
Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
301

DOI: https://doi.org/10.15276/hait.08.2025.19

UDC 004.021:004.4’42:004.8

Uncertainty-aware multi-objective refactoring for

code duplication

Dmytro D. Kurinko1)

ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com
Viktoriia I. Kryvda1)

ORCID: https://orcid.org/0000-0002-0930-1163; kryvda@op.edu.ua
1) Odesa Polytechnic National University, 1, Shevchenko Ave. Odesa, 65044, Ukraine

ABSTRACT

Code clones are recurring code fragments that may hinder software maintainability if not properly managed. While many clone

detection tools exist, they often stop at identification and provide no clear guidance on whether a detected clone group should be

refactored, how to do so, or in what order. This paper presents a machine learning–based method for recommending clone

refactorings with prioritization and confidence estimation. The proposed approach represents code fragments using abstract syntax

trees, program dependency graphs, and semantic embeddings from a pre-trained CodeBERT model. In addition, version control data

is used to extract evolutionary features such as churn, age, and co-change patterns. A multi-class classifier predicts refactoring types,

while open-set recognition techniques identify uncertain cases and flag them as unknown. Effort and benefit estimation models help

prioritize suggestions based on a cost-effectiveness ratio. We evaluated the method on four open-source Java projects using a

manually labeled dataset of 600 clone groups. The system achieves a macro-F1 score of zero point seven six on known refactoring

types and an AUROC of zero point nine one for unknown detection. Prioritized recommendation quality reaches NDCG@3 of zero

point eight nine, showing strong alignment with expert assessments. The results indicate that clone refactoring can be effectively

supported through integrated code representation, uncertainty modeling, and prioritization. The approach transforms clone analysis

from a passive task into an actionable process.

Keywords: Clone refactoring; artificial intelligence in software engineering; machine learning; deep learning; clone

classification; open-set recognition; uncertainty estimation

For citation: Kurinko D. D., Kryvda V. I. “Uncertainty-aware multi-objective refactoring for code duplication”. Herald of Advanced

Information Technology. 2025; Vol.8 No.3: 301–315. DOI: https://doi.org/10.15276/hait.08.2025.19

1. INTRODUCTION,

FORMULATION OF THE PROBLEM

Code clones are fragments that partially or fully

duplicate each other. They arise due to deadlines,

copying “working” solutions without proper

abstraction, temporary hotfixes, and branching

product lines. In the short term, copy-paste speeds

development, but in the long term it increases

technical debt: change points multiply, consistency

is harder to maintain, and the risk of defects and

regressions grows [1]. In large codebases

(monorepos, microservices, polyglot stacks), clones

are inevitable and “migrate” across modules and

teams, complicating code reviews and slowing

releases [2]. The problem is amplified by frequent

releases and CI/CD: fixes must propagate

synchronously to all replicas, otherwise

environments diverge in behavior. Clones also

reduce the evolutionary flexibility of the

architecture: they hinder extracting common APIs

and adopting new technologies. Therefore, detection

alone is not enough – teams need recommendations

© Kurinko D., Kryvda V., 2025

on what and how to refactor, taking into account

semantics, dependency context, change history, and

the expected benefit vs. effort [3].

Industrial and research practice in clone

detection spans a wide spectrum of approaches: from

textual and token-based methods to structure-

oriented (AST), graph-based (PDG/CFG), and

modern vector representations of code (neural

embeddings, GNN/CodeBERT-like models) [4].

These tools reliably identify and cluster duplicates in

large-scale repositories, produce clone clusters and

metrics (degree of duplication, “hot spots”), and

integrate into IDEs and CI/CD as code-quality

reports. At the process level, they support regular

technical-debt monitoring, facilitate audits, and

inform backlog grooming and planning [5].

However, most solutions stop at the fact of

detection and do not proceed to actionable guidance.

Typical limitations include: (i) lack of semantically

grounded recommendations on what exactly and

how to refactor for a given cluster; (ii) absence of

calibrated handling of uncertainty (risk of

overconfident or overly conservative decisions); (iii)

no mechanisms for benefit/effort–based

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

https://doi.org/#_blank

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

302

Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

prioritization that account for version-control history

(VCS) and operational risk; and (iv) limited

explainability and weak integration with decision-

making practices (code review, sprint planning) [6].

As a result, clone detection rarely translates into

predictable cost savings: teams must manually

decide what to refactor, in what order, and whether it

will pay off [7].

Despite mature clone-detection tooling and a

variety of advisory approaches, a persistent gap

remains between the fact of detection and actionable

engineering decisions. Existing systems rarely unite,

within a single method: (i) a semantically faithful

code representation (to handle fragments that are

similar in meaning yet syntactically divergent); (ii)

controlled uncertainty management (open-set

formulation with explicit applicability limits and

calibrated confidence); (iii) benefit/effort–based

prioritization that accounts for version-control

history (VCS), co-evolution signals, and defect risk;

(iv) explainability of recommendations at the level

of concrete transformations (which differences can

be parameterized, which refactoring template is

appropriate); and (v) process integrability (IDE/CI,

sprint planning) alongside experimental

reproducibility. In addition, there is a lack of vetted

protocols for cross-project generalization

(robustness to coding style/domain) and harmonized

metrics that jointly assess classification quality,

decision risk, and ranking utility for work planning

[8].

Accordingly, there is a clear need for a method

that integrates deeper structural and semantic

understanding of code, calibrated uncertainty, and

value-oriented ranking, delivering transparent,

reproducible, and practically applicable

recommendations for clone refactoring.

The purpose of this study is to develop a

method that converts clone detection into actionable,

prioritized refactoring decisions. Concretely, we aim

to (i) provide semantically grounded

recommendations on what to refactor and how (e.g.,

which refactoring template to apply), (ii) manage

uncertainty by explicitly identifying low-confidence

and out-of-distribution cases, and (iii) prioritize

candidate actions by expected benefit-versus-effort,

informed by code structure and version-control

history. The intended outcome is a transparent,

reproducible advisory pipeline that reduces technical

debt, mitigates regression risk, and accelerates

architectural evolution while integrating seamlessly

with existing engineering workflows (IDE/CI).

2. BACKGROUND AND RELATED WORK

The problem of code cloning has been

extensively studied over the past two decades, with

early foundational works focusing on the

classification and detection of clone types (e.g.,

Type I–IV) [9]. Numerous studies have confirmed

that code clones are not only widespread but often

persist for long periods in production systems, where

they contribute to increased maintenance cost,

defect-proneness, and codebase inconsistency [10],

[11], [12].

From a software engineering perspective, the

remediation of code clones typically involves

manual or semi-automated refactoring, guided by

developer intuition or tool recommendations.

Research has proposed a range of approaches, from

catalog-based refactoring patterns to clone-specific

transformations (e.g., Extract Method, Move

Method). Some tools support automatic

transformation under strict preconditions, while

others assist human developers with ranking or

filtering options [13].

