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ABSTRACT 

         The article discusses the problem of developing a genetic representation for solving optimization problems by means of genetic 

algorithms. Traditionally, a genotype representation is a set of N features that defines an N-dimensional genotype space in which 

algorithm performs a search for the solution. Due to the non-optimal choice of features, the genotype space becomes redundant, the 

search area for a solution unnecessary increases, which slows down the convergence to the optimum, and leads to the generation of 

infeasible candidates for the constraints of the problem. The reason for this is the desire to cover all legal candidates for solution of 

the problem by the search area, since the optimum is feasible by the conditions of the problem. In constrained optimization problems, 

to find the optimum, it would be sufficient to cover only the area of feasible candidates that fall within the constraints specified by 

the problem. Since the set of feasible candidates is smaller than the set of all legal candidates, the search area may be narrower. The 

search area can be reduced by obtaining a more efficient set of features that is representative of the set of feasible solutions. But in 

the case of a small amount of domain knowledge, developing of an optimal feature set can be a nontrivial task. In this paper, we 

propose the use of feature learning methods from a sample of feasible solutions that fall under the constraints of the optimization 

problem. A neural network autoencoder is used as such a method. It is shown that the use of the preparatory stage of learning a set of 

features for constructing an optimal genotype representation allows to significantly accelerate the convergence of the genetic process 

to the optimum, making it possible to find candidates of high fitness for a smaller number of iterations of the algorithm.  
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INTRODUCTION 

Genetic algorithms have proven to be effective 

optimization methods that provide directed random 

search on complex surfaces. By combining elements 

of directed and random search, genetic algorithms 

offer a good balance between exploration and 

exploitation of the search area. 

However, it was shown that genetic algorithms 

demonstrate a low convergence rate in combinatorial 

optimization problems [1]. The resource intensity of 

genetic algorithms strongly depends on the size of 

the solution search area [2–3]. For a number of 

problems, the search area in genetic algorithms 

increases critically with an increase in the size of the 

input data, up to exponential growth [4]. 

Genetic methods work simultaneously in the 

genotype and phenotype spaces. The phenotype is 

the desired type of solution, and the genotype is its 

encoded representation. The search for solutions and 

their transformations are performed in the genotype 

space, whereas the assessment and selection of the 

obtained solutions  are performed in  the  phenotype 
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space. Genotype to phenotype mapping is performed 

using the decoding operation. 

The phenotype space can be basically divided  

into areas of legal and illegal solutions. Any object 

of the phenotype space that can be considered as a  

solution to the problem is considered a legal 

solution. 

Within the area of legal solutions the area of 

feasible solutions can be distinguished. In 

constrained optimization problems this area is 

defined by the constraints of the problem. The 

desired optimal solution is located within this area 

(Fig. 1). 

Although fitness function can be determined on 

the genotype space, it usually can be calculated only 

in the phenotype space. In constrained optimization 

problems, the domain of definition of a fitness 

function is most often the domain of feasible 

solutions, and the constraints of the problem 

determine either the coefficients of the fitness  

function or additional terms that define the domain 

of feasible solutions. 

When using genetic approaches, the choice of 

the search area is one of the important problems, 

along with other aspects, such as the choice of the 

selection strategy, the constitution of the initial state 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)



Herald of Advanced Information Technology   2020; Vol.3 No.3: 113–124 

114 ISSN 2663-0176 (Print) 

ISSN 2663-7731 (Online) 

and size of the population, the mutation chance etc. 

A badly selected search area leads to the following 

problems: the appearance of illegal, infeasible, or 

equivalent genotypes that map to the same 

phenotypes. 

In genetic algorithms, the main resource costs 

are the resource costs of calculating the fitness 

function [5]. Therefore, when developing genetic 

methods, it is efficient to aim to reduce the number 

of algorithm iterations, thus reducing the number of 

estimations of the fitness function. The presence of a 

large number of infeasible and equivalent genotypes 

significantly inhibits convergence, “stretching” it 

over a large number of iterations of the algorithm. 

Thus, to enhance the performance of the genetic 

algorithm, it is crucial to pay special attention to the 

choice of the solution search area. 

LITERATURE REVIEW 

There is a large number of works devoted to the 

problem of choosing a search area. The approaches 

used in them notably differ, but some general 

outlines can be pointed out: heuristic methods 

(elimination of infeasible solutions) [6–7], the 

development of new genetic operators [8–9], the 

development of selection and crossover strategies 

based on systems of penalties and rewards [10–11]. 

