
Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

DOI: 10.15276/hait 03.2020.1 113

DOI: 10.15276/hait 03.2020.1

UDK 004.021

Reducing the search area of genetic algorithm using neural
network autoencoder

Oleksandr V. Komarov
Odessa National Polytechnic University, Odessa, Ukraine

ORCID: https://orcid.org/0000-0001-7651-6300

ABSTRACT

 The article discusses the problem of developing a genetic representation for solving optimization problems by means of genetic

algorithms. Traditionally, a genotype representation is a set of N features that defines an N-dimensional genotype space in which

algorithm performs a search for the solution. Due to the non-optimal choice of features, the genotype space becomes redundant, the

search area for a solution unnecessary increases, which slows down the convergence to the optimum, and leads to the generation of

infeasible candidates for the constraints of the problem. The reason for this is the desire to cover all legal candidates for solution of

the problem by the search area, since the optimum is feasible by the conditions of the problem. In constrained optimization problems,

to find the optimum, it would be sufficient to cover only the area of feasible candidates that fall within the constraints specified by

the problem. Since the set of feasible candidates is smaller than the set of all legal candidates, the search area may be narrower. The

search area can be reduced by obtaining a more efficient set of features that is representative of the set of feasible solutions. But in

the case of a small amount of domain knowledge, developing of an optimal feature set can be a nontrivial task. In this paper, we

propose the use of feature learning methods from a sample of feasible solutions that fall under the constraints of the optimization

problem. A neural network autoencoder is used as such a method. It is shown that the use of the preparatory stage of learning a set of

features for constructing an optimal genotype representation allows to significantly accelerate the convergence of the genetic process

to the optimum, making it possible to find candidates of high fitness for a smaller number of iterations of the algorithm.

Keywords: genetic algorithm; feature engineering; neural network autocoder; search area; optimization problem

For citation: Komarov O. V. Reducing the search area of genetic algorithm using neural network autoencoder. Herald of Advanced

Information Technology. 2020; Vol.3 No.3: 113–124. DOI: 10.15276/hait 03.2020.1

INTRODUCTION

Genetic algorithms have proven to be effective

optimization methods that provide directed random

search on complex surfaces. By combining elements

of directed and random search, genetic algorithms

offer a good balance between exploration and

exploitation of the search area.

However, it was shown that genetic algorithms

demonstrate a low convergence rate in combinatorial

optimization problems [1]. The resource intensity of

genetic algorithms strongly depends on the size of

the solution search area [2–3]. For a number of

problems, the search area in genetic algorithms

increases critically with an increase in the size of the

input data, up to exponential growth [4].

Genetic methods work simultaneously in the

genotype and phenotype spaces. The phenotype is

the desired type of solution, and the genotype is its

encoded representation. The search for solutions and

their transformations are performed in the genotype

space, whereas the assessment and selection of the

obtained solutions are performed in the phenotype

© Komarov O. V., 2020

space. Genotype to phenotype mapping is performed

using the decoding operation.

The phenotype space can be basically divided

into areas of legal and illegal solutions. Any object

of the phenotype space that can be considered as a

solution to the problem is considered a legal

solution.

Within the area of legal solutions the area of

feasible solutions can be distinguished. In

constrained optimization problems this area is

defined by the constraints of the problem. The

desired optimal solution is located within this area

(Fig. 1).

Although fitness function can be determined on

the genotype space, it usually can be calculated only

in the phenotype space. In constrained optimization

problems, the domain of definition of a fitness

function is most often the domain of feasible

solutions, and the constraints of the problem

determine either the coefficients of the fitness

function or additional terms that define the domain

of feasible solutions.

When using genetic approaches, the choice of

the search area is one of the important problems,

along with other aspects, such as the choice of the

selection strategy, the constitution of the initial state

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

114 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

and size of the population, the mutation chance etc.

A badly selected search area leads to the following

problems: the appearance of illegal, infeasible, or

equivalent genotypes that map to the same

phenotypes.

In genetic algorithms, the main resource costs

are the resource costs of calculating the fitness

function [5]. Therefore, when developing genetic

methods, it is efficient to aim to reduce the number

of algorithm iterations, thus reducing the number of

estimations of the fitness function. The presence of a

large number of infeasible and equivalent genotypes

significantly inhibits convergence, “stretching” it

over a large number of iterations of the algorithm.

Thus, to enhance the performance of the genetic

algorithm, it is crucial to pay special attention to the

choice of the solution search area.