However, empirical studies show that

developers frequently ignore clone warnings, citing

lack of actionable guidance, potential side effects of

transformation, and uncertainty about long-term

benefits [14]. Moreover, decisions to refactor are

often project-specific and context-sensitive: clones

that are harmful in one subsystem may be benign or

even beneficial in another.

Numerous approaches have been proposed to

facilitate the refactoring of code clones, ranging

from static rule-based systems to learning-enabled

recommender frameworks [15], [16], [17].

Traditional techniques often rely on predefined

templates such as Extract Method, Move Method, or

Pull Up Method, applied either manually or with

IDE support (e.g., Eclipse, IntelliJ). While these

refactorings are well understood and standardized,

identifying the correct context in which they should

be applied remains non-trivial.

Rule-based systems encode structural patterns

and syntactic thresholds to suggest refactorings.

These approaches are efficient and interpretable but

suffer from limited adaptability and inability to

reason over semantic similarity or usage context. To

address such limitations, later works have

incorporated code metrics (e.g., size, duplication

ratio, cohesion) or heuristic scoring functions to

filter or prioritize clone groups [18].

More recently, machine learning–based

approaches have emerged that attempt to predict the

likelihood or appropriateness of refactoring actions

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
303

[19]. Some leverage feature engineering over

abstract syntax trees (ASTs) or program dependency

graphs (PDGs), while others exploit version history

and commit metadata to learn patterns of past

developer behavior. A prominent example is CREC,

which uses clone histories and manually engineered

features to rank refactoring opportunities [20].

However, despite promising results, most ML-

based systems function as black-box predictors,

offering limited interpretability and no guarantees of

correctness. Additionally, they often lack the

capability to distinguish between ambiguous or out-

of-distribution inputs and may fail silently or behave

erratically in such cases. Furthermore, few existing

systems provide actionable, contextualized

explanations or rank refactoring options by expected

effort and impact, which limits their practical utility

in complex industrial codebases [21].

Thus, while the literature demonstrates a wide

spectrum of clone refactoring support tools, a

unified pipeline that integrates detection, semantic

understanding, prioritization, and uncertainty

awareness remains elusive [22], [23], [24].

Numerous approaches have been proposed to

facilitate the refactoring of code clones, ranging

from static rule-based systems to learning-enabled

recommender frameworks. Traditional techniques

often rely on predefined templates such as Extract

Method, Move Method, or Pull Up Method, applied

either manually or with IDE support (e.g., Eclipse,

IntelliJ). While these refactorings are well

understood and standardized, identifying the correct

context in which they should be applied remains

non-trivial [25].

Rule-based systems encode structural patterns

and syntactic thresholds to suggest refactorings.

These approaches are efficient and interpretable but

suffer from limited adaptability and inability to

reason over semantic similarity or usage context. To

address such limitations, later works have

incorporated code metrics (e.g., size, duplication

ratio, cohesion) or heuristic scoring functions to

filter or prioritize clone groups [26].

More recently, machine learning–based

approaches have emerged that attempt to predict the

likelihood or appropriateness of refactoring actions.

Some leverage feature engineering over abstract

syntax trees (ASTs) or program dependency graphs

(PDGs), while others exploit version history and

commit metadata to learn patterns of past developer

behavior. A prominent example is CREC, which

uses clone histories and manually engineered

features to rank refactoring opportunities [27].

However, despite promising results, most ML-

based systems function as black-box predictors,

offering limited interpretability and no guarantees of

correctness. Additionally, they often lack the

capability to distinguish between ambiguous or out-

of-distribution inputs and may fail silently or behave

erratically in such cases. Furthermore, few existing

systems provide actionable, contextualized

explanations or rank refactoring options by expected

effort and impact, which limits their practical utility

in complex industrial, codebases [28].

Thus, while the literature demonstrates a wide

spectrum of clone refactoring support tools, a

unified pipeline that integrates detection, semantic

understanding, prioritization, and uncertainty

awareness remains elusive.

Modern refactoring recommenders increasingly

rely on learned code representations. Approaches

range from traditional AST-based features to

advanced embeddings generated by pre-trained

models such as CodeBERT, GraphCodeBERT, or

TreeSAGE. These representations enable semantic

comparison and classification of code fragments,

allowing for better generalization beyond syntactic

similarity. However, many such models lack fine-

grained control, interpretability, or explicit

alignment with refactoring tasks [29].

In real-world scenarios, refactoring decisions

often involve uncertainty – stemming from

ambiguous clone semantics, unstable APIs, or

missing documentation. While ML models can

assist, few existing tools explicitly quantify

uncertainty or assess refactoring effort vs. benefit.

Prioritization strategies remain heuristic, lacking

formal grounding in software engineering economics

or risk analysis. The absence of uncertainty-aware

recommendations limits developer trust and

adoption.

This work bridges multiple gaps by proposing a

clone refactoring advisor that combines (i) pre-

trained code embeddings, (ii) confidence calibration

for out-of-distribution detection, and (iii)

impact/effort-based prioritization. In contrast to

prior black-box recommenders, our approach

provides interpretable, context-aware suggestions

with explicit support for ambiguity and trade-off

reasoning. It complements existing detection tools

and advances clone refactoring from static listing

toward actionable engineering guidance.

3. PROPOSED METHOD

3.1. Overview of the proposed architecture

The proposed system is designed as an end-to-

end refactoring advisor for code clones, capable of

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

304 Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

producing ranked, interpretable, and risk-aware

recommendations. Its core objective is to go beyond

clone detection and provide actionable guidance on

whether a clone should be refactored, which

transformation is appropriate, how confident the

system is, and how the decision should be prioritized

based on potential benefits and costs.

The architecture follows a modular, layered

pipeline, which is summarized in Table 1. Each

stage contributes distinct analytical capabilities:

semantic representation, historical context, decision

reasoning, and trust calibration.

The pipeline begins with clone group

extraction, obtained from external clone detectors

such as NiCad, SourcererCC, or CloneWorks. Each

clone fragment is parsed into a structural form (AST

and PDG) and embedded using a pretrained

language model (e.g., CodeBERT,

GraphCodeBERT). These embeddings are enriched

with static structural features (e.g., LOC, control-

flow depth) and evolutionary features extracted from

the Git history of the codebase – such as change

frequency, recency, authorship entropy, and co-

change statistics.

The fused representation is then passed to a

multi-output open-set classifier, which assigns each

clone group to a recommended refactoring type

(e.g., Extract Method, Pull Up Method, Move

Method), or flags it as Unknown if the prediction

confidence is low or the instance is semantically

distant from training examples. To support this

behavior, the system incorporates confidence

calibration mechanisms (e.g., temperature scaling,

dropout-based variance estimation), producing

interpretable uncertainty estimates for each decision.

Next, the system evaluates the expected effort

and benefit of refactoring, based on both static code

metrics and historical evolution data. The effort-

benefit ratio is used to prioritize clone groups,

ensuring that high-impact, low-effort opportunities

are surfaced to the top of the recommendation list.