The main goal of such methods is the so-called 

feasibility preservation, an approach according to 

which, once the algorithm reached the area of 

feasible solutions; it must continue the search within 

it, avoiding generation of infeasible solutions. Such 

methods show good results, but they do not perform 

any operations on the search area itself. Thus, the 

risk of generation of the infeasible solutions 

remains. 

There are methods that rely on preliminary 

investigation of the search area and the exclusion of 

knowingly infeasible areas [12]. Such techniques 

can be combined with heuristics and specific genetic 

strategies to improve performance. To limit such 

negativistic behaviour, the method has to retain any 

areas that have a chance of containing the optimum, 

or risk the elimination of it.  

Much more popular is the opposite approach, 

which could be called positive. It focuses on 

exploring the area of feasible solutions in order to 

build a search area in it. This is usually 

accomplished by creating a new genetic 

representation. 

It is shown that efficiency can be improved not 

only with the help of genetic operators, but also with 

the help of representations [13]. 

Traditionally, the search area is an N-

dimensional space, where N is the number of 

features with which the genotype of the solution is 

encoded. An arbitrary vector in this space is 

considered as the genotype of the some solution. 

Non-optimal coding thus leads to unnecessary 

expansion of the search area.  
The main method of genotype coding is the 

binary representation of the phenotype [14], but it 

has been shown that this method has a number of 

significant disadvantages [1]. The direction of 

research in this area concentrates on the search for a 

shorter set of features that are significant only for 

legal and feasible solutions. By constructing such a 

set of features, it is possible to reduce the search area 

to a set that excludes illegal and infeasible solutions, 

and also to close genetic operators on the desired 

subset of solutions.  

The extraction of features can face many 

difficulties caused by the existence of hidden 

internal connections in these solution sets. An 

effective way to overcome this problem is to build 

knowledge-rich representations [15–16]. 

Fig. 1. Mapping between from genotype to phenotype spaces 
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This problem is successfully solved for special 

cases by developing specialized feasible 

representations [5–6; 17–22]. Such representations 

may differ in structure and may require the use of 

unique genetic operators [9], which does not allow 

to design a general approach. 

An attempt to propose a universal 

representation in a restricted domain was made in 

[23]. However, this method still assumes possession 

of knowledge about the feasible solution area. 

The use of domain-dependent knowledge is a 

significant disadvantage of all these methods, since 

it implies the need of involving experts, which can 

be expensive, or even impossible for some cases. 

There is a need for domain-independent methods for 

engineering an optimal set of solution features. 
 

FORMULATION OF THE PROBLEM 

A solution representation (or genotype 

representation) is a set of N features. This set defines 

the N-dimensional space of genotypes, which is 

mapped into the space of phenotypes using some 

function. In the classical genetic algorithm, the 

solution search area for is the entire genotype space. 

A good genotypic representation can be 

characterized by five main properties: 

nonredundancy, legality, completeness, Lamarckian 

property and causality [1]. 

Three of these properties have a direct impact 

on the size of the search area: nonredundancy, 

legality and completeness. Nonredundancy requires 

the absence of equivalent genotypes (genotypes that 

map to the object in the phenotype space) in the 

search area. Legality requires that any genotype 

could mapped to a phenotype that can be solution of 

the problem. The completeness property requires 

that for every possible solution of the problem there 

is a corresponding genotype. 

Although a legality and completeness property 

doesn’t formally contradict each other, representation 

development usually faces a conflict between them. 

Usually, especially in the absence of domain 

knowledge, the developer prefers completeness in 

order to provide a search across the entire set of 

possible solutions. Representations build in this way 

often violate the legality and nonredundancy 

requirements. It is this problem that developers usually 

try to overcome by designing new operators, strategies 

and heuristic improvements of the genetic process. 

Note that if the illegality and redundancy of 

genotypes is a consequence of a redundant set of 

features, the nature of infeasibility originates in 

constraints of the optimization problem [1]. Note also 

that the desired optimum, by definition, is contained in 

the area of feasible solutions. Therefore, we can 

replace the completeness property with the weaker 

requirement of feasible completeness, which states that 

there is a genotype for every feasible solution. Having 

designed a new representation based on the weakened 

requirement, we can narrow the search area around the 

set of feasible solutions, and also ensure the closure of 

genetic operators in the area of legal (and ideally, 

feasible) solutions (Fig. 2). 

To build such a representation without domain-

dependent knowledge, it is necessary to apply the 

methods of feature learning. 