LITERATURE REVIEW

There is a large number of works devoted to the

problem of choosing a search area. The approaches

used in them notably differ, but some general

outlines can be pointed out: heuristic methods

(elimination of infeasible solutions) [6–7], the

development of new genetic operators [8–9], the

development of selection and crossover strategies

based on systems of penalties and rewards [10–11].

The main goal of such methods is the so-called

feasibility preservation, an approach according to

which, once the algorithm reached the area of

feasible solutions; it must continue the search within

it, avoiding generation of infeasible solutions. Such

methods show good results, but they do not perform

any operations on the search area itself. Thus, the

risk of generation of the infeasible solutions

remains.

There are methods that rely on preliminary

investigation of the search area and the exclusion of

knowingly infeasible areas [12]. Such techniques

can be combined with heuristics and specific genetic

strategies to improve performance. To limit such

negativistic behaviour, the method has to retain any

areas that have a chance of containing the optimum,

or risk the elimination of it.

Much more popular is the opposite approach,

which could be called positive. It focuses on

exploring the area of feasible solutions in order to

build a search area in it. This is usually

accomplished by creating a new genetic

representation.

It is shown that efficiency can be improved not

only with the help of genetic operators, but also with

the help of representations [13].

Traditionally, the search area is an N-

dimensional space, where N is the number of

features with which the genotype of the solution is

encoded. An arbitrary vector in this space is

considered as the genotype of the some solution.

Non-optimal coding thus leads to unnecessary

expansion of the search area.
The main method of genotype coding is the

binary representation of the phenotype [14], but it

has been shown that this method has a number of

significant disadvantages [1]. The direction of

research in this area concentrates on the search for a

shorter set of features that are significant only for

legal and feasible solutions. By constructing such a

set of features, it is possible to reduce the search area

to a set that excludes illegal and infeasible solutions,

and also to close genetic operators on the desired

subset of solutions.

The extraction of features can face many

difficulties caused by the existence of hidden

internal connections in these solution sets. An

effective way to overcome this problem is to build

knowledge-rich representations [15–16].

Fig. 1. Mapping between from genotype to phenotype spaces

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)
 115

This problem is successfully solved for special

cases by developing specialized feasible

representations [5–6; 17–22]. Such representations

may differ in structure and may require the use of

unique genetic operators [9], which does not allow

to design a general approach.

An attempt to propose a universal

representation in a restricted domain was made in

[23]. However, this method still assumes possession

of knowledge about the feasible solution area.

The use of domain-dependent knowledge is a

significant disadvantage of all these methods, since

it implies the need of involving experts, which can

be expensive, or even impossible for some cases.

There is a need for domain-independent methods for

engineering an optimal set of solution features.

FORMULATION OF THE PROBLEM

A solution representation (or genotype

representation) is a set of N features. This set defines

the N-dimensional space of genotypes, which is

mapped into the space of phenotypes using some

function. In the classical genetic algorithm, the

solution search area for is the entire genotype space.

A good genotypic representation can be

characterized by five main properties:

nonredundancy, legality, completeness, Lamarckian

property and causality [1].

Three of these properties have a direct impact

on the size of the search area: nonredundancy,

legality and completeness. Nonredundancy requires

the absence of equivalent genotypes (genotypes that

map to the object in the phenotype space) in the

search area. Legality requires that any genotype

could mapped to a phenotype that can be solution of

the problem. The completeness property requires

that for every possible solution of the problem there

is a corresponding genotype.

Although a legality and completeness property

doesn’t formally contradict each other, representation

development usually faces a conflict between them.

Usually, especially in the absence of domain

knowledge, the developer prefers completeness in

order to provide a search across the entire set of

possible solutions. Representations build in this way

often violate the legality and nonredundancy

requirements. It is this problem that developers usually

try to overcome by designing new operators, strategies

and heuristic improvements of the genetic process.

Note that if the illegality and redundancy of

genotypes is a consequence of a redundant set of

features, the nature of infeasibility originates in

constraints of the optimization problem [1]. Note also

that the desired optimum, by definition, is contained in

the area of feasible solutions. Therefore, we can

replace the completeness property with the weaker

requirement of feasible completeness, which states that

there is a genotype for every feasible solution. Having

designed a new representation based on the weakened

requirement, we can narrow the search area around the

set of feasible solutions, and also ensure the closure of

genetic operators in the area of legal (and ideally,

feasible) solutions (Fig. 2).

To build such a representation without domain-

dependent knowledge, it is necessary to apply the

methods of feature learning.

