artifacts based on the
assumption that a mathematically generated video
will contain certain periodicities or inconsistencies
not only in the frame but also in the time series. A
lot of recent research has focused on detecting
artificially generated images [8], [9], [10], [11].
Frame-by-frame processing could take these
approaches as a basis. Still, they do not consider
interframe changes and inconsistencies in the
object's motion and the presence of artifacts [12].
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Fig. 1. Video generated by Sora, LaVie, and Gen2

Source: compiled by the authors

Recently, many deepfake video detection
studies have adopted frequency-based detectors,
focusing on the spatial aspects of images through
Fourier transforms and filtering [13], [14]. Early
detectors identified artifacts in raw videos [15], [16],
such as blurred boundaries, color inconsistencies,
resolution differences, and flickering. Handling
temporal information poses challenges; a typical
DeepFake detection pipeline will sample multiple
frames from a video, predict per-frame fake
probabilities, and then heuristically aggregate these
probabilities into an overall fake video probability.
This method, however, fails to account for the
inherent temporal consistency stemming from real-
world constraints, such as stable facial features,
unchanged eye colors, and naturally paced blinking.
One common way of capturing this temporal
information is to use the motion information in
videos, commonly represented as Optical Flow [17]
(OF). However, one issue is that optical flow
estimation  requires additional computational
resources sequentially, posing a potential efficiency
bottleneck.

The survey authors conducted a detailed review
of existing Al-Generated Video Evaluation [18]
(AIGVE) approaches and identified AIGVE as a
distinct research focus on matching Al-generated
videos with human perception and instructions.
Attempts to combine different approaches encourage
researchers to develop tools. One is AIGVE-Tool
[19] (Al-Generated Video Evaluation Toolkit), a
unified framework that provides a structured and
extensible evaluation pipeline for a comprehensive
Al-generated video evaluation. AIGVE-Tool
integrates multiple evaluation methodologies in
novel five-category taxonomy, allowing flexible
customization through a modular configuration
system.

THE AIM OF THE ARTICLE

We propose a fragment-based representation of
video frames- partitioning each frame into a square
grid and mapping fragments to a compact 1 S-map-
to reduce dimensionality while preserving local
structure. By tracking inter-frame changes on this S-
map and analyzing the normalized Largest

Connected Component (LCC) dynamics, we aim to
reveal temporal inconsistencies in scene evolution
characteristic of synthetic content, enabling practical
discrimination between Al-generated and real video.

Our LCC from the binary mask measures
spatial concentration of change overtime, a
spatiotemporal inconsistency signal related to
optical-flow and flicker cues, but lightweight and
interpretable.

The aim of the article is to develop are solution-
agnostic, fragment-wise pipeline that exposes
synthetic temporal inconsistencies while remaining
lightweight and auditable for deployment. To
achieve this aim, we solve the following tasks:
formalize the fragment-wise S-map and the LCC-
over-time descriptor; define a compact set of robust
decision features and thresholds suitable for mixed
resolutions and codec’s; design a simple calibration
scheme that yields an interpretable decision signal;
evaluate performance on heterogeneous datasets
using deployment-oriented metrics (e.g.,, AUC,
TPR/TNR) and cross-validated protocols; analyze
computational cost and robustness to grid size,
thresholding, and compression artifacts.

APPLICATION OF FRAGMENT
PROCESSING FOR THE AI-GENERATED
VIDEO

In this section, we will consider the results
produced by the developed application. Our
experiment used the Kaggle dataset [21], the
GenVideo dataset [22], a video surveillance camera,
natural video sources, and videos we created using
Sora. We treat video as a sequence of frames. Each
frame is converted from RGB to a grayscale model
so that the value of each pixel carries only intensity
information. Thus, problems associated with color
rendering and perceptions are excluded from
consideration. The Python 3.10.11 application was
developed and launched on an Intel Core i5
processor with 16 GB RAM and Windows OS
installed to visualize the results of Ky Fan norm
usage for video analysis. The application depends on
two open-source libraries with Apache license:
OpenCV version 4.7.0 and numpy version 1.24.3.
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FRAME PARTITIONING AND PER
FRAGMENT SINGULAR VALUE
DECOMPOSITION (SVD)