One of the most popular feature learning 

methods is a neural network autoencoder. Neural 

networks built on such architecture are capable of 

non-supervised training, extracting only the most 

essential properties from the input data [24–28]. It is 

shown that the neural network autoencoder 

effectively solves the problem of learning features 

[29–30], and it is successfully used for a number of 

practical problems [31]. Applying a neural network 

autoencoder on a representative set of feasible 

solutions, we can learn some important features of 

solutions in this area, and use them to build a 

genotype representation. 

Therefore, the goal of our study is to develop a 

genetic method for solving an optimization problem 

on a reduced search space generated by a set of 

features extracted from a sample of feasible 

solutions using a neural network autoencoder. 
 

MAIN PART. METHOD DESCRIPTION 

The proposed method consists of two stages. At 

the first stage, the solution features of the desired set 

are extracted. This stage involves the use of a neural 

network autoencoder with a narrow central layer, on 

which a set of genotype features will be learned 

during training. This is a preparatory step that is 

performed once for each given search area. At the 

second stage, the genetic algorithm is launched to 

solve the optimization problem.  

A neural network autoencoder is an artificial 

neural network of symmetric architecture that learns 

to reproduce the data from the input layer on the 

output layer [24]. With a special layer called the 

central layer, the structure of the autoencoder is 

divided into two parts, an encoder and a decoder. By 

changing the size of the central layer, a more 

redundant or less redundant image of the input data 

can be obtained on it.  

Figure 3 shows an example of an autoencoder 

with an input and output layers that consist of 4 X and 

4 X' nodes and a centre layer of 2 Y nodes. Nodes Z 

and Z' constitute the internal hidden layers.  
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Fig. 2. Mapping of the search area into the phenotype space from the genotype space of high 

dimensionality with completeness (top) and the genotype space of low dimensionality with feasible 

completeness (bottom) 

 

Using of additional internal layers, along with the 

central one, has a positive effect on the training of the 

autoencoder: it provides better data compression and 

allows decreasing the amount of training data needed 

[24]. 

During the training of the autoencoder, all 

network nodes, except for the input layer X, are 

neurons, which are nonlinear functions f of the sum Σ 

of the set of input signals xi weighted by the weights wi 

(Fig. 4) [24]. However, after training, the network is 

disunites, and two new networks are formed from the 

trained layers: an encoder and a decoder. 

The subnet from nodes X to nodes Y is an 

encoder. It can produce a compressed image of the 

input data. In the architecture of the autoencoder and in 

the architecture of the encoder derived from it, the 

nodes Y are neurons, the activation function of which 

is usually chosen depending on the desired type of 

output data image. For example, a sigmoidal activation 

function (followed by rounding) can be used to 

generate a binary vector image. 

The subnet from nodes Y to nodes X' forms the 

decoder. In the decoder, the layer of Y nodes is not a 

layer of neurons, but instead replaced by an input layer. 

Due to this, the decoder is able to restore the original 

form of the input data image, or to obtain a vector close 

to it. In this regard, the activation function of layer X' is 

also selected in such a way as to best cover the range of 

values of the original dataset, which came to layer X 

during training of the autoencoder. 

Reducing the redundancy of information on the 

input layer using architecture with a narrow central 

layer is achieved by identifying non-obvious structural 

relationships in the input data of the training set. Thus, 

the training sample should be representative of some 

class of solutions in which we want to find such 

connections. 

We assume that in the legal (or feasible) area of 

solutions unites solutions of a certain type, the 

connection between which is not obvious. In order to 

correctly extract a set of features, we need a 

representative sample of legal (or feasible) solutions. 

A training sample for a neural network 

autoencoder can be obtained using the binary 

representation of a set of feasible phenotypes. Now, 

having trained the autoencoder with a narrow center 

layer on this sample, we can use the center layer as a 

genotype representation, which is a binary feature 

vector. This feature vector as well as the trained 

encoder and decoder are the results of the first stage. 
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Fig. 3. An example of the architecture of a neural network autoencoder with a narrow central layer 

 

Fig. 4. Artificial neuron model:  

xi – input values; wi – their weight coefficients, 

summator Σ, activation function f and  

output value y 

At the second stage, a direct genetic search for a 

solution is performed. Upon initialization of the 

algorithm in the search area, defined as the space 

generated from learned features, a generation of 

random individuals is created. The population is 

projected into the phenotype space by a decoder to 

evaluate individuals using the fitness function. Each 

individual gets a fitness rating, and all subsequent 

genetic operations (selection, crossover, mutation) are 

performed in the genotype space. The process repeats 

until a solution with the desired fitness value appears at 

the decoder. The chosen approach of representing 

solutions allows application of any classical genetic 

operators. 