One of the most popular feature learning

methods is a neural network autoencoder. Neural

networks built on such architecture are capable of

non-supervised training, extracting only the most

essential properties from the input data [24–28]. It is

shown that the neural network autoencoder

effectively solves the problem of learning features

[29–30], and it is successfully used for a number of

practical problems [31]. Applying a neural network

autoencoder on a representative set of feasible

solutions, we can learn some important features of

solutions in this area, and use them to build a

genotype representation.

Therefore, the goal of our study is to develop a

genetic method for solving an optimization problem

on a reduced search space generated by a set of

features extracted from a sample of feasible

solutions using a neural network autoencoder.

MAIN PART. METHOD DESCRIPTION

The proposed method consists of two stages. At

the first stage, the solution features of the desired set

are extracted. This stage involves the use of a neural

network autoencoder with a narrow central layer, on

which a set of genotype features will be learned

during training. This is a preparatory step that is

performed once for each given search area. At the

second stage, the genetic algorithm is launched to

solve the optimization problem.

A neural network autoencoder is an artificial

neural network of symmetric architecture that learns

to reproduce the data from the input layer on the

output layer [24]. With a special layer called the

central layer, the structure of the autoencoder is

divided into two parts, an encoder and a decoder. By

changing the size of the central layer, a more

redundant or less redundant image of the input data

can be obtained on it.

Figure 3 shows an example of an autoencoder

with an input and output layers that consist of 4 X and

4 X' nodes and a centre layer of 2 Y nodes. Nodes Z

and Z' constitute the internal hidden layers.

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

116 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Fig. 2. Mapping of the search area into the phenotype space from the genotype space of high

dimensionality with completeness (top) and the genotype space of low dimensionality with feasible

completeness (bottom)

Using of additional internal layers, along with the

central one, has a positive effect on the training of the

autoencoder: it provides better data compression and

allows decreasing the amount of training data needed

[24].

During the training of the autoencoder, all

network nodes, except for the input layer X, are

neurons, which are nonlinear functions f of the sum Σ

of the set of input signals xi weighted by the weights wi

(Fig. 4) [24]. However, after training, the network is

disunites, and two new networks are formed from the

trained layers: an encoder and a decoder.

The subnet from nodes X to nodes Y is an

encoder. It can produce a compressed image of the

input data. In the architecture of the autoencoder and in

the architecture of the encoder derived from it, the

nodes Y are neurons, the activation function of which

is usually chosen depending on the desired type of

output data image. For example, a sigmoidal activation

function (followed by rounding) can be used to

generate a binary vector image.

The subnet from nodes Y to nodes X' forms the

decoder. In the decoder, the layer of Y nodes is not a

layer of neurons, but instead replaced by an input layer.

Due to this, the decoder is able to restore the original

form of the input data image, or to obtain a vector close

to it. In this regard, the activation function of layer X' is

also selected in such a way as to best cover the range of

values of the original dataset, which came to layer X

during training of the autoencoder.

Reducing the redundancy of information on the

input layer using architecture with a narrow central

layer is achieved by identifying non-obvious structural

relationships in the input data of the training set. Thus,

the training sample should be representative of some

class of solutions in which we want to find such

connections.

We assume that in the legal (or feasible) area of

solutions unites solutions of a certain type, the

connection between which is not obvious. In order to

correctly extract a set of features, we need a

representative sample of legal (or feasible) solutions.

A training sample for a neural network

autoencoder can be obtained using the binary

representation of a set of feasible phenotypes. Now,

having trained the autoencoder with a narrow center

layer on this sample, we can use the center layer as a

genotype representation, which is a binary feature

vector. This feature vector as well as the trained

encoder and decoder are the results of the first stage.

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)
 117

Fig. 3. An example of the architecture of a neural network autoencoder with a narrow central layer

Fig. 4. Artificial neuron model:

xi – input values; wi – their weight coefficients,

summator Σ, activation function f and

output value y

At the second stage, a direct genetic search for a

solution is performed. Upon initialization of the

algorithm in the search area, defined as the space

generated from learned features, a generation of

random individuals is created. The population is

projected into the phenotype space by a decoder to

evaluate individuals using the fitness function. Each

individual gets a fitness rating, and all subsequent

genetic operations (selection, crossover, mutation) are

performed in the genotype space. The process repeats

until a solution with the desired fitness value appears at

the decoder. The chosen approach of representing

solutions allows application of any classical genetic

operators.

The overall flowchart of the algorithm is shown in

Fig. 5.

The first and main limitation of this method is the

need for a representative sample of the set of legal

(feasible) solutions. This condition cannot be met for

some tasks. Nevertheless, there are a number of tasks

for which it seems possible to form such a sample.

