Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

DOI: https://doi.org/10.15276/hait.08.2025.19
UDC 004.021:004.4°42:004.8

Uncertainty-aware multi-objective refactoring for
code duplication

Dmytro D. Kurinko?
ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

Viktoriia I. Kryvda®
ORCID: https://orcid.org/0000-0002-0930-1163; kryvda@op.edu.ua
D Odesa Polytechnic National University, 1, Shevchenko Ave. Odesa, 65044, Ukraine

ABSTRACT

Code clones are recurring code fragments that may hinder software maintainability if not properly managed. While many clone
detection tools exist, they often stop at identification and provide no clear guidance on whether a detected clone group should be
refactored, how to do so, or in what order. This paper presents a machine learning—based method for recommending clone
refactorings with prioritization and confidence estimation. The proposed approach represents code fragments using abstract syntax
trees, program dependency graphs, and semantic embeddings from a pre-trained CodeBERT model. In addition, version control data
is used to extract evolutionary features such as churn, age, and co-change patterns. A multi-class classifier predicts refactoring types,
while open-set recognition techniques identify uncertain cases and flag them as unknown. Effort and benefit estimation models help
prioritize suggestions based on a cost-effectiveness ratio. We evaluated the method on four open-source Java projects using a
manually labeled dataset of 600 clone groups. The system achieves a macro-F1 score of zero point seven six on known refactoring
types and an AUROC of zero point nine one for unknown detection. Prioritized recommendation quality reaches NDCG@3 of zero
point eight nine, showing strong alignment with expert assessments. The results indicate that clone refactoring can be effectively
supported through integrated code representation, uncertainty modeling, and prioritization. The approach transforms clone analysis
from a passive task into an actionable process.

Keywords: Clone refactoring; artificial intelligence in software engineering; machine learning; deep learning; clone
classification; open-set recognition; uncertainty estimation

For citation: Kurinko D. D., Kryvda V. I. “Uncertainty-aware multi-objective refactoring for code duplication”. Herald of Advanced
Information Technology. 2025; Vol.8 No.3: 301-315. DOI: https://doi.org/10.15276/hait.08.2025.19

1. INTRODUCTION,
FORMULATION OF THE PROBLEM

Code clones are fragments that partially or fully
duplicate each other. They arise due to deadlines,
copying “working” solutions without proper
abstraction, temporary hotfixes, and branching
product lines. In the short term, copy-paste speeds
development, but in the long term it increases
technical debt: change points multiply, consistency
is harder to maintain, and the risk of defects and
regressions grows [1]. In large codebases
(monorepos, microservices, polyglot stacks), clones
are inevitable and “migrate” across modules and
teams, complicating code reviews and slowing
releases [2]. The problem is amplified by frequent
releases and CI/CD: fixes must propagate
synchronously to all replicas, otherwise
environments diverge in behavior. Clones also
reduce the evolutionary flexibility of the
architecture: they hinder extracting common APIs
and adopting new technologies. Therefore, detection
alone is not enough — teams need recommendations

© Kurinko D., Kryvda V., 2025

on what and how to refactor, taking into account
semantics, dependency context, change history, and
the expected benefit vs. effort [3].

Industrial and research practice in clone
detection spans a wide spectrum of approaches: from
textual and token-based methods to structure-
oriented (AST), graph-based (PDG/CFG), and
modern vector representations of code (neural
embeddings, GNN/CodeBERT-like models) [4].
These tools reliably identify and cluster duplicates in
large-scale repositories, produce clone clusters and
metrics (degree of duplication, “hot spots™), and
integrate into IDEs and CI/CD as code-quality
reports. At the process level, they support regular
technical-debt monitoring, facilitate audits, and
inform backlog grooming and planning [5].

However, most solutions stop at the fact of
detection and do not proceed to actionable guidance.
Typical limitations include: (i) lack of semantically
grounded recommendations on what exactly and
how to refactor for a given cluster; (ii) absence of
calibrated handling of uncertainty (risk of
overconfident or overly conservative decisions); (iii)
no mechanisms for benefit/effort—based

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

301

https://doi.org/#_blank

Kurinko D. D., Kryvda V. . /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

prioritization that account for version-control history
(VCS) and operational risk; and (iv) limited
explainability and weak integration with decision-
making practices (code review, sprint planning) [6].
As a result, clone detection rarely translates into
predictable cost savings: teams must manually
decide what to refactor, in what order, and whether it
will pay off [7].

Despite mature clone-detection tooling and a
variety of advisory approaches, a persistent gap
remains between the fact of detection and actionable
engineering decisions. Existing systems rarely unite,
within a single method: (i) a semantically faithful
code representation (to handle fragments that are
similar in meaning yet syntactically divergent); (ii)
controlled uncertainty management (open-set
formulation with explicit applicability limits and
calibrated confidence); (iii) benefit/effort—based
prioritization that accounts for version-control
history (VCS), co-evolution signals, and defect risk;
(iv) explainability of recommendations at the level
of concrete transformations (which differences can
be parameterized, which refactoring template is
appropriate); and (v) process integrability (IDE/CI,
sprint planning) alongside experimental
reproducibility. In addition, there is a lack of vetted
protocols for Ccross-project generalization
(robustness to coding style/domain) and harmonized
metrics that jointly assess classification quality,
decision risk, and ranking utility for work planning
[8].