Finally, each recommendation is accompanied

by a concise natural-language explanation, generated

from interpretable features, which justifies the

recommendation in terms understandable to human

developers. These explanations improve

transparency and facilitate manual inspection or

team discussions.

This modular design enables the system to

adapt to different codebases, integrate new detectors

or language models, and interact flexibly with

human-in-the-loop workflows (e.g., for active

learning or selective review). It lays the foundation

for a practical, extensible refactoring advisor that

supports real-world software engineering

constraints.

3.2. Clone detection and preprocessing

The refactoring pipeline begins with the

identification and preparation of clone groups – sets

of code fragments that exhibit structural or semantic

similarity. Clone detection serves as the foundation

for all subsequent analysis; therefore, it is essential

that the detected clones be of sufficient quality,

granularity, and interpretability. This stage is

deliberately decoupled from the rest of the pipeline

to allow integration with multiple third-party

detectors and facilitate language portability.

Table 1. Summary of architecture components and their roles

Component Description

Clone Detection
External tools identify clone groups (e.g., Type I–III), used as input to the

pipeline

Graph-Based Code Representation
AST and PDG structures encoded via pretrained models (CodeBERT,

GraphCodeBERT)

Structural and Semantic Features Includes LOC, nesting depth, token types, and semantic embeddings

Version Control Features Extracted from Git: churn, recency, number of authors, co-change patterns

Open-Set Classifier Predicts refactoring type or flags Unknown with calibrated uncertainty

Confidence Calibration
Quantifies prediction confidence using entropy, dropout variance, or temperature

scaling

Effort & Benefit Estimation Estimates refactoring cost and impact using structural + historical indicators

Prioritization Module Ranks recommendations using benefit-to-effort ratio and confidence thresholds

Explanation Generator
Produces human-readable rationales for each recommendation to support review

and trust

 Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
305

In our system, clone detection is treated as a

pluggable preprocessing module. We assume that

clone groups have already been detected using

established tools such as NiCad, SourcererCC, or

CloneWorks, depending on the desired balance of

recall, precision, and scalability. Our

implementation primarily targets Type I–III clones,

which cover exact copies, syntactic variations, and

renamed or reordered elements while excluding

more abstract Type IV clones (semantic equivalence

without syntactic similarity), which require deeper

analysis beyond current scope.

Each clone group is passed through a

preprocessing pipeline that standardizes code

fragments for consistent downstream representation.

This includes:

 whitespace and comment normalization, to

remove irrelevant variability;

 AST sanitation, such as renaming identifiers

with placeholders (e.g., VAR_1, FUNC_2) to reduce

overfitting to naming patterns;

 control-flow slicing, which extracts the

minimal executable block that covers the clone,

preserving semantic boundaries;

 tokenization and parsing, preparing the code

for both graph construction and transformer-based

embedding.

Optionally, we apply context windowing to

extend clone fragments with a limited number of

surrounding lines (before/after), ensuring that local

dependencies or method headers are retained. This

provides richer inputs for downstream embeddings

without introducing excessive noise.

To filter out trivial clones or overly noisy

inputs, we enforce lightweight filtering rules (e.g.,

minimum LOC threshold, no empty-body methods,

no auto-generated code), which are customizable

based on project constraints.

This preprocessing ensures that each clone

fragment is converted into a standardized,

semantically meaningful, and model-friendly format,

suitable for both structural analysis (AST/PDG) and

semantic encoding (e.g., via transformer-based

models). It also decouples the refactoring logic from

any specific detection tool or input language,

making the system extensible and adaptable across

environments.

3.3. Code representation

Accurate and expressive representation of code

is critical for enabling machine learning models to

reason about clone similarity, refactoring intent, and

transformation applicability. Unlike traditional

approaches that rely solely on syntactic features

(e.g., token counts, AST node frequencies), our

method combines graph-based structural information

with semantic embeddings from large-scale

pretrained models.

This hybrid representation provides a more

complete view of the code, capturing both low-level

structure and high-level meaning.

Each code fragment is represented using three

complementary layers (Table 2).

1. Abstract Syntax Tree (AST): the AST

captures the syntactic structure of the code,

including expressions, control-flow statements, and

declarations. We use language-specific parsers to

construct ASTs and extract subgraphs relevant to the

cloned fragment. The AST provides the backbone

for structural feature extraction and serves as input

to graph neural networks (GNNs) or graph kernels.

2. Program Dependency Graph (PDG): to

account for semantic and data-flow relationships, we

construct PDGs that capture control dependencies

(e.g., conditionals, loops) and data dependencies

(e.g., variable usage and assignment). These graphs

encode how the fragment behaves during execution,

helping to distinguish semantically different clones

that may be structurally similar.

3. Pretrained Code Embeddings: to enrich the

graph-based representation with learned contextual

information, we use transformer-based models

trained on large code corpora. Specifically, we apply

CodeBERT or GraphCodeBERT to obtain dense

vector embeddings for each fragment. These models

are capable of capturing naming conventions,

idiomatic usage, and token co-occurrence patterns

that are difficult to model with static graphs alone.

Table 2. Components of hybrid code representation

Component Format Captures Notes

AST features Graph / vector Syntactic structure
Extracted using parser + feature

extractor

PDG features Graph / adjacency Control & data dependencies Control & data dependencies

Transformer

embedding
Dense vector

Semantic similarity, naming,

idioms

Obtained via CodeBERT,

GraphCodeBERT

Fusion layer Concatenated + MLP Unified input for classification
Optional attention or learned fusion can

be added

Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

306

Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

The final representation is constructed by

concatenating and optionally fusing the outputs of

all three modalities: structural features (from AST),

dependency-aware features (from PDG), and

semantic embeddings (from transformers). A feature

projection layer ensures dimensional compatibility

for downstream classifiers.

By integrating these three layers, the system

builds a representation that is robust to superficial

code changes (e.g., renaming, formatting) while

remaining sensitive to deep behavioral differences

that matter for refactoring. This hybrid encoding

significantly improves the generalization capability

of the downstream classifier and enables support for

semantic clone groups, which would be

indistinguishable using shallow features alone.

3.4. Evolutionary feature extraction

While structural and semantic representations

of code provide critical insights into what a clone

does, they offer limited information about how it

behaves over time. Refactoring decisions are often

influenced not only by code structure or similarity,

but also by the evolutionary characteristics of the

code – such as stability, volatility, team ownership,

and defect history. To capture this dimension, we

extract a complementary set of evolution-aware

features from the project's version control history

(e.g., Git).

These features are designed to reflect the

temporal and collaborative context of each clone

fragment and help the model assess whether a

proposed refactoring is likely to be safe, beneficial,

or costly.