Another drawback of this method is the duration

of the preliminary first stage of training, which in

some cases may be comparable to the duration of the

second stage. Here we note that this problem is most

relevant for situations where the search for a solution

must be carried out once for a given fitness function

and a given legal (feasible) area. We assume that such

tasks, firstly, are quite rare, and secondly, they are

rarely demanding in terms of execution time. On the

other hand, solving problems that require frequent

launches of the algorithm naturally increases attention

to the duration of actual genetic search. The more

often search is needed, the less significant the cost of

the first stage becomes.

A particular difficulty is the determination of the

number of required features, i.e. the size of the central

layer of the autoencoder. It is obvious that the larger

the size of the feature vector, the larger the search

area will be. At the same time, by choosing a too

small feature vector we noticeably reduce the variety

of solutions available in such a search area, up to the

point when representation becomes less diverse than

the training sample. In such case training of the

autoencoder cannot be performed. We proceed from

the assumption that the variety of solutions in the

search area exceeds the variety of the training sample,

since otherwise the optimal solution would be

contained in the training sample, and it could be

found by a simple brute force.

Composition of optimal autoencoder architecture

could be a difficult task itself. The specific parameters

of this network should be determined by the nature of

the task. To configure the autoencoder, we should

seek general recommendations on the architecture and

training of neural network autoencoders in dimension

reduction and feature learning tasks [24; 26–27].

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

118 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Fig. 5. Flowchart of a genetic algorithm using an autoencoder

Note that the proposed method does not conflict

with other methods of improving the performance of

genetic algorithms, such as the development of

genetic strategies, operators, and some heuristic

approaches, so they can be applied along with each

other.

EXPERIMENT

For the experiment, the task was set to draw

black and white images of handwritten decimal digits.

Such a task may be faced, for example, in the system

of automatic generation of captcha images. The

desired solution to the problem is a black and white

image of 28 × 28 pixels, which can be visually

recognized as the indicated digit.

With use of a fitness function that performs

visual recognition of a digit; such a problem can be

solved by means of a classical genetic algorithm.

Having generated random binary vectors with a

length of 784 bits (which can be transformed into 28

× 28 binary matrices), by selecting the most “similar"

to the desired digit ones, and subsequently

recombinating their content, it is possible to recreate

an image acceptable for recognition as such digit.

However, it's easy to assume that with such a trivial

solution coding, when the genetic representation is

just a complete set of pixel values, the number of all

possible combinations is extremely large. Search for

the feasible solution in such a search area can be long.

At the same time, such images can be easily

compressed, which leads us to the assumption that the

desired solutions can be encoded in a more efficient

way. The same genetic process performed on smaller

vectors and then converted to a full-size 28x28 pixel

image may be faster due to the fewer possible

combinations. If we get a representative sample of

feasible solutions, we can train the autoencoder and

learn a less redundant set of features that will form the

structure of our new, more efficient genetic

representation.

As a sample of feasible solutions the MNIST set

of handwritten numbers was used [32]. The images

were pre-binarized to meet the conditions of the

problem.

 To conduct experiments, we will train several

autoencoders on a common architecture with different

size of the central layer: 128, 64 and 32 bits,

respectively. The autoencoder consists of 5 inner

layers. The input and output layers are composed of

784 neurons which correspond to 784 pixels of the

image. The size of the remaining layers, starting from

the central one, doubles, two times in each direction

(Fig. 6). To ensure compatibility with binary coding,

after learning the decoder, the center and output

layers use the sigmoidal function as the activation

function. Autoencoders have been trained over 50

epochs with 60,000 entries and a test sample of

10,000 entries.

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)
 119

Fig. 6. Structure of an autoencoder with a central layer of size N

The fitness function is based on the fast

normalized cross-correlation method [33], which has

been successfully used to find patterns in images [34].

The fitness of an image σ is determined by the degree

of similarity to a given handwritten digit. To assess this

similarity, a set E of pattern images ε is selected from

the MNIST dataset, which depict this digit. The fitness

value of the image σ is the arithmetic mean of the

values of the normalized cross-correlation coefficient

calculated between σ and each pattern image ε

belonging to the set E and is calculated by the formula

(1), where x and y are the coordinates of the image

yx yx

yx

yxyx

yxyx

E
Ef

, ,

22

,

)),(()),((

)),()(),((1
),(

.(1)

The experiment was carried out in four

configurations.