Accordingly, there is a clear need for a method
that integrates deeper structural and semantic
understanding of code, calibrated uncertainty, and
value-oriented ranking, delivering transparent,
reproducible, and practically applicable
recommendations for clone refactoring.

The purpose of this study is to develop a
method that converts clone detection into actionable,
prioritized refactoring decisions. Concretely, we aim
to (i) provide semantically grounded
recommendations on what to refactor and how (e.g.,
which refactoring template to apply), (ii) manage
uncertainty by explicitly identifying low-confidence
and out-of-distribution cases, and (iii) prioritize
candidate actions by expected benefit-versus-effort,
informed by code structure and version-control
history. The intended outcome is a transparent,
reproducible advisory pipeline that reduces technical
debt, mitigates regression risk, and accelerates
architectural evolution while integrating seamlessly
with existing engineering workflows (IDE/CI).

2. BACKGROUND AND RELATED WORK

The problem of code cloning has been
extensively studied over the past two decades, with
early foundational works focusing on the
classification and detection of clone types (e.g.,
Type I-1V) [9]. Numerous studies have confirmed
that code clones are not only widespread but often
persist for long periods in production systems, where
they contribute to increased maintenance cost,
defect-proneness, and codebase inconsistency [10],
[11], [12].

From a software engineering perspective, the
remediation of code clones typically involves
manual or semi-automated refactoring, guided by
developer intuition or tool recommendations.
Research has proposed a range of approaches, from
catalog-based refactoring patterns to clone-specific
transformations (e.g., Extract Method, Move
Method). Some tools support automatic
transformation under strict preconditions, while
others assist human developers with ranking or
filtering options [13].

However, empirical studies show that
developers frequently ignore clone warnings, citing
lack of actionable guidance, potential side effects of
transformation, and uncertainty about long-term
benefits [14]. Moreover, decisions to refactor are
often project-specific and context-sensitive: clones
that are harmful in one subsystem may be benign or
even beneficial in another.

Numerous approaches have been proposed to
facilitate the refactoring of code clones, ranging
from static rule-based systems to learning-enabled
recommender frameworks [15], [16], [17].
Traditional techniques often rely on predefined
templates such as Extract Method, Move Method, or
Pull Up Method, applied either manually or with
IDE support (e.g., Eclipse, IntelliJ). While these
refactorings are well understood and standardized,
identifying the correct context in which they should
be applied remains non-trivial.

Rule-based systems encode structural patterns
and syntactic thresholds to suggest refactorings.
These approaches are efficient and interpretable but
suffer from limited adaptability and inability to
reason over semantic similarity or usage context. To
address such limitations, later works have
incorporated code metrics (e.g., size, duplication
ratio, cohesion) or heuristic scoring functions to
filter or prioritize clone groups [18].

More recently, machine learning—based
approaches have emerged that attempt to predict the
likelihood or appropriateness of refactoring actions

302 Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology
2025; Vol.8 No.3: 301-315
[19]. Some leverage feature engineering over However, despite promising results, most ML-

abstract syntax trees (ASTS) or program dependency
graphs (PDGs), while others exploit version history
and commit metadata to learn patterns of past
developer behavior. A prominent example is CREC,
which uses clone histories and manually engineered
features to rank refactoring opportunities [20].

However, despite promising results, most ML-
based systems function as black-box predictors,
offering limited interpretability and no guarantees of
correctness. Additionally, they often lack the
capability to distinguish between ambiguous or out-
of-distribution inputs and may fail silently or behave
erratically in such cases. Furthermore, few existing
systems provide actionable, contextualized
explanations or rank refactoring options by expected
effort and impact, which limits their practical utility
in complex industrial codebases [21].

Thus, while the literature demonstrates a wide
spectrum of clone refactoring support tools, a
unified pipeline that integrates detection, semantic
understanding, prioritization, and uncertainty
awareness remains elusive [22], [23], [24].

Numerous approaches have been proposed to
facilitate the refactoring of code clones, ranging
from static rule-based systems to learning-enabled
recommender frameworks. Traditional techniques
often rely on predefined templates such as Extract
Method, Move Method, or Pull Up Method, applied
either manually or with IDE support (e.g., Eclipse,
IntelliJ). While these refactorings are well
understood and standardized, identifying the correct
context in which they should be applied remains
non-trivial [25].

Rule-based systems encode structural patterns
and syntactic thresholds to suggest refactorings.
These approaches are efficient and interpretable but
suffer from limited adaptability and inability to
reason over semantic similarity or usage context. To
address such limitations, later works have
incorporated code metrics (e.g., size, duplication
ratio, cohesion) or heuristic scoring functions to
filter or prioritize clone groups [26].