The overall flowchart of the algorithm is shown in 

Fig. 5.  

The first and main limitation of this method is the 

need for a representative sample of the set of legal 

(feasible) solutions. This condition cannot be met for 

some tasks. Nevertheless, there are a number of tasks 

for which it seems possible to form such a sample. 

Another drawback of this method is the duration 

of the preliminary first stage of training, which in 

some cases may be comparable to the duration of the 

second stage. Here we note that this problem is most 

relevant for situations where the search for a solution 

must be carried out once for a given fitness function 

and a given legal (feasible) area. We assume that such 

tasks, firstly, are quite rare, and secondly, they are 

rarely demanding in terms of execution time. On the 

other hand, solving problems that require frequent 

launches of the algorithm naturally increases attention 

to the duration of actual genetic search. The more 

often search is needed, the less significant the cost of 

the first stage becomes. 

A particular difficulty is the determination of the 

number of required features, i.e. the size of the central 

layer of the autoencoder. It is obvious that the larger 

the size of the feature vector, the larger the search 

area will be. At the same time, by choosing a too 

small feature vector we noticeably reduce the variety 

of solutions available in such a search area, up to the 

point when representation becomes less diverse than 

the training sample. In such case training of the 

autoencoder cannot be performed. We proceed from 

the assumption that the variety of solutions in the 

search area exceeds the variety of the training sample, 

since otherwise the optimal solution would be 

contained in the training sample, and it could be 

found by a simple brute force. 

Composition of optimal autoencoder architecture 

could be a difficult task itself. The specific parameters 

of this network should be determined by the nature of 

the task. To configure the autoencoder, we should 

seek general recommendations on the architecture and 

training of neural network autoencoders in dimension 

reduction and feature learning tasks [24; 26–27]. 
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Fig. 5. Flowchart of a genetic algorithm using an autoencoder 

 

Note that the proposed method does not conflict 

with other methods of improving the performance of 

genetic algorithms, such as the development of 

genetic strategies, operators, and some heuristic 

approaches, so they can be applied along with each 

other.  
 

EXPERIMENT 

For the experiment, the task was set to draw 

black and white images of handwritten decimal digits. 

Such a task may be faced, for example, in the system 

of automatic generation of captcha images. The 

desired solution to the problem is a black and white 

image of 28 × 28 pixels, which can be visually 

recognized as the indicated digit. 

With use of a fitness function that performs 

visual recognition of a digit; such a problem can be 

solved by means of a classical genetic algorithm. 

Having generated random binary vectors with a 

length of 784 bits (which can be transformed into 28 

× 28 binary matrices), by selecting the most “similar" 

to the desired digit ones, and subsequently 

recombinating their content, it is possible to recreate 

an image acceptable for recognition as such digit. 

However, it's easy to assume that with such a trivial 

solution coding, when the genetic representation is 

just a complete set of pixel values, the number of all 

possible combinations is extremely large. Search for 

the feasible solution in such a search area can be long. 

At the same time, such images can be easily 

compressed, which leads us to the assumption that the 

desired solutions can be encoded in a more efficient 

way. The same genetic process performed on smaller 

vectors and then converted to a full-size 28x28 pixel 

image may be faster due to the fewer possible 

combinations. If we get a representative sample of 

feasible solutions, we can train the autoencoder and 

learn a less redundant set of features that will form the 

structure of our new, more efficient genetic 

representation. 

As a sample of feasible solutions the MNIST set 

of handwritten numbers was used [32]. The images 

were pre-binarized to meet the conditions of the 

problem. 

 To conduct experiments, we will train several 

autoencoders on a common architecture with different 

size of the central layer: 128, 64 and 32 bits, 

respectively. The autoencoder consists of 5 inner 

layers. The input and output layers are composed of 

784 neurons which correspond to 784 pixels of the 

image. The size of the remaining layers, starting from 

the central one, doubles, two times in each direction 

(Fig. 6). To ensure compatibility with binary coding, 

after learning the decoder, the center and output 

layers use the sigmoidal function as the activation 

function. Autoencoders have been trained over 50 

epochs with 60,000 entries and a test sample of 

10,000 entries. 
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Fig. 6. Structure of an autoencoder with a central layer of size N 

 

The fitness function is based on the fast 

normalized cross-correlation method [33], which has 

been successfully used to find patterns in images [34]. 

