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ABSTRACT 

Code clones are recurring code fragments that may hinder software maintainability if not properly managed. While many clone 

detection tools exist, they often stop at identification and provide no clear guidance on whether a detected clone group should be 

refactored, how to do so, or in what order. This paper presents a machine learning–based method for recommending clone 

refactorings with prioritization and confidence estimation. The proposed approach represents code fragments using abstract syntax 

trees, program dependency graphs, and semantic embeddings from a pre-trained CodeBERT model. In addition, version control data 

is used to extract evolutionary features such as churn, age, and co-change patterns. A multi-class classifier predicts refactoring types, 

while open-set recognition techniques identify uncertain cases and flag them as unknown. Effort and benefit estimation models help 

prioritize suggestions based on a cost-effectiveness ratio. We evaluated the method on four open-source Java projects using a 

manually labeled dataset of 600 clone groups. The system achieves a macro-F1 score of zero point seven six on known refactoring 

types and an AUROC of zero point nine one for unknown detection. Prioritized recommendation quality reaches NDCG@3 of zero 

point eight nine, showing strong alignment with expert assessments. The results indicate that clone refactoring can be effectively 

supported through integrated code representation, uncertainty modeling, and prioritization. The approach transforms clone analysis 

from a passive task into an actionable process. 
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1. INTRODUCTION,  

FORMULATION OF THE PROBLEM 

Code clones are fragments that partially or fully 

duplicate each other. They arise due to deadlines, 

copying “working” solutions without proper 

abstraction, temporary hotfixes, and branching 

product lines. In the short term, copy-paste speeds 

development, but in the long term it increases 

technical debt: change points multiply, consistency 

is harder to maintain, and the risk of defects and 

regressions grows [1]. In large codebases 

(monorepos, microservices, polyglot stacks), clones 

are inevitable and “migrate” across modules and 

teams, complicating code reviews and slowing 

releases [2]. The problem is amplified by frequent 

releases and CI/CD: fixes must propagate 

synchronously to all replicas, otherwise 

environments diverge in behavior. Clones also 

reduce the evolutionary flexibility of the 

architecture: they hinder extracting common APIs 

and adopting new technologies. Therefore, detection 

alone is not enough – teams need recommendations  
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on what and how to refactor, taking into account 

semantics, dependency context, change history, and 

the expected benefit vs. effort [3]. 

Industrial and research practice in clone 

detection spans a wide spectrum of approaches: from 

textual and token-based methods to structure-

oriented (AST), graph-based (PDG/CFG), and 

modern vector representations of code (neural 

embeddings, GNN/CodeBERT-like models) [4]. 

These tools reliably identify and cluster duplicates in 

large-scale repositories, produce clone clusters and 

metrics (degree of duplication, “hot spots”), and 

integrate into IDEs and CI/CD as code-quality 

reports. At the process level, they support regular 

technical-debt monitoring, facilitate audits, and 

inform backlog grooming and planning [5]. 

However, most solutions stop at the fact of 

detection and do not proceed to actionable guidance. 

Typical limitations include: (i) lack of semantically 

grounded recommendations on what exactly and 

how to refactor for a given cluster; (ii) absence of 

calibrated handling of uncertainty (risk of 

overconfident or overly conservative decisions); (iii) 

no mechanisms for benefit/effort–based  
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prioritization that account for version-control history 

(VCS) and operational risk; and (iv) limited 

explainability and weak integration with decision-

making practices (code review, sprint planning) [6]. 

As a result, clone detection rarely translates into 

predictable cost savings: teams must manually 

decide what to refactor, in what order, and whether it 

will pay off [7]. 

Despite mature clone-detection tooling and a 

variety of advisory approaches, a persistent gap 

remains between the fact of detection and actionable 

engineering decisions. Existing systems rarely unite, 

within a single method: (i) a semantically faithful 

code representation (to handle fragments that are 

similar in meaning yet syntactically divergent); (ii) 

controlled uncertainty management (open-set 

formulation with explicit applicability limits and 

calibrated confidence); (iii) benefit/effort–based 

prioritization that accounts for version-control 

history (VCS), co-evolution signals, and defect risk; 

(iv) explainability of recommendations at the level 

of concrete transformations (which differences can 

be parameterized, which refactoring template is 

appropriate); and (v) process integrability (IDE/CI, 

sprint planning) alongside experimental 

reproducibility. In addition, there is a lack of vetted 

protocols for cross-project generalization 

(robustness to coding style/domain) and harmonized 

metrics that jointly assess classification quality, 

decision risk, and ranking utility for work planning 

[8]. 

Accordingly, there is a clear need for a method 

that integrates deeper structural and semantic 

understanding of code, calibrated uncertainty, and 

value-oriented ranking, delivering transparent, 

reproducible, and practically applicable 

recommendations for clone refactoring. 

The purpose of this study is to develop a 

method that converts clone detection into actionable, 

prioritized refactoring decisions. Concretely, we aim 

to (i) provide semantically grounded 

recommendations on what to refactor and how (e.g., 

which refactoring template to apply), (ii) manage 

uncertainty by explicitly identifying low-confidence 

and out-of-distribution cases, and (iii) prioritize 

candidate actions by expected benefit-versus-effort, 

informed by code structure and version-control 

history. The intended outcome is a transparent, 

reproducible advisory pipeline that reduces technical 

debt, mitigates regression risk, and accelerates 

architectural evolution while integrating seamlessly 

with existing engineering workflows (IDE/CI). 

 

2. BACKGROUND AND RELATED WORK 

The problem of code cloning has been 

extensively studied over the past two decades, with 

early foundational works focusing on the 

classification and detection of clone types (e.g., 

Type I–IV) [9]. Numerous studies have confirmed 

that code clones are not only widespread but often 

persist for long periods in production systems, where 

they contribute to increased maintenance cost, 

defect-proneness, and codebase inconsistency [10], 

[11], [12]. 

From a software engineering perspective, the 

remediation of code clones typically involves 

manual or semi-automated refactoring, guided by 

developer intuition or tool recommendations. 