Key Evolutionary Features. For each clone

fragment (or its enclosing method/file), we extract

the following version history indicators:

1) Change Frequency (churn) – the total number

of commits in which the fragment (or file) was

modified. High-churn code often indicates instability

or active development, which may increase the risk

of refactoring;

2) Time Since Last Change – measures code

age or recency. Recently modified code may not be

mature enough for safe restructuring, while very old

code may reflect legacy debt;

3) Number of Distinct Authors – high author

count suggests shared ownership and potentially

inconsistent coding styles. Low count may indicate a

single maintainer or owner;

4) Authorship Entropy – normalized entropy

metric that captures how evenly the edits are

distributed among contributors. This complements

author count by identifying whether one developer

dominates maintenance;

5) Code Survival Rate – proportion of original

lines still present in the latest version. A low

survival rate suggests volatility and frequent

rewrites;

6) Defect Co-change Frequency (optional) – if

issue-tracking integration is available, we also track

whether the clone's file or method frequently co-

changes with bug-fixing commits.

These features are computed using lightweight

Git analysis (e.g., git blame, git log, diff parsing)

and optionally augmented with external bug-tracking

data. The features are normalized and integrated

with the static and semantic code representations

during training.

Motivation and Benefits. The inclusion of

evolutionary context offers three core advantages:

 risk awareness: the model can distinguish

between stable, legacy clones (often candidates for

safe refactoring) and volatile, high-risk code (which

may require human review);

 effort estimation: churn and author-related

features serve as proxies for understanding how

expensive or disruptive a refactoring may be in

social and technical terms;

 prioritization context: by including temporal

and team dynamics, the system can prioritize clones

that are not just structurally refactorable, but also

contextually actionable.

By incorporating these evolution-aware signals,

the proposed method supports time-sensitive and

context-aware clone refactoring recommendations,

helping teams focus effort where it is most justified.

3.4.1. Illustrative example: evolution-aware

analysis of a clone fragment

To demonstrate the utility of evolutionary

features in clone refactoring analysis, we consider a

simple fragment from a Java-based e-commerce

system (Fig. 1).

This code computes the total price of items in a

shopping cart. While syntactically simple and

semantically consistent with other fragments in the

codebase, its evolutionary profile reveals important

contextual factors that influence its refactoring

potential.

Fig. 1. Sample code fragment

Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
307

Version Control History (Git-based analysis).

We analyzed the fragment using Git history tools

(git log, git blame, and commit diffs) across a 24-

month project timeline. The extracted data is

presented in Table 3.

As a result, while the static structure and

semantic embedding may strongly recommend an

Extract Method transformation, the evolutionary

features provide a counterbalancing signal that may

lower the method’s refactoring priority – or flag it as

requiring human review.

3.5. Classifier and confidence estimation

At the heart of our system lies a machine

learning–based refactoring type classifier, trained to

predict the most appropriate transformation for each

clone group. However, unlike conventional closed-

set classifiers, our approach explicitly acknowledges

the open-set nature of real-world refactoring: not all

clones will match known transformation patterns,

and some may be unsuitable for any automated

suggestion. To address this, we design the classifier

to support confidence-aware prediction with open-

set rejection.

Refactoring as multi-class classification. The

classifier receives a hybrid input vector representing

a clone group – derived from structural features

(AST/PDG), semantic embeddings (e.g.,

CodeBERT), and evolutionary indicators (e.g.,

churn, author entropy).

It outputs a probability distribution over a

predefined set of refactoring types, such as:

 Extract Method;

 Pull Up Method;

 Move Method;

 Replace Temp with Query.

The predicted class corresponds to the

refactoring type with the highest probability.

Open-set handling via confidence thresholding.

Unlike closed-world scenarios, it is unrealistic to

assume that all incoming clone groups belong to

known refactoring categories. For example, a

fragment may represent a domain-specific pattern or

an anti-pattern not captured in training. Blindly

assigning a class in such cases risks generating

incorrect or harmful recommendations.

To mitigate this, we define an open-set

classification scheme using a confidence-based

rejection strategy. Specifically:

 let 𝑝𝑚𝑎𝑥 = max𝑘𝑃(𝑦 = 𝑘|𝑥) be the softmax

probability of the predicted class;

 if 𝑝𝑚𝑎𝑥 < 𝜃, where 𝜃 is a calibrated

threshold, the instance is rejected and assigned to an

Unknown class;

 otherwise, the predicted class 𝑦̂ =
arg 𝑚𝑎𝑥𝑘𝑃(𝑦 = 𝑘|𝑥) is accepted.

This enables the system to abstain from

uncertain predictions, flagging them for manual

review or deferred decision-making.

Confidence Calibration. To ensure that the

classifier’s predicted probabilities reflect true model

confidence, we apply post-hoc calibration

techniques.

Temperature scaling: A scalar parameter 𝑇 > 0

is learned on a validation set such that softmax

scores become:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑇(𝑧𝑖) =
exp(𝑧𝑖/𝑇)

∑ exp(𝑧𝑗/𝑇)𝑗

. (1)

This reduces overconfidence in neural models,

especially important in safety-critical tasks like

refactoring.

Monte-carlo dropout: At inference time,

dropout is enabled during multiple forward passes.

The variance of predictions is used as a proxy for

epistemic uncertainty.

Model Selection and Training. We

experimented with several classifier architectures:

 Multi-Layer Perceptron (MLP): baseline

classifier using concatenated features;

Transformer-based Classifier Head: directly

fine-tunes CodeBERT for classification;

Table 3. Extracted data from VCS analysis

Feature Value Interpretation

Change_frequency 19 commits High: the method is frequently edited, indicating active development

Last_modified_days 12 days ago Recent: the code is still undergoing frequent changes

Num_authors 6 developers Medium-high: shared ownership increases coordination complexity

Authorship_entropy 0.84 High entropy: changes are evenly distributed among contributors

Survival_ratio 0.55 Low-moderate: significant portions of the method have been rewritten

Bugfix_cochange_count 4 times
Notable: frequently changed alongside bugfix commits (e.g., rounding

errors)

Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

308

Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Graph Neural Network (GNN): processes AST

or PDG graph structures;

 Hybrid Late-Fusion Model: combines

semantic and structural branches.

The models are trained using cross-entropy loss

with optional entropy regularization. For open-set

tuning, we employ confidence-aware validation to

select the optimal threshold θ\thetaθ, maximizing

coverage while controlling false positives.

Benefits and Applications. By combining high-

capacity classification with calibrated rejection, our

system provides:

 Robustness to unknown patterns: prevents

invalid recommendations;

 Confidence-aware prioritization: high-

confidence predictions can be acted upon

automatically;

 Human-in-the-loop support: low-confidence

cases can be deferred or presented with explanation

for review;

 Safer integration into CI/CD pipelines and

developer workflows.

This component transforms the system from a

static predictor into an interactive, self-aware

recommendation agent, capable of adapting to real-

world code heterogeneity and uncertainty.

3.6. Effort and benefit estimation

In practical software development, not all

refactorings are equally valuable or equally costly.

Developers often operate under time and resource

constraints, and even correct clone refactorings may

be deferred or avoided if the perceived effort

outweighs the expected benefit. To support such

reasoning, our system includes a dedicated module

for estimating both refactoring effort and potential

benefit, enabling cost-aware prioritization of clone

transformations (Table 4).