The fitness of an image σ is determined by the degree 

of similarity to a given handwritten digit. To assess this 

similarity, a set E of pattern images ε is selected from 

the MNIST dataset, which depict this digit. The fitness 

value of the image σ is the arithmetic mean of the 

values of the normalized cross-correlation coefficient 

calculated between σ and each pattern image ε 

belonging to the set E and is calculated by the formula 

(1), where x and y are the coordinates of the image 
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The experiment was carried out in four 

configurations. 

In the first configuration, a trivial genetic 

representation that encodes an image with a vector of 

784 values was used. It is structured as follows. By 

the condition of the problem, the image σ is 

represented by a binary matrix consisting of 28 rows 

and 28 columns, each element of which represents the 

brightness value of one pixel of the image, where 0 

represents a black point and 1 represents a white 

point. The genetic representation of the matrix σ will 

be a vector s, each element of which is s (l) = σ(l⊕28, 

l⊙28), where ⊕ is an integer division operation and 

⊙ is a modulo division operation.  

The other three configurations were carried out 

using genetic representations obtained via feature 

learning by the autoencoder. These representations 

are vectors of 128, 64, and 32 bit lengths respectively. 

At the beginning of the genetic process, the 

population of random individuals of the given genetic 

representation is formed. These representations are 

determined by the configuration.  

To bring these genetic representations to a form 

that is appropriate for calculating the fitness function, 

i.e. to a phenotypic representation, additional 

transformations are required. This decoding is carried 

out for the each generation of the population (Fig. 7).  

In a configuration with a trivial genetic 

representation, for decoding, it is enough to map a 

vector of 784 bit length to a 28×28 matrix by 

sequential extraction of its rows. That is, for the 

vector s, construct a matrix σ, in which each of its 

elements σ(x, y) = s (28 ∙ (x − 1) + y). Further, each 

element equal to 0 is considered a black point, and 

each element equal to 1 is considered a white point.  

In the case of configurations with 

representations based on sets of learned features, 

phenotype decoding firstly requires restoring of the 

representation dimensionality. 

To do this, each individual represented by a 

vector of 128, 64 or 32 bit length (the length depends 

on the chosen configuration) is fed to the input layer 

of the corresponding decoder, on the output layer of 

which a full-size vector of 784 bit length is formed, 

corresponding to a trivial genetic representation. This 

vector is further reduced to a two-dimensional 28×28 

matrix according to the previously indicated 

procedure. 
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Fig. 7. Genotype representation decoding 

Figure 8 shows the graphs of the ftiness growth 

of the generated images depending on the number of 

iterations performed. The genetic process on 

chromosomes with a learned feature set tends to high 

fitness values much faster. Note also that convergence 

increases with decreasing representation 

dimensionality. 

Figure 9 shows the successive steps of 

generating an image of the digit 3. 

As you can see, genetic method with a trivial 

representation requires at least 20-30 iterations, 

before a visually distinguishable image is achieved. 

At the same time, a sufficiently large number of 

noises are retained in the image. It will take at least 20 

more iterations of algorithm to get rid of it. 

At the same time, an algorithm with genetic 

representations based on a learned feature set 

generates images close to a distinguishable image of 

a digit from the very first iterations. Through the 

course of iterations only the correct shape of the 

pattern is selected, and the images are free of noise.

 

CONCLUSIONS 

A new genetic method for solving 

optimization problems on a reduced search area 

was proposed. The reducing of the search area is 

achieved by constructing a feasible genotype 

representation by learning the features of feasible 

solutions using a neural network autoencoder. It is 

shown that due to the generation of a less 

redundant presentation, it is possible to achieve a 

reduction in the number of algorithm iterations 

required to find a solution of the desired fitness. 

The use of feature learning methods is possible 

due to the development of a new set of 

requirements for genotype representations. 

Replacing the strict requirement of legal 

completeness with a weaker requirement of feasible 

completeness allows to reduce the set of possible 

candidates and focus primarily on the most 

promising solutions. 

 

Fig. 8. Fitness growth of the best individuals of the population during the first 30 iterations of 

performing a search by the genetic method with learned (AE) and trivial (T)  

genetic representations 
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Fig. 9. Stages of generating an image of the digit 3 using learned representations (AE) for 10 iterations 

(top), and trivial representation (T) for 50 iterations (bottom) 

 

The disadvantage of the proposed method is 

the necessity of a preparatory stage for feature 

learning, as well as the necessity of a representative 

sample of feasible solutions. These disadvantages 

limit the field of application of the method. 