Research has proposed a range of approaches, from 

catalog-based refactoring patterns to clone-specific 

transformations (e.g., Extract Method, Move 

Method). Some tools support automatic 

transformation under strict preconditions, while 

others assist human developers with ranking or 

filtering options [13]. 

However, empirical studies show that 

developers frequently ignore clone warnings, citing 

lack of actionable guidance, potential side effects of 

transformation, and uncertainty about long-term 

benefits [14]. Moreover, decisions to refactor are 

often project-specific and context-sensitive: clones 

that are harmful in one subsystem may be benign or 

even beneficial in another. 

Numerous approaches have been proposed to 

facilitate the refactoring of code clones, ranging 

from static rule-based systems to learning-enabled 

recommender frameworks [15], [16], [17]. 

Traditional techniques often rely on predefined 

templates such as Extract Method, Move Method, or 

Pull Up Method, applied either manually or with 

IDE support (e.g., Eclipse, IntelliJ). While these 

refactorings are well understood and standardized, 

identifying the correct context in which they should 

be applied remains non-trivial. 

Rule-based systems encode structural patterns 

and syntactic thresholds to suggest refactorings. 

These approaches are efficient and interpretable but 

suffer from limited adaptability and inability to 

reason over semantic similarity or usage context. To 

address such limitations, later works have 

incorporated code metrics (e.g., size, duplication 

ratio, cohesion) or heuristic scoring functions to 

filter or prioritize clone groups [18]. 

More recently, machine learning–based 

approaches have emerged that attempt to predict the 

likelihood or appropriateness of refactoring actions 
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[19]. Some leverage feature engineering over 

abstract syntax trees (ASTs) or program dependency 

graphs (PDGs), while others exploit version history 

and commit metadata to learn patterns of past 

developer behavior. A prominent example is CREC, 

which uses clone histories and manually engineered 

features to rank refactoring opportunities [20]. 

However, despite promising results, most ML-

based systems function as black-box predictors, 

offering limited interpretability and no guarantees of 

correctness. Additionally, they often lack the 

capability to distinguish between ambiguous or out-

of-distribution inputs and may fail silently or behave 

erratically in such cases. Furthermore, few existing 

systems provide actionable, contextualized 

explanations or rank refactoring options by expected 

effort and impact, which limits their practical utility 

in complex industrial codebases [21]. 

Thus, while the literature demonstrates a wide 

spectrum of clone refactoring support tools, a 

unified pipeline that integrates detection, semantic 

understanding, prioritization, and uncertainty 

awareness remains elusive [22], [23], [24]. 

Numerous approaches have been proposed to 

facilitate the refactoring of code clones, ranging 

from static rule-based systems to learning-enabled 

recommender frameworks. Traditional techniques 

often rely on predefined templates such as Extract 

Method, Move Method, or Pull Up Method, applied 

either manually or with IDE support (e.g., Eclipse, 

IntelliJ). While these refactorings are well 

understood and standardized, identifying the correct 

context in which they should be applied remains 

non-trivial [25]. 

Rule-based systems encode structural patterns 

and syntactic thresholds to suggest refactorings. 

These approaches are efficient and interpretable but 

suffer from limited adaptability and inability to 

reason over semantic similarity or usage context. To 

address such limitations, later works have 

incorporated code metrics (e.g., size, duplication 

ratio, cohesion) or heuristic scoring functions to 

filter or prioritize clone groups [26]. 

More recently, machine learning–based 

approaches have emerged that attempt to predict the 

likelihood or appropriateness of refactoring actions. 

Some leverage feature engineering over abstract 

syntax trees (ASTs) or program dependency graphs 

(PDGs), while others exploit version history and 

commit metadata to learn patterns of past developer 

behavior. A prominent example is CREC, which 

uses clone histories and manually engineered 

features to rank refactoring opportunities [27]. 

However, despite promising results, most ML-

based systems function as black-box predictors, 

offering limited interpretability and no guarantees of 

correctness. Additionally, they often lack the 

capability to distinguish between ambiguous or out-

of-distribution inputs and may fail silently or behave 

erratically in such cases. Furthermore, few existing 

systems provide actionable, contextualized 

explanations or rank refactoring options by expected 

effort and impact, which limits their practical utility 

in complex industrial, codebases [28]. 

Thus, while the literature demonstrates a wide 

spectrum of clone refactoring support tools, a 

unified pipeline that integrates detection, semantic 

understanding, prioritization, and uncertainty 

awareness remains elusive. 

Modern refactoring recommenders increasingly 

rely on learned code representations. Approaches 

range from traditional AST-based features to 

advanced embeddings generated by pre-trained 

models such as CodeBERT, GraphCodeBERT, or 

TreeSAGE. These representations enable semantic 

comparison and classification of code fragments, 

allowing for better generalization beyond syntactic 

similarity. However, many such models lack fine-

grained control, interpretability, or explicit 

alignment with refactoring tasks [29]. 

In real-world scenarios, refactoring decisions 

often involve uncertainty – stemming from 

ambiguous clone semantics, unstable APIs, or 

missing documentation. While ML models can 

assist, few existing tools explicitly quantify 

uncertainty or assess refactoring effort vs. benefit. 

Prioritization strategies remain heuristic, lacking 

formal grounding in software engineering economics 

or risk analysis. The absence of uncertainty-aware 

recommendations limits developer trust and 

adoption. 

This work bridges multiple gaps by proposing a 

clone refactoring advisor that combines (i) pre-

trained code embeddings, (ii) confidence calibration 

for out-of-distribution detection, and (iii) 

impact/effort-based prioritization. In contrast to 

prior black-box recommenders, our approach 

provides interpretable, context-aware suggestions 

with explicit support for ambiguity and trade-off 

reasoning. It complements existing detection tools 

and advances clone refactoring from static listing 

toward actionable engineering guidance. 

3. PROPOSED METHOD 

3.1. Overview of the proposed architecture 

The proposed system is designed as an end-to-

end refactoring advisor for code clones, capable of 
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producing ranked, interpretable, and risk-aware 

recommendations. Its core objective is to go beyond 

clone detection and provide actionable guidance on 

whether a clone should be refactored, which 

transformation is appropriate, how confident the 

system is, and how the decision should be prioritized 

based on potential benefits and costs. 