Estimation Goals. Given a clone group 𝐺 and a

predicted refactoring type 𝑅, the module aims to

compute two scores:

 𝐸𝑓𝑓𝑜𝑟𝑡(𝐺, 𝑅): the estimated technical and

social cost of performing the transformation;

 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅): the estimated long-term

positive impact (e.g., maintainability, defect

reduction).

These values are used to derive a prioritization

metric:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐺, 𝑅) =

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅)

𝐸𝑓𝑓𝑜𝑟(𝐺, 𝑅)
. (2)

This scalar is then combined with the

classifier’s confidence to rank clone refactoring

candidates.

Effort Estimation. We define effort as a proxy

for the amount of developer work required to

refactor the clone group. It is approximated using the

following indicators:

 Lines of code (LOC): size of the clone group;

 Cyclomatic complexity: number of decision

points in the control flow;

 AST edit distance: cost of transforming the

clone group to a shared abstraction;

 Code scattering: number of files/classes

involved in the clone group;

 Contributor count: more authors imply higher

coordination overhead;

 Change frequency (churn): frequently

modified code may require conflict resolution.


𝐸𝑓𝑓𝑜𝑟𝑡 = 𝛼1 ∙ 𝐿𝑂𝐶 + 𝛼2 ∙ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 +

+𝛼3 ∙ 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 + ⋯.
(3)

Weights 𝛼𝑖 are learned or heuristically set

based on validation data.

Table 4. Indicators for Effort and Benefit Estimation

Metric Type Used in Description

LOC Static Effort Number of lines in the clone group

Cyclomatic complexity Static Effort Control-flow branching factor

AST edit distance Structural Effort Cost to abstract clones into one shared method

Scattering (file count) Structural Effort Number of locations affected

Churn Evolutionary Effort/Benefit Frequency of changes over time

Co-change density Evolutionary Benefit
How often clone instances are changed

together

Contributor count Social Effort Number of unique authors in clone history

Redundancy ratio Structural Benefit Proportion of duplicated logic

Bug propagation history Evolutionary Benefit
Clone correlation with past bug-fixing

commits

Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
309

Benefit Estimation. We define benefit as the

expected long-term improvement in code quality and

maintainability. This includes:

 Clone redundancy reduction: fewer copies lead

to lower maintenance effort;

 Defect propagation risk: refactoring reduces

chance of bugs being copied;

 Code churn reduction: if refactored code

changes less frequently afterward;

 Historical co-change density: if clones often

change together, abstraction is beneficial;

 Module cohesion gain: merging clones may

improve architectural clarity.

These signals are aggregated into a scalar

benefit estimate via linear regression or decision

trees trained on historical data (e.g., past refactorings

and their outcomes).

Usage and Interpretation. The effort-benefit

estimation allows the system to:

 promote low-effort, high-impact clones for

immediate refactoring;

 defer high-effort or low-benefit clones for later

review or manual inspection;

 avoid costly or risky refactorings that may

harm stability.

This ranking supports actionable decision-

making under constraints such as sprint deadlines or

technical debt reduction goals.

By quantifying both technical difficulty and

potential impact, the system transitions from generic

recommendations to prioritized and context-aware

guidance, tailored to the needs and constraints of

real-world development teams.

3.7. Prioritization and explanation layer

The final stage of our system integrates the

outputs of the classifier, uncertainty estimator, and

effort-benefit module into a unified refactoring

advisory layer.

This layer performs two key functions:

1) Prioritization: Selects and ranks clone

refactoring candidates based on multiple decision

criteria;

2) Explanation: Generates human-readable

rationales for each recommendation to support trust,

transparency, and human-in-the-loop review.

Together, these outputs transform the system

from a predictive model into a practical decision-

support tool suitable for integration into developer

workflows.

Multi-Factor Prioritization Strategy. Each

clone group 𝐺 with a predicted refactoring type 𝑅 is

scored along four dimensions:

 𝐶𝑜𝑛𝑓(𝐺, 𝑅) – model confidence (calibrated);

 𝐸𝑓𝑓𝑜𝑟𝑡(𝐺, 𝑅) – estimated transformation

cost;

 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅) – expected long-term gain;

 𝑅𝑖𝑠𝑘(𝐺) – uncertainty or mismatch indicator.

The final priority score is computed as:

𝑆𝑐𝑜𝑟𝑒(𝐺) = (
𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅)

𝐸𝑓𝑓𝑜𝑟𝑡(𝐺, 𝑅)
) ∙

∙ 𝐶𝑜𝑛𝑓(𝐺, 𝑅) ∙ 𝜆(𝐺).

(4)

where 𝜆(𝐺) ∈ [0,1] is a penalty factor for risky or

low-trust predictions (e.g., high entropy, known bug

history, unknown classification); clone groups below

a score threshold 𝜏 are omitted or flagged for manual

review.

This prioritization strategy ensures that high-

impact, low-effort, high-confidence refactorings are

surfaced first, while uncertain or costly

transformations are postponed or annotated for

inspection.

Explanation Generation. To foster developer

trust and support traceability, each recommendation

is accompanied by a structured natural-language

explanation, which includes:

 Refactoring suggestion: predicted

transformation type;

 Confidence level: qualitative indicator (e.g.,

high / medium / low);

 Key features influencing decision: most

salient input signals;

 Effort and benefit summary: size, complexity,

potential impact;

 Optional caveats: e.g., “High churn and low

survival ratio – consider reviewing manually”.

This explanation is synthesized from

interpretable model features, confidence metrics, and

domain heuristics.

Example Output:

 Suggested Refactoring: Extract Method;

 Confidence: High (94%);

 Why: Clone group has high structural

similarity, low complexity, and appears in 3 methods

across 2 files;

 Effort Estimate: Low – all clones are small

and co-located;

 Benefit Estimate: High – reduces 42

duplicated lines, shared churn history indicates

frequent co-editing;

 Note: Recent bugfix associated with this

method – consider additional review.

4. EXPERIMENTAL SETUP

To evaluate the proposed clone refactoring

advisor, we designed an empirical study that

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

310 Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

simulates realistic development conditions across

diverse software systems. This section presents the

selected projects, clone extraction and labeling

strategy, feature processing pipeline, model

configuration, and evaluation protocol. Throughout,

we integrate both quantitative and qualitative

procedures to ensure rigor and reproducibility.

Subject Systems. We selected four mature,

open-source Java systems that differ in functionality,

scale, and development activity. These systems

provide a rich variety of clone types, architectural

styles, and evolutionary patterns (Table 5).

These systems were chosen to ensure broad

applicability of the proposed method and to provide

realistic challenges such as legacy code, high churn,

and cross-team contributions.

Clone Detection and Labeling. Clone groups

were extracted using the NiCad clone detector,

configured at the function level with default

similarity thresholds. The analysis focused on

Type-1, Type-2, and Type-3 clones, which cover

exact, renamed, and syntactically modified

duplications. Type-4 clones (semantic clones) were

excluded due to their high annotation cost and

inconsistent detection quality.