In the first configuration, a trivial genetic

representation that encodes an image with a vector of

784 values was used. It is structured as follows. By

the condition of the problem, the image σ is

represented by a binary matrix consisting of 28 rows

and 28 columns, each element of which represents the

brightness value of one pixel of the image, where 0

represents a black point and 1 represents a white

point. The genetic representation of the matrix σ will

be a vector s, each element of which is s (l) = σ(l⊕28,

l⊙28), where ⊕ is an integer division operation and

⊙ is a modulo division operation.

The other three configurations were carried out

using genetic representations obtained via feature

learning by the autoencoder. These representations

are vectors of 128, 64, and 32 bit lengths respectively.

At the beginning of the genetic process, the

population of random individuals of the given genetic

representation is formed. These representations are

determined by the configuration.

To bring these genetic representations to a form

that is appropriate for calculating the fitness function,

i.e. to a phenotypic representation, additional

transformations are required. This decoding is carried

out for the each generation of the population (Fig. 7).

In a configuration with a trivial genetic

representation, for decoding, it is enough to map a

vector of 784 bit length to a 28×28 matrix by

sequential extraction of its rows. That is, for the

vector s, construct a matrix σ, in which each of its

elements σ(x, y) = s (28 ∙ (x − 1) + y). Further, each

element equal to 0 is considered a black point, and

each element equal to 1 is considered a white point.

In the case of configurations with

representations based on sets of learned features,

phenotype decoding firstly requires restoring of the

representation dimensionality.

To do this, each individual represented by a

vector of 128, 64 or 32 bit length (the length depends

on the chosen configuration) is fed to the input layer

of the corresponding decoder, on the output layer of

which a full-size vector of 784 bit length is formed,

corresponding to a trivial genetic representation. This

vector is further reduced to a two-dimensional 28×28

matrix according to the previously indicated

procedure.

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

120 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Fig. 7. Genotype representation decoding

Figure 8 shows the graphs of the ftiness growth

of the generated images depending on the number of

iterations performed. The genetic process on

chromosomes with a learned feature set tends to high

fitness values much faster. Note also that convergence

increases with decreasing representation

dimensionality.

Figure 9 shows the successive steps of

generating an image of the digit 3.

As you can see, genetic method with a trivial

representation requires at least 20-30 iterations,

before a visually distinguishable image is achieved.

At the same time, a sufficiently large number of

noises are retained in the image. It will take at least 20

more iterations of algorithm to get rid of it.

At the same time, an algorithm with genetic

representations based on a learned feature set

generates images close to a distinguishable image of

a digit from the very first iterations. Through the

course of iterations only the correct shape of the

pattern is selected, and the images are free of noise.

CONCLUSIONS

A new genetic method for solving

optimization problems on a reduced search area

was proposed. The reducing of the search area is

achieved by constructing a feasible genotype

representation by learning the features of feasible

solutions using a neural network autoencoder. It is

shown that due to the generation of a less

redundant presentation, it is possible to achieve a

reduction in the number of algorithm iterations

required to find a solution of the desired fitness.

The use of feature learning methods is possible

due to the development of a new set of

requirements for genotype representations.

Replacing the strict requirement of legal

completeness with a weaker requirement of feasible

completeness allows to reduce the set of possible

candidates and focus primarily on the most

promising solutions.

Fig. 8. Fitness growth of the best individuals of the population during the first 30 iterations of

performing a search by the genetic method with learned (AE) and trivial (T)

genetic representations

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)
 121

Fig. 9. Stages of generating an image of the digit 3 using learned representations (AE) for 10 iterations

(top), and trivial representation (T) for 50 iterations (bottom)

The disadvantage of the proposed method is

the necessity of a preparatory stage for feature

learning, as well as the necessity of a representative

sample of feasible solutions. These disadvantages

limit the field of application of the method.

However, technologies and systems that use genetic

search for a solution actively and regularly were

chosen as the target ones. With a large number of

launches of the genetic method, the duration of a

single preparatory stage becomes insignificant.

The positive result of the proposed method

opens up an opportunity for further research.

The first direction of research should be the

application of other feature learning methods. In

this sense, the use of generative models is of

particular interest.

The second direction of research is the

development of modifications of the method that

ensure fulfilment of the feasible completeness

requirement. The method presented in this article

can still exclude some feasible solutions, including

the global optimum, even if its neighbourhood is

kept within the search area.

REFERENCES

1. Gen, M. & Cheng, R. “Genetic algorithms and engineering optimization”. New York. Wiley-

Interscience. 2008. 512 p. DOI: 10.1002/ 9780470172261.