The architecture follows a modular, layered 

pipeline, which is summarized in Table 1. Each 

stage contributes distinct analytical capabilities: 

semantic representation, historical context, decision 

reasoning, and trust calibration. 

The pipeline begins with clone group 

extraction, obtained from external clone detectors 

such as NiCad, SourcererCC, or CloneWorks. Each 

clone fragment is parsed into a structural form (AST 

and PDG) and embedded using a pretrained 

language model (e.g., CodeBERT, 

GraphCodeBERT). These embeddings are enriched 

with static structural features (e.g., LOC, control-

flow depth) and evolutionary features extracted from 

the Git history of the codebase – such as change 

frequency, recency, authorship entropy, and co-

change statistics. 

The fused representation is then passed to a 

multi-output open-set classifier, which assigns each 

clone group to a recommended refactoring type 

(e.g., Extract Method, Pull Up Method, Move 

Method), or flags it as Unknown if the prediction 

confidence is low or the instance is semantically 

distant from training examples. To support this 

behavior, the system incorporates confidence 

calibration mechanisms (e.g., temperature scaling, 

dropout-based variance estimation), producing 

interpretable uncertainty estimates for each decision. 

Next, the system evaluates the expected effort 

and benefit of refactoring, based on both static code 

metrics and historical evolution data. The effort-

benefit ratio is used to prioritize clone groups, 

ensuring that high-impact, low-effort opportunities 

are surfaced to the top of the recommendation list. 

Finally, each recommendation is accompanied 

by a concise natural-language explanation, generated 

from interpretable features, which justifies the 

recommendation in terms understandable to human 

developers. These explanations improve 

transparency and facilitate manual inspection or 

team discussions. 

This modular design enables the system to 

adapt to different codebases, integrate new detectors  

or language models, and interact flexibly with 

human-in-the-loop workflows (e.g., for active 

learning or selective review). It lays the foundation 

for a practical, extensible refactoring advisor that 

supports real-world software engineering 

constraints. 

3.2. Clone detection and preprocessing 

The refactoring pipeline begins with the 

identification and preparation of clone groups – sets 

of code fragments that exhibit structural or semantic 

similarity. Clone detection serves as the foundation 

for all subsequent analysis; therefore, it is essential 

that the detected clones be of sufficient quality, 

granularity, and interpretability. This stage is 

deliberately decoupled from the rest of the pipeline 

to allow integration with multiple third-party 

detectors and facilitate language portability. 

Table 1. Summary of architecture components and their roles 

Component Description 

Clone Detection 
External tools identify clone groups (e.g., Type I–III), used as input to the 

pipeline 

Graph-Based Code Representation 
AST and PDG structures encoded via pretrained models (CodeBERT, 

GraphCodeBERT) 

Structural and Semantic Features Includes LOC, nesting depth, token types, and semantic embeddings 

Version Control Features Extracted from Git: churn, recency, number of authors, co-change patterns 

Open-Set Classifier Predicts refactoring type or flags Unknown with calibrated uncertainty 

Confidence Calibration 
Quantifies prediction confidence using entropy, dropout variance, or temperature 

scaling 

Effort & Benefit Estimation Estimates refactoring cost and impact using structural + historical indicators 

Prioritization Module Ranks recommendations using benefit-to-effort ratio and confidence thresholds 

Explanation Generator 
Produces human-readable rationales for each recommendation to support review 

and trust 

 Source: compiled by the authors 
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In our system, clone detection is treated as a 

pluggable preprocessing module. We assume that 

clone groups have already been detected using 

established tools such as NiCad, SourcererCC, or 

CloneWorks, depending on the desired balance of 

recall, precision, and scalability. Our 

implementation primarily targets Type I–III clones, 

which cover exact copies, syntactic variations, and 

renamed or reordered elements while excluding 

more abstract Type IV clones (semantic equivalence 

without syntactic similarity), which require deeper 

analysis beyond current scope. 

Each clone group is passed through a 

preprocessing pipeline that standardizes code 

fragments for consistent downstream representation. 

This includes: 

 whitespace and comment normalization, to 

remove irrelevant variability; 

 AST sanitation, such as renaming identifiers 

with placeholders (e.g., VAR_1, FUNC_2) to reduce 

overfitting to naming patterns; 

 control-flow slicing, which extracts the 

minimal executable block that covers the clone, 

preserving semantic boundaries; 

 tokenization and parsing, preparing the code 

for both graph construction and transformer-based 

embedding. 

Optionally, we apply context windowing to 

extend clone fragments with a limited number of 

surrounding lines (before/after), ensuring that local 

dependencies or method headers are retained. This 

provides richer inputs for downstream embeddings 

without introducing excessive noise. 

To filter out trivial clones or overly noisy 

inputs, we enforce lightweight filtering rules (e.g., 

minimum LOC threshold, no empty-body methods, 

no auto-generated code), which are customizable 

based on project constraints. 

This preprocessing ensures that each clone 

fragment is converted into a standardized, 

semantically meaningful, and model-friendly format, 

suitable for both structural analysis (AST/PDG) and 

semantic encoding (e.g., via transformer-based 

models). It also decouples the refactoring logic from 

any specific detection tool or input language, 

making the system extensible and adaptable across 

environments. 

3.3. Code representation 

Accurate and expressive representation of code 

is critical for enabling machine learning models to 

reason about clone similarity, refactoring intent, and 

transformation applicability. Unlike traditional 

approaches that rely solely on syntactic features 

(e.g., token counts, AST node frequencies), our 

method combines graph-based structural information 

with semantic embeddings from large-scale 

pretrained models. 

This hybrid representation provides a more 

complete view of the code, capturing both low-level 

structure and high-level meaning. 

Each code fragment is represented using three 

complementary layers (Table 2). 

1. Abstract Syntax Tree (AST): the AST 

captures the syntactic structure of the code, 

including expressions, control-flow statements, and 

declarations. We use language-specific parsers to 

construct ASTs and extract subgraphs relevant to the 

cloned fragment. The AST provides the backbone 

for structural feature extraction and serves as input 

to graph neural networks (GNNs) or graph kernels. 