Let X, eR"™" denote the luminance
(grayscale) image of video frame t. We partition

X, into a uniform Bx B grid of non-overlapping

.\ B

rectangular blocks {Xf"”}_ _
i,j=1

with h~H/B, o~W/B.
Videos in datasets have different sizes: [3640x2048],
[1920x1080], [1408x768], [1344x768], [1280x720],
[854x480], [655x368]. Given a frame of size
H xW, we choose the number of fragments per
axis B dynamically so that each block has an
approximately constant scale across videos (to
stabilize Singular Value Decomposition, SVD) and
avoids ragged edges when tiling the frame.

Let h=|H/B| and w=|W /B| be the block
height and width. We fix a target side length S
(typically 32 px) and a minimum acceptable side
S (typically 16 px). We search over:

, each of size hxw

B=2,...,B B :min(i,ﬂj.

Smin Smin

and choose the B minimizing the following cost:

[h—s|+w—s| ‘E_q
S " /11 w

X S
block close to target size  pjock squareness

(H mod B W mod Bj
4 B - B

edge raggendness

We typically use A =0.25,4, =0.5. If two
choices tie, we prefer the one with min(h, w).

For each block we compute the singular value
decomposition:

X 0D —y 0D 30y G
Zﬁ"” =diag (O't(vil’j),at(yiz'j) ) .

We retain only the dominant singular value
otV (Ky Fan 1-norm, equal to the spectral norm)

as a compact scalar descriptor of local structure-
contrast. In the research [23], SVD of the matrix and
the Ky Fan norm are proposed for scene change
analysis. An analysis of the effectiveness of the
obtained descriptor across various video data sizes
demonstrates that changes in the descriptor for each
fragment are independent of both the video
resolution and aspect ratio [24]. The rectangle frame
has been transformed into a square matrix by SVD,
where each element is a Ky Fan 1-norm value used
as an object detection descriptor Fig. 2 and Fig.3.

26073 25346 | 26832 | 39437 | 31740

28357 28541 | 30541 | 32808 | 34888
26634 25877 | 25215 | 26261 | 37434
20841 20849 | 22788 | 26400 | 32346

18208 18194 | 20437 | 22000 | 25540

Fig. 2. Sora generated video. The result of frame-by-frame processing is a new video source in a

grayscale model. Frame size is 1280x720. Fragments number is 25
Source: compiled by the authors

13792 11864

10121.3 6786.2

Fig. 3. LaVie generated video. The result of frame-by-frame processing is a new video source in a

grayscale model. Frame size is 512x320. Fragments number is 4
Source: compiled by the authors
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We chose, for example, real and synthetic
videos for better visual demonstration. The videos
have the same frame size, 1920x1080, and the same
number of fragments — 64. The fluctuations of the
Ky Fan norm for the real and synthetic video are
shown in the Fig. 4.

CONSTRUCTION OF THE 2-D S-MAP

Stacking the B* scalars in row-major order
yields the square S-map:

Thus each element S, of corresponds to one

spatial fragment of the frame. The mapping converts
a rectangular image into a fixed-size square
representation on which conventional 2-D operators
can be applied efficiently and uniformly across
frames.