2. Baraka, H. A., Eid, S., Kamal, H. & Abdel Wahab, A. H. “Unified chromosome representation for

large scale problems”. In Multiple Approaches to Intelligent Systems, Berlin, Heidelberg: Springer Berlin

Heidelberg. 1999. p. 753–760. DOI: 10.1007/978-3-540-48765-4_80.

3. Jacob, B. L. “Composing with Genetic Algorithms”. Proceedings of the International Computer

Music Conference. Banff, Canada: 1995. p. 452–455.

4. Bellgard, M. I. & Tsang, C. P. “Harmonizing music the Boltzmann way”. Connection Science. 1994;

6(2–3): 281–297. DOI: 10.1080/09540099408915727.

5. Komarov. O., Galchonkov. O., Nevrev. A. & Babilunga, O. “Consonant chord model of musical

compositions for harmonizing melodies by a genetic algorithm”. Odes’kyi Politechnichnyi Universytet

Pratsi. 2018; 3(56): 63–79. DOI: 10.15276/opu.3.56.2018.07.

6. Ebrahimi Moghaddam, M. & Bonyadi, M. R. “An immune-based genetic algorithm with reduced

search space coding for multiprocessor task scheduling problem”. International Journal of Parallel

Programming. 2012; 40(2): 225–257. DOI: 10.1007/s10766-011-0179-0.

7. Srinivas, M. & Patnaik, L. M. “Learning neural network weights using genetic algorithms-improving

performance by search-space reduction”. Proceedings of 1991 IEEE International Joint Conference on

Neural Networks. 1991. p. 2331–2336. DOI: 10.1109/IJCNN.1991.170736.

8. Chen, S. & Smith, S. “Improving Genetic Algorithms by Search Space Reduction (with Applications

to Flow Shop Scheduling)”. In GECCO-99: Proceedings of the Genetic and Evolutionary Computation

Conference. San Francisco, United States: Morgan Kaufmann. 1999. p. 13–17.

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

122 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

9. Freitas, A. R. R. & Guimaraes, F. G. “Melody harmonization in evolutionary music using

multiobjective genetic algorithms”. Proceedings of the 8th Sound and Music Computing Conference. Sound

and Music Computing network. 2011. p. 346–353. Available from:

http://www.alandefreitas.com/en/papers/melody-harmonization-in-evolutionary-music-using-multiobjective-

genetic-algorithms-2011-padua. [Accessed 17th September 2020].

10. Gen, M. & Cheng R. “A survey of penalty techniques in genetic algorithms”. In Proceedings of

IEEE International Conference on Evolutionary Computation. Nagoya, Japan: 1996. p. 804–809.

11. Yeniay, O. “Penalty function methods for constrained optimization with genetic algorithms”.

Mathematical & Computational Applications. 2005. 10(1): 45–56.

12. de Melo, V. V., Delbem, A. C. B., Pinto, D. L. & Junior Federson F. M. “Improving global

numerical optimization using a search-space reduction algorithm”. Proceedings of the 9th Annual

Conference on Genetic and Evolutionary Computation – GECCO ’07. Publ. ACM Press. New York, USA:

2007. p. 77–82.

13. Chen, C.-F., Wu, M.-C., Li, Y.-H., Tai, P.-H. & Chiou C.-W. “A comparison of two chromosome

representation schemes used in solving a family-based scheduling problem”. Robotics and Computer-

Integrated Manufacturing. 2013; 29(3): 21–30. DOI: 10.1016/j.rcim.2012.04.009.

14. Holland, J. H. “Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence”. Cambridge, USA: Bradford Books. 1992. 228 р.

15. Janikow, C. Z. “A knowledge-intensive genetic algorithm for supervised learning”. Machine

Learning, 1993; No.13: 189–228. DOI: 10.1007/BF00993043.

16. Togelius, J., Yannakakis, G. N., Stanley, K. O. & Browne C. “Search-based procedural content

generation: A taxonomy and survey”. IEEE Transactions on Computational Intelligence and AI in Games.

2011; 3(3): 172–186. DOI: 10.1109/TCIAIG.2011.2148116.

17. Korkmaz, E. E., Du, J., Alhajj, R. & Barker K. “Combining advantages of new chromosome

representation scheme and multi-objective genetic algorithms for better clustering”. Intelligent Data

Analysis. 2006; 10(2): 163–182. DOI: 10.3233/IDA-2006-10205.

18. Mesquita, A., Salaza, F. A. & Canazio P. P. “Chromosome representation through adjacency matrix

in evolutionary circuits synthesis”. Proceedings 2002 NASA/DoD Conference on Evolvable Hardware. IEEE

Comput. Soc., Alexandria. VA, USA: 2003. p. 102–109. DOI: 10.1109/EH.2002.1029872.