2. Program Dependency Graph (PDG): to 

account for semantic and data-flow relationships, we 

construct PDGs that capture control dependencies 

(e.g., conditionals, loops) and data dependencies 

(e.g., variable usage and assignment). These graphs 

encode how the fragment behaves during execution, 

helping to distinguish semantically different clones 

that may be structurally similar. 

3. Pretrained Code Embeddings: to enrich the 

graph-based representation with learned contextual 

information, we use transformer-based models 

trained on large code corpora. Specifically, we apply 

CodeBERT or GraphCodeBERT to obtain dense 

vector embeddings for each fragment. These models 

are capable of capturing naming conventions, 

idiomatic usage, and token co-occurrence patterns 

that are difficult to model with static graphs alone. 

Table 2. Components of hybrid code representation 

Component Format Captures Notes 

AST features Graph / vector Syntactic structure 
Extracted using parser + feature 

extractor 

PDG features Graph / adjacency Control & data dependencies Control & data dependencies 

Transformer 

embedding 
Dense vector 

Semantic similarity, naming, 

idioms 

Obtained via CodeBERT, 

GraphCodeBERT 

Fusion layer Concatenated + MLP Unified input for classification 
Optional attention or learned fusion can 

be added 

Source: compiled by the authors 
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The final representation is constructed by 

concatenating and optionally fusing the outputs of 

all three modalities: structural features (from AST), 

dependency-aware features (from PDG), and 

semantic embeddings (from transformers). A feature 

projection layer ensures dimensional compatibility 

for downstream classifiers. 

By integrating these three layers, the system 

builds a representation that is robust to superficial 

code changes (e.g., renaming, formatting) while 

remaining sensitive to deep behavioral differences 

that matter for refactoring. This hybrid encoding 

significantly improves the generalization capability 

of the downstream classifier and enables support for 

semantic clone groups, which would be 

indistinguishable using shallow features alone. 

3.4. Evolutionary feature extraction 

While structural and semantic representations 

of code provide critical insights into what a clone 

does, they offer limited information about how it 

behaves over time. Refactoring decisions are often 

influenced not only by code structure or similarity, 

but also by the evolutionary characteristics of the 

code – such as stability, volatility, team ownership, 

and defect history. To capture this dimension, we 

extract a complementary set of evolution-aware 

features from the project's version control history 

(e.g., Git). 

These features are designed to reflect the 

temporal and collaborative context of each clone 

fragment and help the model assess whether a 

proposed refactoring is likely to be safe, beneficial, 

or costly. 

Key Evolutionary Features. For each clone 

fragment (or its enclosing method/file), we extract 

the following version history indicators: 

1) Change Frequency (churn) – the total number 

of commits in which the fragment (or file) was 

modified. High-churn code often indicates instability 

or active development, which may increase the risk 

of refactoring; 

2) Time Since Last Change – measures code 

age or recency. Recently modified code may not be 

mature enough for safe restructuring, while very old 

code may reflect legacy debt; 

3) Number of Distinct Authors – high author 

count suggests shared ownership and potentially 

inconsistent coding styles. Low count may indicate a 

single maintainer or owner; 

4) Authorship Entropy – normalized entropy 

metric that captures how evenly the edits are 

distributed among contributors. This complements 

author count by identifying whether one developer 

dominates maintenance; 

5) Code Survival Rate – proportion of original 

lines still present in the latest version. A low 

survival rate suggests volatility and frequent 

rewrites; 

6) Defect Co-change Frequency (optional) – if 

issue-tracking integration is available, we also track 

whether the clone's file or method frequently co-

changes with bug-fixing commits. 

These features are computed using lightweight 

Git analysis (e.g., git blame, git log, diff parsing) 

and optionally augmented with external bug-tracking 

data. The features are normalized and integrated 

with the static and semantic code representations 

during training. 

Motivation and Benefits. The inclusion of 

evolutionary context offers three core advantages: 

 risk awareness: the model can distinguish 

between stable, legacy clones (often candidates for 

safe refactoring) and volatile, high-risk code (which 

may require human review); 

 effort estimation: churn and author-related 

features serve as proxies for understanding how 

expensive or disruptive a refactoring may be in 

social and technical terms; 

 prioritization context: by including temporal 

and team dynamics, the system can prioritize clones 

that are not just structurally refactorable, but also 

contextually actionable. 

By incorporating these evolution-aware signals, 

the proposed method supports time-sensitive and 

context-aware clone refactoring recommendations, 

helping teams focus effort where it is most justified. 

3.4.1. Illustrative example: evolution-aware 

analysis of a clone fragment 

To demonstrate the utility of evolutionary 

features in clone refactoring analysis, we consider a 

simple fragment from a Java-based e-commerce 

system (Fig. 1). 

This code computes the total price of items in a 

shopping cart. While syntactically simple and 

semantically consistent with other fragments in the 

codebase, its evolutionary profile reveals important 

contextual factors that influence its refactoring 

potential. 
 

 
Fig. 1. Sample code fragment 

Source: compiled by the authors 
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Version Control History (Git-based analysis). 

We analyzed the fragment using Git history tools 

(git log, git blame, and commit diffs) across a 24-

month project timeline. The extracted data is 

presented in Table 3.  

As a result, while the static structure and 

semantic embedding may strongly recommend an 

Extract Method transformation, the evolutionary 

features provide a counterbalancing signal that may 

lower the method’s refactoring priority – or flag it as 

requiring human review. 

3.5. Classifier and confidence estimation 

At the heart of our system lies a machine 

learning–based refactoring type classifier, trained to 

predict the most appropriate transformation for each 

clone group. However, unlike conventional closed-

set classifiers, our approach explicitly acknowledges 

the open-set nature of real-world refactoring: not all 

clones will match known transformation patterns, 

and some may be unsuitable for any automated 

suggestion. To address this, we design the classifier 

to support confidence-aware prediction with open-

set rejection. 