To capture dynamics, we form the element-wise
absolute difference between consecutive S-maps:

aS, :|S, —S,_l|,t22.
We then produce a binary change mask by
robust thresholding:
M, =1{A.Sr >z'f},
t, =median(a8,)+z*1.4826* MAD(4S,),

with a typical choice z €[2.5,3.5]. Then we apply
Connected Component Labeling [25] (CCL) on the
binary change mask M, (4- or 8-connectivity) and

compute the area of the Largest Connected
Component (LCC). We report the normalized LCC:

maXCeC(M‘) |C| SM!
LCC. =\ sm' >0
0, otherwise
Where C(M‘) denotes  4-connected

components on the binary grid and |C| is the area

(number of ones). High LCC, indicates that

changes are localized in one dominant region; low
values indicate dispersed, flicker-like activity. The

sequence {LCC,} over the first T frames

constitutes a compact temporal descriptor. A hot
map visualization of the progress of the step-by-step
LCC calculation is presented in Figure 5.

The dominant singular value of a fragment
summarizes its principal contrast-energy while
invariant to orthonormal changes of basis within the
fragment. Aggregating o, over a grid yields a
compact square proxy of the frame’s local structure
(the S-map). Operating directly on S, with 2-D tools

(DCT) and LCC captures aS, respectively,
frequency-spatial organization and the spatial
concentration of scene change, producing robust,
low-dimensional time series suitable for downstream
statistical testing and discrimination.

We analyze fluctuations of the normalized
Largest Connected Component (LCC) in the binary
change mask (Fig. 6) built from the o1 S-map
because LCC is an interpretable, geometry-agnostic
proxy for the spatial concentration of structural
change, and it is more robust to pixel-level noise
than raw intensities.

Fig. 4. Ky Fan norm fluctuation for real and synthetic videos. The videos have the same frame size
1920x1080 and the same number of fragments is 64

Source: compiled by the authors
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Fig. 5. Hot map visualization of the progress of the step-by-step LCC calculation

Source: compiled by the authors
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LCC: time series
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Fig. 6. Real and synthetic video LCC fluctuation
Smooth interframe transitions, no interframe “hanging” of the scene, no mirror interframe transitions
for real video. Sharp interframe jumps from 0 to 1, indicating spikes, plateaus — “freezing” of the

scene, and symmetry in interframe transitions for synthetic video
Source: compiled by the authors

We selected the following descriptors for
analysis: extreme low-high jumps, plateau coverage
and length, quantization mass near rational levels,
lag-1 autocorrelation and Power Spectral Density
(PSD) [26] slope, and exceedance shares - capture
complementary signatures of temporal regularity and
blockwise coherence typical of generative pipelines,
enabling discrimination from real footage.

DESCRIPTORS DESCRIPTION

extreme_jumps_0tol is the number of "nearly
binary" low-to-high jumps between adjacent frames:

N
D 1{x_, < zero_epsAx >1-one_eps}
t=2
where zero_eps =0.08 and one_eps=0.08.

extreme_jumps_1to0 is the number of "nearly
binary" high-to-low jumps between adjacent frames:
N

Z 1{x;_1 =1 — one_eps A x; < zero_eps},
t=2
where zero_eps =0.08 and one_eps=0.08.
Plateau count is count of maximal contiguous

segments where per-step change stays within
tolerance and segment .length>min _len.

Segment condition |X, | < delta_tol : for all interior

steps. Where delta_tol=0.02 and min_len=3.
unique_levels_at_2dec is number of distinct
rounded levels occurring at least minimum count per

level times. Let r, =round(X,2), then number of
distinct rounded levels:

N
if V ={V:Zl{l’t =v}>min_c_ per_level}then[\/|
t=1

where min_c_per_level =2

unique_level ratio is normalized unique
levels: unique _levels _at_2dec/N.
plateau_fraction_len>=min is fraction of

indices covered by plateaus of length = min _len. If
plateau lengths are |, .....|

m*

where min _len = 3.
value_spike_mass_at_rationals is proportion
of frames whose value lies within eps_val of Q:

N
%gl{r?!é‘" —q|< eps_val} ,

where eps_val=0.02.

step_spike_mass_at target steps is
proportion of steps whose magnitude lies within
eps_step of S