19. Yusof, U. K., Budiarto, R. & Deris S. “Constraint-chromosome genetic algorithm for flexible

manufacturing system machine-loading problem”. International Journal of Innovative Computing,

Information and Control. 2012; Vol. 8 No. 3A: 1591–1609.

20. Tai, K. & Wang, N. “An enhanced chromosome encoding and morphological representation of

geometry for structural topology optimization using GA”. 2007 IEEE Congress on Evolutionary

Computation. Singapore. 2007. p. 4178–4185. DOI: 10.1109/CEC.2007.4425016.

21. Linden, D. S. “Using a real chromosome in a genetic algorithm for wire antenna optimization”.

IEEE Antennas and Propagation Society International Symposium 1997. Digest. IEEE. 2002. p. 1704–1707.

DOI: 10.1109/APS.1997.631505.

22. Lee, J.-Y., Seok, J.-H. & Lee, J.-J. “A chromosome representation encoding intersection points for

evolutionary design of fuzzy classifiers”. Intelligent Automation & Soft Computing. 2012; 18(3): 237–246.

DOI: 10.1080/10798587.2008.10643240.

23. Koziel, S. & Michalewicz, Z. “Evolutionary algorithms, homomorphous mappings, and constrained

parameter optimization”. Evolutionary Computation. 1999; 7(1): 19–44. DOI: 10.1162/evco.1999.7.1.19.

24. Goodfellow, I., Bengio, Y. & Courville, A. “Deep Learning”. Mass. MIT Press. Cambridge, USA:

2016. 800 p.

25. Buduma, N. & Locascio, N. “Fundamentals of deep learning”. CA: O’Reilly Media. Sebastopol,

California, USA: 2017. 298 р.

26. Bengio, Y. “Learning Deep Architectures for AI”. Foundations and Trends in Machine Learning.

Hanover, MD, Berkeley, USA: 2009; Vol. 2 No. 1: 1–127. DOI: 10.1561/2200000006.

27. Bengio, Y. “Deep Learning of Representations for Unsupervised and Transfer Learning”.

Proceedings of ICML Workshop on Unsupervised and Transfer Learning, in PMLR (27). 2012. p. 17–36.

JMLR Workshop and Conference Proceedings.

28. Bengio, Y., Courville, A.C. & Vincent, P. “Representation Learning: A Review and New

Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence. New York, USA: 2013;

Vol.35 No.8: 1798–1828.

http://www.alandefreitas.com/en/papers/melody-harmonization-in-evolutionary-music-using-multiobjective-genetic-algorithms-2011-padua
http://www.alandefreitas.com/en/papers/melody-harmonization-in-evolutionary-music-using-multiobjective-genetic-algorithms-2011-padua

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

123

29. Hinton, G. E. & Salakhutdinov, R. R. “Reducing the dimensionality of data with neural networks”.

Science. New York, N.Y.: 2006; 313(5786): 504–507. DOI: 10.1126/science.1127647.

30. Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., & Ng, A. “Building

High-Level Features Using Large Scale Unsupervised Learning”. Proceedings of the 29th International

Coference on International Conference on Machine Learning. Publ. Omnipress. Madison, USA: 2012.

p. 507–514.

31. Salakhutdinov, R. & Hinton, G. “Semantic hashing. International”. Journal of Approximate

Reasoning: Official Publication of the North American Fuzzy Information Processing Society. 2009; 50(7):

969–978. DOI: 10.1016/j.ijar.2008.11.006.

32. “The MNIST Database of handwritten digits”. Available from: http://yann.lecun.com/exdb/mnist/. –

[Accessed 17th September 2020].

33. Lewis, J. P. “Fast Template Matching”, Vision Interface 95, Canadian Image Processingand Pattern

Recognition Society. Quebec City, Canada: 1995. p. 120–123.

34. Sridevi, M., Sankaranarayanan, N., Jyothish, A., Vats, A. & Lalwani, M. “Automatic traffic sign

recognition system using fast normalized cross correlation and parallel processing”. In 2017 International

Conference on Intelligent Communication and Computational Techniques (ICCT). 2017. p. 200–204. DOI:

10.1109/INTELCCT.2017.8324045.