Refactoring as multi-class classification. The 

classifier receives a hybrid input vector representing 

a clone group – derived from structural features 

(AST/PDG), semantic embeddings (e.g., 

CodeBERT), and evolutionary indicators (e.g., 

churn, author entropy).  

It outputs a probability distribution over a 

predefined set of refactoring types, such as: 

 Extract Method; 

 Pull Up Method; 

 Move Method; 

 Replace Temp with Query. 

The predicted class corresponds to the 

refactoring type with the highest probability. 

Open-set handling via confidence thresholding. 

Unlike closed-world scenarios, it is unrealistic to 

assume that all incoming clone groups belong to 

known refactoring categories. For example, a 

fragment may represent a domain-specific pattern or 

an anti-pattern not captured in training. Blindly 

assigning a class in such cases risks generating 

incorrect or harmful recommendations. 

To mitigate this, we define an open-set 

classification scheme using a confidence-based 

rejection strategy. Specifically: 

 let 𝑝𝑚𝑎𝑥 = max𝑘𝑃(𝑦 = 𝑘|𝑥) be the softmax 

probability of the predicted class; 

 if 𝑝𝑚𝑎𝑥 < 𝜃, where 𝜃 is a calibrated 

threshold, the instance is rejected and assigned to an 

Unknown class; 

 otherwise, the predicted class 𝑦̂ =
arg 𝑚𝑎𝑥𝑘𝑃(𝑦 = 𝑘|𝑥) is accepted. 

This enables the system to abstain from 

uncertain predictions, flagging them for manual 

review or deferred decision-making. 

Confidence Calibration. To ensure that the 

classifier’s predicted probabilities reflect true model 

confidence, we apply post-hoc calibration 

techniques.  

Temperature scaling: A scalar parameter 𝑇 > 0 

is learned on a validation set such that softmax 

scores become: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑇(𝑧𝑖) =
exp(𝑧𝑖/𝑇)

∑ exp(𝑧𝑗/𝑇)𝑗

. (1) 

This reduces overconfidence in neural models, 

especially important in safety-critical tasks like 

refactoring. 

Monte-carlo dropout: At inference time, 

dropout is enabled during multiple forward passes. 

The variance of predictions is used as a proxy for 

epistemic uncertainty. 

Model Selection and Training. We 

experimented with several classifier architectures: 

 Multi-Layer Perceptron (MLP): baseline 

classifier using concatenated features; 

Transformer-based Classifier Head: directly 

fine-tunes CodeBERT for classification; 

Table 3. Extracted data from VCS analysis 

Feature Value Interpretation 

 

Change_frequency 19 commits High: the method is frequently edited, indicating active development 

Last_modified_days 12 days ago Recent: the code is still undergoing frequent changes 

Num_authors 6 developers Medium-high: shared ownership increases coordination complexity 

Authorship_entropy 0.84 High entropy: changes are evenly distributed among contributors 

Survival_ratio 0.55 Low-moderate: significant portions of the method have been rewritten 

Bugfix_cochange_count 4 times 
Notable: frequently changed alongside bugfix commits (e.g., rounding 

errors) 

Source: compiled by the authors
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Graph Neural Network (GNN): processes AST 

or PDG graph structures; 

 Hybrid Late-Fusion Model: combines 

semantic and structural branches. 

The models are trained using cross-entropy loss 

with optional entropy regularization. For open-set 

tuning, we employ confidence-aware validation to 

select the optimal threshold θ\thetaθ, maximizing 

coverage while controlling false positives. 

Benefits and Applications. By combining high-

capacity classification with calibrated rejection, our 

system provides: 

 Robustness to unknown patterns: prevents 

invalid recommendations; 

 Confidence-aware prioritization: high-

confidence predictions can be acted upon 

automatically; 

 Human-in-the-loop support: low-confidence 

cases can be deferred or presented with explanation 

for review; 

 Safer integration into CI/CD pipelines and 

developer workflows. 

This component transforms the system from a 

static predictor into an interactive, self-aware 

recommendation agent, capable of adapting to real-

world code heterogeneity and uncertainty. 

3.6. Effort and benefit estimation 

In practical software development, not all 

refactorings are equally valuable or equally costly. 

Developers often operate under time and resource 

constraints, and even correct clone refactorings may 

be deferred or avoided if the perceived effort 

outweighs the expected benefit. To support such 

reasoning, our system includes a dedicated module 

for estimating both refactoring effort and potential 

benefit, enabling cost-aware prioritization of clone 

transformations (Table 4). 

Estimation Goals. Given a clone group 𝐺 and a 

predicted refactoring type 𝑅, the module aims to 

compute two scores: 

 𝐸𝑓𝑓𝑜𝑟𝑡(𝐺, 𝑅): the estimated technical and 

social cost of performing the transformation; 

 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅): the estimated long-term 

positive impact (e.g., maintainability, defect 

reduction). 

These values are used to derive a prioritization 

metric: 

 
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐺, 𝑅) =

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅)

𝐸𝑓𝑓𝑜𝑟(𝐺, 𝑅)
. (2) 

This scalar is then combined with the 

classifier’s confidence to rank clone refactoring 

candidates. 

Effort Estimation. We define effort as a proxy 

for the amount of developer work required to 

refactor the clone group. It is approximated using the 

following indicators: 

 Lines of code (LOC): size of the clone group; 

 Cyclomatic complexity: number of decision 

points in the control flow; 

 AST edit distance: cost of transforming the 

clone group to a shared abstraction; 

 Code scattering: number of files/classes 

involved in the clone group; 

 Contributor count: more authors imply higher 

coordination overhead; 

 Change frequency (churn): frequently 

modified code may require conflict resolution. 

  
𝐸𝑓𝑓𝑜𝑟𝑡 = 𝛼1 ∙ 𝐿𝑂𝐶 + 𝛼2 ∙ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 

+𝛼3 ∙ 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 + ⋯. 
(3) 

Weights 𝛼𝑖 are learned or heuristically set 

based on validation data. 