To ensure high-quality input, we applied post-

filtering rules to exclude:

 methods with fewer than 5 LOC;

 autogenerated boilerplate (e.g., constructors,

accessors);

 trivial duplication patterns such as logging

wrappers.

Next, a manual labeling phase was conducted.

A subset of 600 clone groups was randomly sampled

and annotated by two senior engineers.

Each group was assigned to one of the

following refactoring categories:

1) Extract Method;

2) Move Method;

3) Pull Up Method;

4) Inline Method;

5) No Refactoring (Retain);

6) Unknown / Other.

Disagreements were resolved through joint

review. The final dataset was stratified and split into

training (60 %), validation (20 %), and test (20 %)

sets, ensuring no project overlap across splits.

Feature Extraction Pipeline. The input

representation for each clone group was constructed

through a multi-modal feature extraction process:

 Structural Features: Extracted from ASTs

using the Eclipse JDT parser, including node counts,

nesting depth, and control-flow complexity;

 PDG Features: Built using the JavaPDG

toolkit to represent control and data dependencies;

 Semantic Embeddings: Obtained using the

CodeBERT-base model (768d), pooled over method

tokens using [CLS] and average pooling strategies;

 Evolutionary Features: Computed from Git

history using custom scripts, including:

 change frequency (churn),

 recency of last modification,

 number of unique contributors,

 authorship entropy,

 line survival ratio,

 bug co-change density (via commit

message heuristics).

All numeric features were z-score normalized

before fusion. The final input vector to the classifier

was formed by concatenating all feature modalities.

Classifier Configuration and Training. The

classifier was implemented as a multi-layer

perceptron (MLP) with two hidden layers of 256 and

128 units, using ReLU activations and dropout (𝑝 =
0.2). The model was trained using the AdamW

optimizer with a learning rate of 1 × 10−4 and early

stopping on validation loss.

To enable open-set classification, we applied

temperature scaling for confidence calibration. A

softmax rejection threshold 𝜃 was selected using the

validation set to distinguish uncertain examples

assigned to the Unknown class.

Additionally, effort and benefit were estimated

using Random Forest regressors trained on manually

rated examples of clone complexity and historical

impact (based on bug propagation, churn reduction,

etc.).

Table 5. Summarization of the key characteristics of the selected projects

Method Domain LOC Commits Contributors Notes

Apache Commons Utility libraries ~200,000 8,000+ 90+ Modular, widely reused

JHotDraw GUI framework ~60,000 1,500+ 10+ Design-pattern-intensive

PMD Static analysis ~100,000 6,500+ 60+ Frequent structural refactorings

JEdit Text editor ~150,000 7,200+ 80+ Frequent structural refactorings

Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
311

Evaluation Protocol. Model performance was
assessed across three key tasks:

1) Classification Accuracy: We measured
precision, recall, and macro-F1 across the known
refactoring classes;

2) Open-Set Robustness: The system’s ability
to reject unknown or unsuitable clones was
evaluated by computing:

 true positive rate (TPR) for known cases;
 false acceptance rate (FAR) on unknown
cases;
 AUROC for threshold-based rejection.

3) Recommendation Quality: Using NDCG@k
(Normalized Discounted Cumulative Gain), we
evaluated how well the system prioritized high-
benefit, low-effort clones in its top-k suggestions.

Three baselines were included for comparison:
 closed-set classifier without open-set

rejection;
 model without evolutionary features;
 random ranking baseline for prioritization.
These baselines allow us to isolate the

contribution of evolutionary context, confidence
calibration, and prioritization logic.

This experimental setup ensures a
comprehensive, controlled, and multi-dimensional
evaluation of the system’s performance in realistic
software engineering scenarios. The next section
presents the results and comparative analyses based
on this protocol.

5. EVALUATION RESULTS

This section presents the empirical results of
our proposed refactoring advisor, structured around
three key evaluation criteria: classification
performance, open-set robustness, and prioritization
quality. We report both quantitative metrics and
comparative analyses against baseline systems.

Refactoring Classification Accuracy. We first
evaluate the system’s ability to correctly predict the
refactoring type for known clone groups. Table 6
reports the precision, recall, and F1-score for each
class on the held-out test set.

The model demonstrates consistent
performance across common refactoring. Notably,

Extract Method is the most reliably predicted class,
likely due to its structural regularity and semantic
cohesion.

Open-Set Robustness. To assess the ability of
the model to reject uncertain or unseen clone groups,
we measured the Area Under the Receiver Operating
Characteristic Curve (AUROC) for distinguishing
known vs unknown classes. The calibrated model
achieves an AUROC of 0.91, indicating high
separability.

Moreover, we evaluated the false acceptance
rate (FAR) at different rejection thresholds:

 At threshold 𝜃 = 0.80, the system correctly
rejects 82.4 % of unknown examples while
maintaining a true acceptance rate (TAR) of 88.3 %
on known cases;

 Without open-set handling, the classifier
misclassifies 31 % of unknowns into incorrect
refactoring types.

These results confirm that confidence
calibration and softmax thresholding effectively
prevent overconfident misclassifications in open-
world settings.

Impact of Evolutionary Features. We
conducted an ablation study to evaluate the
contribution of evolutionary features. When
removing version control–based signals (e.g., churn,
survival, authorship entropy), the overall macro-F1
dropped from 0.76 to 0.70, and rejection
performance degraded (AUROC from 0.91 to 0.83).

These results validate our hypothesis that
evolution-aware context provides discriminative
signals for both refactoring classification and
uncertainty management.

Prioritization Effectiveness. To evaluate the
quality of ranked refactorings suggestions, we used
Normalized Discounted Cumulative Gain at rank k
(NDCG@k). Each suggestion was scored based on
its predicted benefit/effort ratio and confidence.
Clone groups labeled by human experts as “high
priority” served as ground truth.

As shown in Table 7, the proposed system
consistently outperforms both the closed-set baseline
and the random ordering baseline.

Table 6. Classification Performance by Refactoring Type

Refactoring Type Precision Recall F1-Score

Extract Method 0.86 0.83 0.84

Move Method 0.81 0.78 0.79

Pull Up Method 0.74 0.71 0.72

Inline Method 0.69 0.66 0.67

No Refactoring 0.75 0.80 0.77

Macro Average 0.77 0.76 0.76

Source: compiled by the authors

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

312

Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Table 7. Evaluation of the proposed method

Method NDCG@3 NDCG@5 NDCG@10

Proposed (full method) 0.89 0.86 0.82

No Evolutionary Features 0.81 0.77 0.73

Closed-set (no Unknowns) 0.75 0.72 0.69

Random baseline 0.42 0.39 0.35

Source: compiled by the authors

The gap widens at lower 𝑘, indicating that our

model surfaces more relevant refactorings near the

top of the list, which is critical for developer

attention and actionability.

Effort vs Benefit Distribution. Finally, we

analyze the relationship between the model's

predicted effort and benefit. High-priority candidates

cluster in the top-right quadrant (high benefit, low

effort), confirming that the system learns to

distinguish trivial duplications from architecturally

meaningful clones.