ﬁil{ﬂi}l“% |—s|<eps _Sl‘ep} ,
=2

where eps_step=0.02.
Flicker index is mean absolute frame-to-frame
variation
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| -
—> |ax)|
N_lf:Z
acf lagl is Lag-1 autocorrelation (with
1
X=—22X):
N %)

thzz(Xt _K)(Xt—l _X) .
Zthl(Xt_X)z

psd_slope_lcc is log-log slope of the Power
Spectral Density (PSD) over a chosen high-
frequency band. Compute:

.P(f)(Welch), fit log,, P( f)=a+blog,, f;reporth

share gt 0 2 is fraction of frames with

X >0.2:
1 N
WZKXI >0.2).
t=1

share gt 0 6 is fraction of frames with

X >0.6:
1 N
t=1

extreme_jump_rate O0tol or_1to0 is rate of
extreme jumps in either direction. Let:

N

Co =D 1{X_ < zero_epsx <1-one_eps}
t=2

and

N
Cp = Zl{xt_1 >1-o0ne_epsAX, < zero_eps},
t=2
then
COl + C:10
N-1

plateau_len_mean is mean length of plateaus
that satisfy the criteria:

1 m
2l

plateau_len_p90 is 90th percentile of plateau
lengths:

percentile,, ({l,- })

We collected descriptors for all videos in the
dataset. Example in Table 1.

TP, TN, FP, FN ANALISYS

The dataset was analyzed using a standardized
logistic regression within stratified five-fold cross-
validation [27], yielding out-of-fold probabilities for
every item. Decisions were derived via (i) a global
0.5 threshold and (ii) group-specific thresholds per
fragments count selected on each fold’s training split
to maximize F1 and then applied to the held-out
split; performance against the ground truth (positive
= Real) was summarized by TP, TN, FP, FN and the
derived metrics — accuracy, precision, recall/TPR,
specificity/TNR, F1 — and ROC-AUC computed
from the out-of-fold probabilities.

We present our results in two tables: Table 2 is
the global dataset values of the TP, TN, FP, and FN,
and Table 3 is the values of the TP, TN, FP, FN
grouped by fragments count.

Accuracy is proportion of correctly classified
instances:

TP+TN

Accuracy = N

Precision (PPV) is positive predictive value
among predicted positives:

L
TP+FP’

Recall (TPR, Sensitivity) is True-positive rate
among actual positives:

Presision =

_T1P
TP+FN’

Specificity (TNR) is True-negative rate among
actual negatives:

Recall (TPR) =

TN
TN+FP

F1 score is harmonic mean of precision and
recall:

Specificity (TNR ) =

Fl— 2Precision - Recall

2Precision + Recall
ROC-AUC is area under the ROC curve obtained by
varying the decision threshold over the score
p(Real). Equivalently, the probability that a

randomly chosen positive receives a higher score
than a randomly chosen negative:

AUC = [ TPR(FPR)d(FPR) =Pr(s" >5).
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Table 1. Part of dataset: Descriptor values for real and Al-generated video