Table 4. Indicators for Effort and Benefit Estimation 

Metric Type Used in Description 

LOC Static Effort Number of lines in the clone group 

Cyclomatic complexity Static Effort Control-flow branching factor 

AST edit distance Structural Effort Cost to abstract clones into one shared method 

Scattering (file count) Structural Effort Number of locations affected 

Churn Evolutionary Effort/Benefit Frequency of changes over time 

Co-change density Evolutionary Benefit 
How often clone instances are changed 

together 

Contributor count Social Effort Number of unique authors in clone history 

Redundancy ratio Structural Benefit Proportion of duplicated logic 

Bug propagation history Evolutionary Benefit 
Clone correlation with past bug-fixing 

commits 

Source: compiled by the authors 
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Benefit Estimation. We define benefit as the 

expected long-term improvement in code quality and 

maintainability. This includes: 

 Clone redundancy reduction: fewer copies lead 

to lower maintenance effort; 

 Defect propagation risk: refactoring reduces 

chance of bugs being copied; 

 Code churn reduction: if refactored code 

changes less frequently afterward; 

 Historical co-change density: if clones often 

change together, abstraction is beneficial; 

 Module cohesion gain: merging clones may 

improve architectural clarity. 

These signals are aggregated into a scalar 

benefit estimate via linear regression or decision 

trees trained on historical data (e.g., past refactorings 

and their outcomes). 

Usage and Interpretation. The effort-benefit 

estimation allows the system to: 

 promote low-effort, high-impact clones for 

immediate refactoring; 

 defer high-effort or low-benefit clones for later 

review or manual inspection; 

 avoid costly or risky refactorings that may 

harm stability. 

This ranking supports actionable decision-

making under constraints such as sprint deadlines or 

technical debt reduction goals. 

By quantifying both technical difficulty and 

potential impact, the system transitions from generic 

recommendations to prioritized and context-aware 

guidance, tailored to the needs and constraints of 

real-world development teams. 

3.7. Prioritization and explanation layer 

The final stage of our system integrates the 

outputs of the classifier, uncertainty estimator, and 

effort-benefit module into a unified refactoring 

advisory layer.  

This layer performs two key functions: 

1) Prioritization: Selects and ranks clone 

refactoring candidates based on multiple decision 

criteria; 

2) Explanation: Generates human-readable 

rationales for each recommendation to support trust, 

transparency, and human-in-the-loop review. 

Together, these outputs transform the system 

from a predictive model into a practical decision-

support tool suitable for integration into developer 

workflows. 

Multi-Factor Prioritization Strategy. Each 

clone group 𝐺 with a predicted refactoring type 𝑅 is 

scored along four dimensions: 

 𝐶𝑜𝑛𝑓(𝐺, 𝑅) – model confidence (calibrated); 

 𝐸𝑓𝑓𝑜𝑟𝑡(𝐺, 𝑅) – estimated transformation 

cost; 

 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅) – expected long-term gain; 

 𝑅𝑖𝑠𝑘(𝐺) – uncertainty or mismatch indicator. 

The final priority score is computed as: 

 

𝑆𝑐𝑜𝑟𝑒(𝐺) = (
𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝐺, 𝑅)

𝐸𝑓𝑓𝑜𝑟𝑡(𝐺, 𝑅)
) ∙ 

∙ 𝐶𝑜𝑛𝑓(𝐺, 𝑅) ∙ 𝜆(𝐺). 

(4) 

where 𝜆(𝐺) ∈ [0,1] is a penalty factor for risky or 

low-trust predictions (e.g., high entropy, known bug 

history, unknown classification); clone groups below 

a score threshold 𝜏 are omitted or flagged for manual 

review. 

This prioritization strategy ensures that high-

impact, low-effort, high-confidence refactorings are 

surfaced first, while uncertain or costly 

transformations are postponed or annotated for 

inspection. 

Explanation Generation. To foster developer 

trust and support traceability, each recommendation 

is accompanied by a structured natural-language 

explanation, which includes: 

 Refactoring suggestion: predicted 

transformation type; 

 Confidence level: qualitative indicator (e.g., 

high / medium / low); 

 Key features influencing decision: most 

salient input signals; 

 Effort and benefit summary: size, complexity, 

potential impact; 

 Optional caveats: e.g., “High churn and low 

survival ratio – consider reviewing manually”. 

This explanation is synthesized from 

interpretable model features, confidence metrics, and 

domain heuristics. 

Example Output: 

 Suggested Refactoring: Extract Method; 

 Confidence: High (94%); 

 Why: Clone group has high structural 

similarity, low complexity, and appears in 3 methods 

across 2 files; 

 Effort Estimate: Low – all clones are small 

and co-located; 

 Benefit Estimate: High – reduces 42 

duplicated lines, shared churn history indicates 

frequent co-editing; 

 Note: Recent bugfix associated with this 

method – consider additional review. 

4. EXPERIMENTAL SETUP 

To evaluate the proposed clone refactoring 

advisor, we designed an empirical study that 
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simulates realistic development conditions across 

diverse software systems. This section presents the 

selected projects, clone extraction and labeling 

strategy, feature processing pipeline, model 

configuration, and evaluation protocol. Throughout, 

we integrate both quantitative and qualitative 

procedures to ensure rigor and reproducibility. 

Subject Systems. We selected four mature, 

open-source Java systems that differ in functionality, 

scale, and development activity. These systems 

provide a rich variety of clone types, architectural 

styles, and evolutionary patterns (Table 5). 

These systems were chosen to ensure broad 

applicability of the proposed method and to provide 

realistic challenges such as legacy code, high churn, 

and cross-team contributions. 

Clone Detection and Labeling. Clone groups 

were extracted using the NiCad clone detector, 

configured at the function level with default 

similarity thresholds. The analysis focused on  

Type-1, Type-2, and Type-3 clones, which cover 

exact, renamed, and syntactically modified 

duplications. Type-4 clones (semantic clones) were 

excluded due to their high annotation cost and 

inconsistent detection quality. 

To ensure high-quality input, we applied post-

filtering rules to exclude: 

 methods with fewer than 5 LOC; 

 autogenerated boilerplate (e.g., constructors, 

accessors); 

 trivial duplication patterns such as logging 

wrappers. 