DOI: 10.15276/hait 01.2020.1

УДК 004.021

Зменшення області пошуку генетичного алгоритму з використанням
нейромережевого автокодувальника

Олександр В. Комаров
Одеський національний політехнічний університет, Одеса, Україна

ORCID: https://orcid.org/0000-0001-7651-6300

АНОТАЦІЯ

У статті розглядається проблема формування генетичного представлення для вирішення оптимізаційних задач за

допомогою генетичних алгоритмів. Традиційно генетичне представлення являє собою набір з N ознак, що задають N-мірний

простір гепотіпов, в якому виконується пошук рішення. Внаслідок неоптимального вибору набору ознак генотипний

простір стає надмірним, область пошуку рішення збільшується, а це в свою чергу сповільнює пошук оптимуму, а також

призводить до генерування кандидатів, не придатних до вимог задачі. Причиною цього є бажання охопити областю пошуку

всі допустимі кандидати в рішення задачі. В оптимізаційних задачах з обмеженнями для пошуку оптимуму досить було б

охопити тільки область придатних кандидатів, які потрапляють в задані задачею обмеження. Оскільки множина придатних

кандидатів має меншу потужність, ніж множина всіх допустимих кандидатів, область пошуку рішення може бути вужчою.

Зменшити область пошуку можна побудовою більш вигідного набору ознак, репрезентативного для множини придатних

рішень. Але в разі малої кількості знань про предметну область конструювання оптимального набору ознак може виявитися

нетривіальним завданням. У даній роботі пропонується використання методів навчання ознакам на основі вибірки

придатних за умовами обмежень оптимізаційної задачі рішень. В якості такого методу використовується нейромережевий

автокодувальник. Показано, що застосування підготовчого етапу конструювання набору ознак для побудови оптимального

генетичного представлення дозволяє значно прискорити збіжність генетичного процесу до оптимуму, дозволяючи

знаходити кандидатів високої пристосованості за меншу кількість ітерацій алгоритму.

Ключові слова: генетичний алгоритм; конструювання ознак; нейромережевий автокодувальник; область пошуку;

оптимізаційна задача

DOI: 10.15276/hait 01.2020.1

УДК 004.021

Сужение области поиска генетического алгоритма с использованием
нейросетевого автокодировщика

Александр В. Комаров
Одесский национальный политехнический университет, Одесса, Украина

ORCID: https://orcid.org/0000-0001-7651-6300

http://yann.lecun.com/exdb/mnist/
https://orcid.org/0000-0001-7651-6300

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113–124

124 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

АННОТАЦИЯ

В статье рассматривается проблема формирования генетического представления для решения оптимизационных задач

посредством генетических алгоритмов. Традиционно генетическое представление представляет собой набор из N

признаков, который задаёт N-мерное пространство гепотипов, в котором производится поиск решения. Вследствие

неоптимального выбора набора признаков, генотипное пространство становится избыточным, область поиска решения

увеличивается, что в свою очередь замедляет поиск оптимума, а также способствует генерированию кандидатов, не

пригодных к требованиям задачи. Причиной этого является желание охватить областью поиска все допустимые кандидаты в

решения задачи. В оптимизационных задачах с ограничениями для поиска оптимума достаточно было бы охватить только

область пригодных кандидатов, которые попадают в заданные задачей ограничения. Поскольку множество пригодных

кандидатов обладает меньшей мощностью, чем множество всех допустимых кандидатов, область поиска решения может

быть более узкой. Уменьшить область поиска можно построением более выгодного набора признаков, представительного

для множества пригодных решений. Но в случае малого количества знаний о предметной области конструирование

оптимального набора признаков может оказаться нетривиальной задачей. В данной работе предлагается использование

методов обучения признакам на основе выборки пригодных по условиям ограничений оптимизационной задачи решений. В

качестве такого метода используется нейросетевой автокодировщик. Показано, что применение подготовительного этапа

конструирования набора признаков для построения оптимального генетического построения позволяет значительно

ускорить сходимость генетического процесса к оптимуму, позволяя находить кандидатов высокой приспособленности за

меньшее количество итераций алгоритма.

Ключевые слова: генетический алгоритм; конструирование признаков; нейросетевой автокодировщик; область

поиска; оптимизационная задача

ABOUT THE AUTHOR

Oleksandr V. Komarov – PhD Student of Information Systems Department, Odessa

National Polytechnic University, Odessa, Ukraine

o.w.komarow@gmail.com

Олександр В. Комаров – аспірант каф. інформаційних систем, Одеський

національний політехнічний університет, Одеса, Україна

Александр В. Комаров – аспирант каф. информационных систем, Одесский

национальный политехнический университет, Одесса, Украина

Received 23.08.2020

Received after revision 18.09.2020

Accepted 22.09.2020