Examples in the bottom-left quadrant are

correctly demoted or rejected, as they tend to be

unstable, buggy, or highly entangled, despite their

apparent duplication.

Summary of Key Results:

 The classifier achieves macro-F1 = 0.76 on

known classes and AUROC = 0.91 for open-set

rejection;

 Evolutionary features contribute a +6 %

absolute gain in classification and improved

prioritization;

 The system ranks high-benefit, low-effort

refactorings at the top, outperforming all baselines in

NDCG@k.

These results demonstrate the system’s utility

as a trustworthy and context-aware refactoring

advisor, capable of generalizing to realistic, noisy,

and evolving codebases.

CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a machine learning–

based approach for clone refactoring

recommendation that goes beyond traditional clone

detection. Our method combines structural,

semantic, and evolutionary features to classify clone

groups, estimate refactoring effort and benefit,

handle previously unseen patterns via open-set

classification, and produce prioritized, explainable

suggestions suitable for practical use.

Empirical evaluation across several real-world

Java projects demonstrated that the proposed system

achieves high classification accuracy (macro-F1 of

0.76), strong robustness in rejecting uncertain clones

(AUROC of 0.91), and effective ranking of

actionable refactorings (NDCG@3 of 0.89).

Notably, the integration of evolutionary features and

effort-benefit estimation significantly improved both

the quality and interpretability of the

recommendations.

Our findings suggest that clone refactoring can

benefit from a shift from detection to decision

support, especially in large, evolving codebases. The

system encourages developers to reason not only

about what clones exist, but also about which ones

are worth refactoring, and why.

Future Work. Several avenues remain open for

further research and enhancement:

 Extension to additional refactoring types. Our

current taxonomy focuses on four method-level

refactorings. Future work could integrate higher-

level transformations (e.g., Extract Interface,

Convert Hierarchy);

 Cross-language generalization. We plan to

adapt the approach to other languages (e.g., Python,

C++) using multilingual embeddings and language-

agnostic graph representations;

 Human-in-the-loop refinement. Integrating

developer feedback through active learning or

interactive explanation could further improve

precision and trust;

 IDE integration and user studies. Embedding

the system into real development environments and

conducting longitudinal studies would provide

deeper insights into adoption, usability, and impact;

 Confidence modeling under shift. Improving

uncertainty estimation under codebase evolution or

domain shift remains a challenge for open-set

learning in software engineering.

By releasing our dataset, source code, and

tooling, we hope to foster future work on intelligent,

transparent, and context-aware support for clone

management and software maintenance more

broadly.

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
313

REFERENCES

1. Wang, W. & Godfrey, M. W. “Recommending clones for refactoring using design, Context, and

History”. Proceedings of ICSME. 2014. DOI: https://doi.org/10.1109/ICSME.2014.55.

2. Yue, R., Gao, Z., Meng, N., Xiong, Y., Wang, X. & Morgenthaler, J. D. “Automatic clone

recommendation for refactoring based on the present and the past”. arXiv. 2018.

DOI: https://doi.org/10.48550/arXiv.1807.11184.

3. Wang, W., Li, G., Ma, B., Xia, X. & Jin, Z. “Detecting code clones with graph neural network and

flow-augmented abstract syntax tree”. Proceedings of SANER. 2020. DOI:

https://doi.org/10.1109/SANER48275.2020.9054857.

4. Zhang, Y., Yang, J., Dong, H., Wang, Q., Shao, H., Leach, K. & Huang, Y. “ASTRO: An AST-

assisted approach for generalizable neural clone detection”. arXiv. 2022.

DOI: https://doi.org/10.48550/arXiv.2208.08067.

5. Xue, Z., Jiang, Z., Huang, C., Xu, R., Huang, X. & Hu, L. “SEED: Semantic graph based deep

detection for Type-4 Clone”. arXiv. 2021. DOI: https://doi.org/10.48550/arXiv.2109.12079.

6. Lei, M., Li, J., Peng, X., Xing, Z., Liu, J. & Wang, X. “Deep learning application on code clone

detection: A systematic review”. Journal of Systems and Software. 2022; 185: 111211.

DOI: https://doi.org/10.1016/j.jss.2021.111211.

7. Nair, A., Roy, A. & Meinke, K. “funcGNN: A graph neural network approach to program similarity”.

arXiv. 2020. DOI: https://doi.org/10.48550/arXiv.2007.13239.

8. Zubkov, M., Spirin, E., Bogomolov, E. & Bryksin, T. “Evaluation of contrastive learning with

various code representations for code clone detection”. arXiv. 2022. DOI:

https://doi.org/10.48550/arXiv.2206.08726.

9. Choi, E., Yoshida, N. & Inoue, K. “What kind of and how clones are refactored? A case study of

three OSS projects”. Proc. ICSE Workshops (WRT). 2012. DOI: https://doi.org/10.1145/2328876.2328877.

10. Kanwal, J., Maqbool, O., Basit, H. A., Sindhu, M. A. & Inoue, K. “Historical perspective of code

clone refactorings in evolving software”. PLoS ONE. 2022; 17 (12): e0277216.

DOI: https://doi.org/10.1371/journal.pone.0277216.

11. Thompson, S., Li, H. & Schumacher, A. “The pragmatics of clone detection and elimination”. arXiv.

2017. DOI: https://doi.org/10.48550/arXiv.1703.10860.

12. Kurbatova, Z., Veselov, I., Golubev, Y. & Bryksin, T. “Recommendation of move method

refactoring using path-based representation of code”. arXiv. 2020. DOI:

https://doi.org/10.48550/arXiv.2002.06392.

13. Wagner, S., Abdulkhaleq, A., Kaya, K. & Paar, A. “On the relationship of inconsistent software

clones and faults: An Empirical Study”. arXiv. 2016. DOI: https://doi.org/10.48550/arXiv.1611.08005.

14. Mondal, M., Roy, C. K. & Schneider, K. A. “A survey on clone refactoring and tracking”. Journal

of Systems and Software. 2020; 159: 110429. DOI: https://doi.org/10.1016/j.jss.2019.110429.

15. Yang, J., Igaki, H., Hotta, K., Higo, Y. & Kusumoto, S. “Classification model for code clones based

on machine learning”. Empirical Software Engineering. 2015; 20 (4): 1095–1125.

DOI: https://doi.org/10.1007/s10664-014-9316-x.

16. Mens, T. & Tourwé, T. “A survey of software refactoring”. IEEE Transactions on Software

Engineering. 2004; 30 (2): 126–139. DOI: https://doi.org/10.1109/TSE.2004.1265817.

17. Choi, E., Fujiwara, K., Yoshida, N. & Hayashi, S. “A survey of refactoring detection techniques

based on change history analysis”. arXiv. 2018. DOI: https://doi.org/10.48550/arXiv.1808.02320.