Next, a manual labeling phase was conducted. 

A subset of 600 clone groups was randomly sampled 

and annotated by two senior engineers.  

Each group was assigned to one of the 

following refactoring categories: 

1) Extract Method; 

2) Move Method; 

3) Pull Up Method; 

4) Inline Method; 

5) No Refactoring (Retain); 

6) Unknown / Other. 

Disagreements were resolved through joint 

review. The final dataset was stratified and split into 

training (60 %), validation (20 %), and test (20 %) 

sets, ensuring no project overlap across splits. 

Feature Extraction Pipeline. The input 

representation for each clone group was constructed 

through a multi-modal feature extraction process: 

 Structural Features: Extracted from ASTs 

using the Eclipse JDT parser, including node counts, 

nesting depth, and control-flow complexity; 

 PDG Features: Built using the JavaPDG 

toolkit to represent control and data dependencies; 

 Semantic Embeddings: Obtained using the 

CodeBERT-base model (768d), pooled over method 

tokens using [CLS] and average pooling strategies; 

 Evolutionary Features: Computed from Git 

history using custom scripts, including: 

 change frequency (churn), 

 recency of last modification, 

 number of unique contributors, 

 authorship entropy, 

 line survival ratio, 

 bug co-change density (via commit 

message heuristics). 

All numeric features were z-score normalized 

before fusion. The final input vector to the classifier 

was formed by concatenating all feature modalities. 

Classifier Configuration and Training. The 

classifier was implemented as a multi-layer 

perceptron (MLP) with two hidden layers of 256 and 

128 units, using ReLU activations and dropout (𝑝 =
0.2). The model was trained using the AdamW 

optimizer with a learning rate of 1 × 10−4 and early 

stopping on validation loss. 

To enable open-set classification, we applied 

temperature scaling for confidence calibration. A 

softmax rejection threshold 𝜃 was selected using the 

validation set to distinguish uncertain examples 

assigned to the Unknown class. 

Additionally, effort and benefit were estimated 

using Random Forest regressors trained on manually 

rated examples of clone complexity and historical 

impact (based on bug propagation, churn reduction, 

etc.). 

Table 5. Summarization of the key characteristics of the selected projects 

Method Domain LOC Commits Contributors Notes 

Apache Commons Utility libraries ~200,000 8,000+ 90+ Modular, widely reused 

JHotDraw GUI framework ~60,000 1,500+ 10+ Design-pattern-intensive 

PMD Static analysis ~100,000 6,500+ 60+ Frequent structural refactorings 

JEdit Text editor ~150,000 7,200+ 80+ Frequent structural refactorings 

Source: compiled by the authors
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Evaluation Protocol. Model performance was 
assessed across three key tasks: 

1) Classification Accuracy: We measured 
precision, recall, and macro-F1 across the known 
refactoring classes; 

2) Open-Set Robustness: The system’s ability 
to reject unknown or unsuitable clones was 
evaluated by computing: 

 true positive rate (TPR) for known cases; 
 false acceptance rate (FAR) on unknown 
cases; 
 AUROC for threshold-based rejection. 

3) Recommendation Quality: Using NDCG@k 
(Normalized Discounted Cumulative Gain), we 
evaluated how well the system prioritized high-
benefit, low-effort clones in its top-k suggestions. 

Three baselines were included for comparison: 
 closed-set classifier without open-set 

rejection; 
 model without evolutionary features; 
 random ranking baseline for prioritization. 
These baselines allow us to isolate the 

contribution of evolutionary context, confidence 
calibration, and prioritization logic. 

This experimental setup ensures a 
comprehensive, controlled, and multi-dimensional 
evaluation of the system’s performance in realistic 
software engineering scenarios. The next section 
presents the results and comparative analyses based 
on this protocol. 

5. EVALUATION RESULTS 

This section presents the empirical results of 
our proposed refactoring advisor, structured around 
three key evaluation criteria: classification 
performance, open-set robustness, and prioritization 
quality. We report both quantitative metrics and 
comparative analyses against baseline systems. 

Refactoring Classification Accuracy. We first 
evaluate the system’s ability to correctly predict the 
refactoring type for known clone groups. Table 6 
reports the precision, recall, and F1-score for each 
class on the held-out test set. 

The model demonstrates consistent 
performance across common refactoring. Notably, 

Extract Method is the most reliably predicted class, 
likely due to its structural regularity and semantic 
cohesion. 

Open-Set Robustness. To assess the ability of 
the model to reject uncertain or unseen clone groups, 
we measured the Area Under the Receiver Operating 
Characteristic Curve (AUROC) for distinguishing 
known vs unknown classes. The calibrated model 
achieves an AUROC of 0.91, indicating high 
separability. 

Moreover, we evaluated the false acceptance 
rate (FAR) at different rejection thresholds: 

 At threshold 𝜃 = 0.80, the system correctly 
rejects 82.4 % of unknown examples while 
maintaining a true acceptance rate (TAR) of 88.3 % 
on known cases; 

 Without open-set handling, the classifier 
misclassifies 31 % of unknowns into incorrect 
refactoring types. 

These results confirm that confidence 
calibration and softmax thresholding effectively 
prevent overconfident misclassifications in open-
world settings. 

Impact of Evolutionary Features. We 
conducted an ablation study to evaluate the 
contribution of evolutionary features. When 
removing version control–based signals (e.g., churn, 
survival, authorship entropy), the overall macro-F1 
dropped from 0.76 to 0.70, and rejection 
performance degraded (AUROC from 0.91 to 0.83). 

These results validate our hypothesis that 
evolution-aware context provides discriminative 
signals for both refactoring classification and 
uncertainty management. 

Prioritization Effectiveness. To evaluate the 
quality of ranked refactorings suggestions, we used 
Normalized Discounted Cumulative Gain at rank k 
(NDCG@k). Each suggestion was scored based on 
its predicted benefit/effort ratio and confidence. 
Clone groups labeled by human experts as “high 
priority” served as ground truth. 

As shown in Table 7, the proposed system 
consistently outperforms both the closed-set baseline 
and the random ordering baseline. 