Frame size is 1920x1080 Frame size is 1280x720
Descriptors 64 fragments (8x8) 25 fragments (5x5)
Real Video Al video Real Video Al video
share_gt 0_2 0.969697 0.616162 0.979798 0.30303
share_gt 0_4 0.545455 0.505051 0.727273 0.292929
share_gt 0_6 0.232323 0.343434 0.343434 0.232323
extreme_jump_rate_Otol or_1to0 0 0.244898 0 0.27551
extreme_jumps_0tol 0 16 0 14
extreme_jumps_1to0 0 8 0 13
plateau_fraction_len>=min 0.060606 0 0.040404 0.626263
plateau_len_mean 3 0 4 5.166667
plateau_len_p90 3 0 4 9.7
plateau_count 2 0 1 12
value_spike_mass_at_rationals 0.747475 0.949495 0.636364 1
step_spike_mass_at_target_steps 0.244898 0.622449 0.142857 0.397959
unique_levels_at 2dec 19 10 23 5
unique_level _ratio 0.191919 0.10101 0.232323 0.050505
flicker_index 1.308911 1.487255 1.187022 1.345981
acf_lagl 0.105166 -0.11014 0.301763 0.099724
psd_slope_lcc -0.22619 -0.25544 -0.90881 -0.35386
Source: compiled by the authors
Table 2. Global dataset values of the TP, TN, FP, FN
. Recall e ROC
TP | TN | FP | FN | Accuracy | Precision TPR Specificity NR F1 AUC
51 | 136 | 8 23 | 0.857798 | 0.864407 | 0.689189 0.944444 0.766917 | 0.85914
Source: compiled by the authors
Table 3 The TP, TN, FP, FN values grouped by fragments count
Frag. | Files . Recall | Specificity ROC
count | count TP | TN | FP | FN | Accuracy | Precision TPR TNR F1 AUC
4 33 0 |30 0 1 1
9 3 03|00 1 1
16 1 0|1 |00 1 1
25 79 | 27|37 | 2 | 13 | 0.810127 | 0.931034 | 0.675 | 0.948718 | 0.782609 | 0.837821
36 38 0 [38|0]|0 1 1
64 37 3 123 | 4 | 7 |0.702703 | 0.428571 | 0.3 0.851852 | 0.352941 | 0.466667
100 1 0|1 |00 1 1
121 4 31001 0.75
256 22 18| 0 | 2 | 2 |0.818182 0.9 0.9 0 0.9 0.325
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Source: compiled by the authors

Where s* and s~ s~ are scores for positive and
negative instances, respectively. In our evaluation,
scores were the out-of-fold probabilities p(Real)

from stratified 5-fold logistic regression; metrics
were computed either at a global 0.5 threshold or at
group-specific thresholds per “fragments count”
selected on the training split.

The datasets source videos have multiple
resolutions and aspect ratios. Video data with frame
sizes of 1280x720, 1920x1080, and 3840x2160 have
a better ratio of real and synthetic videos in quantity,
and as a result, the calculated F1 and ROC AUC are
more accurate.

CONCLUSIONS

Our approach converts each frame into a
compact, square o1 S-map via fragment processing,
reducing dimensionality while retaining the salient

information about inter-frame structural change.
Operating on this low-resolution field and its
normalized Largest Connected Component (LCC)
dynamics, the  method detects temporal
inconsistencies characteristic of synthetic video
without relying on dense pixel-level motion or heavy
end-to-end models. Computationally, it s
lightweight: per frame it requires fragmentwise
rank-1 SVDs and connected-component labeling on
a small BxB grid, yielding near-linear cost in B and

modest memory — practical for batch screening or
edge deployment.

On the evaluated dataset, the fragment-based
pipeline attains OOF ROC-AUC = 0.86 and TNR =
0.94, i.e., a high correct-rejection rate for synthetic
videos with few false accepts as “real,” while
maintaining interpretability  through  simple,
auditable descriptors (extreme jumps, plateau
statistics, quantization mass, ACF/PSD). Per-group
thresholding by “fragments count” further improves
recall in weaker strata with minimal specificity loss,
demonstrating that calibration to spatial granularity
is beneficial. Because the representation is
resolution-agnostic, it generalizes across native
video sizes; nonetheless, performance estimates are
most reliable in strata with balanced class ratios
(e.g., 1280%720 with 5x5 fragments). Overall, the
results support LCC-based fragment analysis as an
efficient, interpretable, and effective basis for
practical discrimination between synthetic and real
video, with headroom for gains via lightweight
spatial-spectral add-ons (e.g., DCT energy) and
expanded calibration.