18. Golubev, Y., Kurbatova, Z., AlOmar, E., Bryksin, T. & Mkaouer, M. W. “One thousand and one

stories: A Large-Scale survey of software refactoring”. arXiv. 2021. DOI:

https://doi.org/10.48550/arXiv.2107.07357.

19. Kaur, M., Rattan, M. & Verma, S. “A systematic literature review on the use of machine learning in

code clone related research areas”. Journal of Systems Architecture. 2023; 139: 102844.

DOI: https://doi.org/10.1016/j.sysarc.2023.102844.

20. Roy, C. K., Zibran, M. F. & Koschke, R. “The vision of software clone management: Past, Present,

and Future”. arXiv. 2020. DOI: https://doi.org/10.48550/arXiv.2005.01005.

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

314 Theoretical aspects of computer science,

programming and data analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

21. Schulze, S., Kuhlemann, M. & Rosenmüller, M. “Towards a refactoring guideline using code clone

classification”. Proceedings of AOSD. 2008. DOI: https://doi.org/10.1145/1636642.1636648.

22. AlOmar, E. A., Ashkenas, J., Feliciano, R., et al. “AntiCopyPaster 3.0: Just-in-Time Clone

Refactoring”. ACM Trans. Softw. Eng. Methodol. 2025. DOI: https://doi.org/10.1145/3749100.

23. Higo, Y., Sawa, Y. & Kusumoto, S. “Problematic code clones identification using multiple detection

results”. Proceedings of APSEC. 2009. DOI: https://doi.org/10.1109/APSEC.2009.30.

24. Sheneamer, A. M. “An automatic advisor for refactoring software clones based on machine

learning”. IEEE Access. 2020; 8: 124978–124988. DOI: https://doi.org/10.1109/ACCESS.2020.3006178.

25. Mostaeen, G., Islam, M. R., Roy, C. K. & Schneider, K. A. “A machine learning based framework

for code clone validation”. Journal of Systems and Software. 2020; 170: 110740.

DOI: https://doi.org/10.1016/j.jss.2020.110740.

26. Sajnani, V., Saini, V., Svajlenko, J., Roy, C. K. & Lopes, C. V. “SourcererCC: Scalable Near-Miss

Clone Detection”. Proceedings of ICSE. 2016. DOI: https://doi.org/10.1145/2884781.2884877.

27. Jiang, L., Misherghi, G., Su, Z. & Glondu, S. “DECKARD: Scalable and Accurate Tree-Based

Detection of Code Clones”. Proceedings of ICSE. 2007. DOI: https://doi.org/10.1109/ICSE.2007.30.

28. Kamiya, T., Kusumoto, S. & Inoue, K. “CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code”. IEEE Transactions on Software Engineering. 2002; 28 (7):

654–670. DOI: https://doi.org/10.1109/TSE.2002.1000449.

29. Roy, C. K. & Cordy, J. R. “NICAD: Accurate Detection of Near-Miss Intentional Clones Using

Flexible Pretty-Printing and Code Normalization”. Proceedings of CSMR. 2008. DOI:

https://doi.org/10.1109/CSMR.2008.4493319.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,

authorship or other, which could influence the research and its results presented in this article

Received 18.08.2025

Received after revision 22.09.2025

Accepted 26.09.2025

DOI: https://doi.org/10.15276/hait.08.2025.19

УДК 004.021:004.4’42:004.8

Рекомендація рефакторингів із багатоцільовою оптимізацією

та урахуванням невизначеності для дублювання коду

Курінько Дмитро Дмитрович1)
ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

Кривда Вікторія Ігорівна1)
ORCID: https://orcid.org/0000-0002-0930-1163; kryvda@op.edu.ua

1) Національний університет «Одеська Політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

АНОТАЦІЯ

Клоновані фрагменти коду (code clones) – це повторювані ділянки програмного коду, які можуть ускладнювати

підтримку програмного забезпечення за відсутності належного управління. Існує багато інструментів для виявлення клонів,

однак більшість з них обмежується лише фактом виявлення та не надає рекомендацій щодо доцільності, способу чи

черговості їх рефакторингу. У цій статті запропоновано метод машинного навчання для надання рекомендацій з

рефакторингу клонів з урахуванням пріоритетності та оцінки впевненості. Запропонований підхід використовує

комбіноване представлення коду: абстрактні синтаксичні дерева (AST), графи залежностей програми (PDG) та семантичні

вектори, отримані за допомогою попередньо натренованої моделі CodeBERT. Додатково використовуються еволюційні

ознаки з системи контролю версій, зокрема частота змін, вік фрагмента та співзміни з іншими файлами. Класифікатор

багато-класової моделі прогнозує тип рефакторингу, а механізм відкритих класів дозволяє відхиляти невизначені або

невідомі випадки. Оцінка зусиль та користі дозволяє впорядковувати рекомендації за ефективністю.

Експериментальна перевірка на чотирьох open-source проєктах на Java з вручну розміченими 600 групами клонів

показала досягнення macro-F1 = 0.76 для відомих типів рефакторингу, AUROC = 0.91 для виявлення невідомих випадків та

NDCG@3 = 0.89 для якості пріоритезації. Отримані результати демонструють, що рефакторинг клонів може бути ефективно

https://doi.org/#_blank
mailto:dmitrykurinko@gmail.com

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

 2025; Vol.8 No.3: 301–315

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
315

підтриманий завдяки поєднанню структурних і семантичних ознак, моделювання невизначеності та механізмів

пріоритезації. Запропонований підхід трансформує клон-аналіз із пасивного виявлення у повноцінну систему підтримки

рішень.

Ключові слова: Рефакторинг клонів; штучний інтелект у програмній інженерії; машинне навчання; глибинне

навчання; класифікація клонів; відкрите розпізнавання; оцінка невизначеності

ABOUT THE AUTHORS

Dmytro D. Kurinko - PhD Student, Artificial Intelligence and Data Analysis Department, Odesa Polytechnic National
University, 1, Shevchenko Ave. Odesa, 65044

ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

Research field: Machine Learning and Artificial Intelligence, Machine Learning for Software Engineering, Pattern
Recognition, Computer Vision, Knowledge Representation in Software Systems

Курінько Дмитро Дмитрович - аспірант кафедри Штучного інтелекту та аналізу даних, Національний

університет «Одеська Політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

Viktoriia I. Kryvda - PhD, Associate Professor, Department of Electricity and Energy Management, Head of

Department of Postgraduate and Doctoral Studies, Odesa Polytechnic National University, 1, Shevchenko Ave. Odesa,

65044
ORCID: https://orcid.org/0000-0002-0930-1163, kryvda@op.edu.ua

Research field: Machine Learning for Software Engineering, Pattern Recognition, Data-Driven Software Architecture

Analysis, Computer Vision, Knowledge Representation in Software Systems

Кривда Вікторія Ігорівна - канд. техніч. наук, доцент кафедри Електропостачання та енергетичного

менеджменту, завідувач відділу аспірантури і докторантури, Національний університет «Одеська Політехніка»,

пр. Шевченка, 1. Одеса, 65044, Україна