However, technologies and systems that use genetic 

search for a solution actively and regularly were 

chosen as the target ones. With a large number of 

launches of the genetic method, the duration of a 

single preparatory stage becomes insignificant. 

The positive result of the proposed method 

opens up an opportunity for further research. 

The first direction of research should be the 

application of other feature learning methods. In 

this sense, the use of generative models is of 

particular interest. 

The second direction of research is the 

development of modifications of the method that 

ensure fulfilment of the feasible completeness 

requirement. The method presented in this article 

can still exclude some feasible solutions, including 

the global optimum, even if its neighbourhood is 

kept within the search area. 
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АНОТАЦІЯ 

У статті розглядається проблема формування генетичного представлення для вирішення оптимізаційних задач за 

допомогою генетичних алгоритмів. Традиційно генетичне представлення являє собою набір з N ознак, що задають N-мірний 

простір гепотіпов, в якому виконується пошук рішення. Внаслідок неоптимального вибору набору ознак генотипний 

простір стає надмірним, область пошуку рішення збільшується, а це в свою чергу сповільнює пошук оптимуму, а також 

призводить до генерування кандидатів, не придатних до вимог задачі. Причиною цього є бажання охопити областю пошуку 

всі допустимі кандидати в рішення задачі. В оптимізаційних задачах з обмеженнями для пошуку оптимуму досить було б 

охопити тільки область придатних кандидатів, які потрапляють в задані задачею обмеження. Оскільки множина придатних 

кандидатів має меншу потужність, ніж множина всіх допустимих кандидатів, область пошуку рішення може бути вужчою. 

Зменшити область пошуку можна побудовою більш вигідного набору ознак, репрезентативного для множини придатних 

рішень. Але в разі малої кількості знань про предметну область конструювання оптимального набору ознак може виявитися 

нетривіальним завданням. У даній роботі пропонується використання методів навчання ознакам на основі вибірки 

придатних за умовами обмежень оптимізаційної задачі рішень. В якості такого методу використовується нейромережевий 

автокодувальник. Показано, що застосування підготовчого етапу конструювання набору ознак для побудови оптимального 

генетичного представлення дозволяє значно прискорити збіжність генетичного процесу до оптимуму, дозволяючи 

знаходити кандидатів високої пристосованості за меншу кількість ітерацій алгоритму.  

Ключові слова: генетичний алгоритм; конструювання ознак; нейромережевий автокодувальник; область пошуку; 

оптимізаційна задача  
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АННОТАЦИЯ 

В статье рассматривается проблема формирования генетического представления для решения оптимизационных задач 

посредством генетических алгоритмов. Традиционно генетическое представление представляет собой набор из N 

признаков, который задаёт N-мерное пространство гепотипов, в котором производится поиск решения. Вследствие 

неоптимального выбора набора признаков, генотипное пространство становится избыточным, область поиска решения 

увеличивается, что в свою очередь замедляет поиск оптимума, а также способствует генерированию кандидатов, не 

пригодных к требованиям задачи. Причиной этого является желание охватить областью поиска все допустимые кандидаты в 

решения задачи. В оптимизационных задачах с ограничениями для поиска оптимума достаточно было бы охватить только 

область пригодных кандидатов, которые попадают в заданные задачей ограничения. Поскольку множество пригодных 

кандидатов обладает меньшей мощностью, чем множество всех допустимых кандидатов, область поиска решения может 

быть более узкой. Уменьшить область поиска можно построением более выгодного набора признаков, представительного 

для множества пригодных решений. Но в случае малого количества знаний о предметной области конструирование 

оптимального набора признаков может оказаться нетривиальной задачей. В данной работе предлагается использование 

методов обучения признакам на основе выборки пригодных по условиям ограничений оптимизационной задачи решений. В 

качестве такого метода используется нейросетевой автокодировщик. Показано, что применение подготовительного этапа 

конструирования набора признаков для построения оптимального генетического построения позволяет значительно 

ускорить сходимость генетического процесса к оптимуму, позволяя находить кандидатов высокой приспособленности за 

меньшее количество итераций алгоритма. 

Ключевые слова: генетический алгоритм; конструирование признаков; нейросетевой автокодировщик; область 

поиска; оптимизационная задача    
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