DECLARATION ON GENERATIVE Al

The authors have not employed any Generative
Al tools.
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AHOTALIA

HerofaBHi JOCSATHEHHS B T'€HEPATHBHOMY INTYYHOMY IHTENIEKTI MPHU3BENH 10 PO3POOKH METOIIB CTBOPECHHS Bi3yalbHO
PEaNiCTHYHOr0 CHHTETHYHOTO Bigeo. SIK HACHIZOK, 3pOCTaE MOMUT Ha JETEKTOPH, 3[aTHI PO3PI3HATH BiJI€O, 3reHEPOBAH] IITYYHUM
iHTenekToM. Y il CTarTi MM MPOMOHYEMO KOMIIAKTHE, (hparMeHTapHe Mpe/CTaBICHHS BiICOKaIpiB, SKE JO3BOJSE MPOBOAUTH
HaJiHHUI TPOCTOPOBO-4aCOBHUI aHai3 Ta HOBUH Ii/IXi/l 10 PO3PI3HEHHS PealbHUX Ta CHHTETHYHO 3reHEPOBaHMX BiJeoMarepiaitis.
JIist TOCATHEHHS 1€l METH KOXKEH KaJp pO3ALIAEThCs Ha (hparMeHTH Ta GOpMyeThCst KBaJpaTHa MaTpuIls po3mipom BxB. Jlani Mu
00YHCITIOEMO JIOMiHAHTHE CHHTYIISIpHE 3HAUCHHS YIS KOKHOTO (hparMeHTy, 1o Jae KBaapaTHy S-kapty. Ls KoHCTpyKIis 36epirae
JIOKAIBbHY CTPYKTYpPY, HOPMali3ylOud T€OMETpilo, TOMY CTaHAapTHi 2D-omeparopu MOXXHA 3acTOCOBYBATH DiBHOMIpHO. Mu
aHaJIi3yeMO MPOCTOPOBY OpraHi3alliio 3a JOMOMOrolo eHeprii 2D-auckperHoro kocunycHoro nepersopenss (DCT) Ta yacoBux 3MmiH
3 HaAifiHUM [OPOTOBHM pEryNloBaHHAM i (popmyBaHHSA OiHapHOI Macku 3MiH. [IOTiM MM 3aCTOCOBYEMO MapKyBaHHS 3B'SI3HHX
xomnoHeHTiB (CCL) no 6inapHOT Macku 3MiH (4- a60 8-3B'I3HICTB) Ta 0OYHCITIIOEMO IOy HaiO1IbIIol 3B's13H01 KoMmoHeHTH (LCC).
Mu otpumyemo yacoBuid psig LCC, sikuii BUMiprO€ IPOCTOPOBY KOHIIGHTPALIil0 3MiH. EMITIpUYHO, CHHTETHYHI BiZJeO IEMOHCTPYIOTh
BHUIL TOKa3HUKM IepeMuKaHHs Maibke OinapHoro LCC, moBmi maro, 30iIbIIEHYy Macy Ha palliOHAIBHHX KpPOKaxX Ta MEHIIY
KiUJIBKICTh YHIKaJBHUX DIBHIB, HDXK peajibHi BiI€0 — CHUTHATYpPH, IO Y3TOKYIOTHCS 3 YaCOBHUM KBAaHTYBAHHSM Ta MPOLEIYPHOIO
muHaMikoro. KouBeep € jerkum (¢parmentHo-panroBuid SVD + CCL Ha Mmamiif citii), JIeTKO IHTEPHPETYEThCS ISl ayOuTy Ta
MiAXOIUTh JUIsl TAKETHOrO CKPHHIHTY Ta mepudepiiinux npucrpoiB. Bin gocsrae ROC-AUC ~ 0,86 ta TNR = 0,94 na HaGopax
JaHUX 31 3MIIIAHOI0 PO3IIIBHOIO 3[aTHICTIO 3 JOATKOBUMH IepeBaraMy BiJl KaliOpyBaHHs Ha PiBHI TPaHYIISIPHOCTI.
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