Table 6. Classification Performance by Refactoring Type 

Refactoring Type Precision Recall F1-Score 

Extract Method 0.86 0.83 0.84 

Move Method 0.81 0.78 0.79 

Pull Up Method 0.74 0.71 0.72 

Inline Method 0.69 0.66 0.67 

No Refactoring 0.75 0.80 0.77 

Macro Average 0.77 0.76 0.76 

Source: compiled by the authors 
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Table 7. Evaluation of the proposed method 

Method NDCG@3 NDCG@5 NDCG@10 

Proposed (full method) 0.89 0.86 0.82 

No Evolutionary Features 0.81 0.77 0.73 

Closed-set (no Unknowns) 0.75 0.72 0.69 

Random baseline 0.42 0.39 0.35 

Source: compiled by the authors 

The gap widens at lower 𝑘, indicating that our 

model surfaces more relevant refactorings near the 

top of the list, which is critical for developer 

attention and actionability. 

Effort vs Benefit Distribution. Finally, we 

analyze the relationship between the model's 

predicted effort and benefit. High-priority candidates 

cluster in the top-right quadrant (high benefit, low 

effort), confirming that the system learns to 

distinguish trivial duplications from architecturally 

meaningful clones. 

Examples in the bottom-left quadrant are 

correctly demoted or rejected, as they tend to be 

unstable, buggy, or highly entangled, despite their 

apparent duplication. 

Summary of Key Results: 

 The classifier achieves macro-F1 = 0.76 on 

known classes and AUROC = 0.91 for open-set 

rejection; 

 Evolutionary features contribute a +6 % 

absolute gain in classification and improved 

prioritization; 

 The system ranks high-benefit, low-effort 

refactorings at the top, outperforming all baselines in 

NDCG@k. 

These results demonstrate the system’s utility 

as a trustworthy and context-aware refactoring 

advisor, capable of generalizing to realistic, noisy, 

and evolving codebases. 

CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a machine learning–

based approach for clone refactoring 

recommendation that goes beyond traditional clone 

detection. Our method combines structural, 

semantic, and evolutionary features to classify clone 

groups, estimate refactoring effort and benefit, 

handle previously unseen patterns via open-set 

classification, and produce prioritized, explainable 

suggestions suitable for practical use. 

Empirical evaluation across several real-world 

Java projects demonstrated that the proposed system 

achieves high classification accuracy (macro-F1 of 

0.76), strong robustness in rejecting uncertain clones 

(AUROC of 0.91), and effective ranking of 

actionable refactorings (NDCG@3 of 0.89). 

Notably, the integration of evolutionary features and 

effort-benefit estimation significantly improved both 

the quality and interpretability of the 

recommendations. 

Our findings suggest that clone refactoring can 

benefit from a shift from detection to decision 

support, especially in large, evolving codebases. The 

system encourages developers to reason not only 

about what clones exist, but also about which ones 

are worth refactoring, and why. 

Future Work. Several avenues remain open for 

further research and enhancement: 

 Extension to additional refactoring types. Our 

current taxonomy focuses on four method-level 

refactorings. Future work could integrate higher-

level transformations (e.g., Extract Interface, 

Convert Hierarchy); 

 Cross-language generalization. We plan to 

adapt the approach to other languages (e.g., Python, 

C++) using multilingual embeddings and language-

agnostic graph representations; 

 Human-in-the-loop refinement. Integrating 

developer feedback through active learning or 

interactive explanation could further improve 

precision and trust; 

 IDE integration and user studies. Embedding 

the system into real development environments and 

conducting longitudinal studies would provide 

deeper insights into adoption, usability, and impact; 

 Confidence modeling under shift. Improving 

uncertainty estimation under codebase evolution or 

domain shift remains a challenge for open-set 

learning in software engineering. 

By releasing our dataset, source code, and 

tooling, we hope to foster future work on intelligent, 

transparent, and context-aware support for clone 

management and software maintenance more 

broadly. 
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Рекомендація рефакторингів із багатоцільовою оптимізацією 

та урахуванням невизначеності для дублювання коду 

Курінько Дмитро Дмитрович1)  
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АНОТАЦІЯ 

Клоновані фрагменти коду (code clones) – це повторювані ділянки програмного коду, які можуть ускладнювати 

підтримку програмного забезпечення за відсутності належного управління. Існує багато інструментів для виявлення клонів, 

однак більшість з них обмежується лише фактом виявлення та не надає рекомендацій щодо доцільності, способу чи 

черговості їх рефакторингу. У цій статті запропоновано метод машинного навчання для надання рекомендацій з 

рефакторингу клонів з урахуванням пріоритетності та оцінки впевненості. Запропонований підхід використовує 

комбіноване представлення коду: абстрактні синтаксичні дерева (AST), графи залежностей програми (PDG) та семантичні 

вектори, отримані за допомогою попередньо натренованої моделі CodeBERT. Додатково використовуються еволюційні 

ознаки з системи контролю версій, зокрема частота змін, вік фрагмента та співзміни з іншими файлами. Класифікатор 

багато-класової моделі прогнозує тип рефакторингу, а механізм відкритих класів дозволяє відхиляти невизначені або 

невідомі випадки. Оцінка зусиль та користі дозволяє впорядковувати рекомендації за ефективністю. 

Експериментальна перевірка на чотирьох open-source проєктах на Java з вручну розміченими 600 групами клонів 

показала досягнення macro-F1 = 0.76 для відомих типів рефакторингу, AUROC = 0.91 для виявлення невідомих випадків та 

NDCG@3 = 0.89 для якості пріоритезації. Отримані результати демонструють, що рефакторинг клонів може бути ефективно 
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підтриманий завдяки поєднанню структурних і семантичних ознак, моделювання невизначеності та механізмів 

пріоритезації. Запропонований підхід трансформує клон-аналіз із пасивного виявлення у повноцінну систему підтримки 

рішень. 

Ключові слова: Рефакторинг клонів; штучний інтелект у програмній інженерії; машинне навчання; глибинне 

навчання; класифікація клонів; відкрите розпізнавання; оцінка невизначеності 
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