More recently, machine learning—based
approaches have emerged that attempt to predict the
likelihood or appropriateness of refactoring actions.
Some leverage feature engineering over abstract
syntax trees (ASTs) or program dependency graphs
(PDGs), while others exploit version history and
commit metadata to learn patterns of past developer
behavior. A prominent example is CREC, which
uses clone histories and manually engineered
features to rank refactoring opportunities [27].

based systems function as black-box predictors,
offering limited interpretability and no guarantees of
correctness. Additionally, they often lack the
capability to distinguish between ambiguous or out-
of-distribution inputs and may fail silently or behave
erratically in such cases. Furthermore, few existing
systems provide actionable, contextualized
explanations or rank refactoring options by expected
effort and impact, which limits their practical utility
in complex industrial, codebases [28].

Thus, while the literature demonstrates a wide
spectrum of clone refactoring support tools, a
unified pipeline that integrates detection, semantic
understanding, prioritization, and uncertainty
awareness remains elusive.

Modern refactoring recommenders increasingly
rely on learned code representations. Approaches
range from traditional AST-based features to
advanced embeddings generated by pre-trained
models such as CodeBERT, GraphCodeBERT, or
TreeSAGE. These representations enable semantic
comparison and classification of code fragments,
allowing for better generalization beyond syntactic
similarity. However, many such models lack fine-
grained control, interpretability, or explicit
alignment with refactoring tasks [29].

In real-world scenarios, refactoring decisions
often involve uncertainty - stemming from
ambiguous clone semantics, unstable APIls, or
missing documentation. While ML models can
assist, few existing tools explicitly quantify
uncertainty or assess refactoring effort vs. benefit.
Prioritization strategies remain heuristic, lacking
formal grounding in software engineering economics
or risk analysis. The absence of uncertainty-aware
recommendations limits developer trust and
adoption.

This work bridges multiple gaps by proposing a
clone refactoring advisor that combines (i) pre-
trained code embeddings, (ii) confidence calibration

for out-of-distribution detection, and (iii)
impact/effort-based prioritization. In contrast to
prior black-box recommenders, our approach

provides interpretable, context-aware suggestions
with explicit support for ambiguity and trade-off
reasoning. It complements existing detection tools
and advances clone refactoring from static listing
toward actionable engineering guidance.

3. PROPOSED METHOD
3.1. Overview of the proposed architecture

The proposed system is designed as an end-to-
end refactoring advisor for code clones, capable of

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

303

Kurinko D. D., Kryvda V. . /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

producing ranked, interpretable, and risk-aware
recommendations. Its core objective is to go beyond
clone detection and provide actionable guidance on
whether a clone should be refactored, which
transformation is appropriate, how confident the
system is, and how the decision should be prioritized
based on potential benefits and costs.

The architecture follows a modular, layered
pipeline, which is summarized in Table 1. Each
stage contributes distinct analytical capabilities:
semantic representation, historical context, decision
reasoning, and trust calibration.

The pipeline begins with clone group
extraction, obtained from external clone detectors
such as NiCad, SourcererCC, or CloneWorks. Each
clone fragment is parsed into a structural form (AST
and PDG) and embedded using a pretrained
language model (e.g., CodeBERT,
GraphCodeBERT). These embeddings are enriched
with static structural features (e.g., LOC, control-
flow depth) and evolutionary features extracted from
the Git history of the codebase — such as change
frequency, recency, authorship entropy, and co-
change statistics.

The fused representation is then passed to a
multi-output open-set classifier, which assigns each
clone group to a recommended refactoring type
(e.g., Extract Method, Pull Up Method, Move
Method), or flags it as Unknown if the prediction
confidence is low or the instance is semantically
distant from training examples. To support this
behavior, the system incorporates confidence
calibration mechanisms (e.g., temperature scaling,

dropout-based variance estimation), producing
interpretable uncertainty estimates for each decision.

Next, the system evaluates the expected effort
and benefit of refactoring, based on both static code
metrics and historical evolution data. The effort-
benefit ratio is used to prioritize clone groups,
ensuring that high-impact, low-effort opportunities
are surfaced to the top of the recommendation list.

Finally, each recommendation is accompanied
by a concise natural-language explanation, generated
from interpretable features, which justifies the
recommendation in terms understandable to human
developers. These explanations improve
transparency and facilitate manual inspection or
team discussions.

This modular design enables the system to
adapt to different codebases, integrate new detectors
or language models, and interact flexibly with
human-in-the-loop workflows (e.g., for active
learning or selective review). It lays the foundation
for a practical, extensible refactoring advisor that
supports real-world software engineering
constraints.

3.2. Clone detection and preprocessing

The refactoring pipeline begins with the
identification and preparation of clone groups — sets
of code fragments that exhibit structural or semantic
similarity. Clone detection serves as the foundation
for all subsequent analysis; therefore, it is essential
that the detected clones be of sufficient quality,
granularity, and interpretability. This stage is
deliberately decoupled from the rest of the pipeline
to allow integration with multiple third-party
detectors and facilitate language portability.

Table 1. Summary of architecture components and their roles

Component

Description

Clone Detection o
pipeline

External tools identify clone groups (e.g., Type I-I11), used as input to the

Graph-Based Code Representation GraphCodeBERT)

AST and PDG structures encoded via pretrained models (CodeBERT,

Structural and Semantic Features

Includes LOC, nesting depth, token types, and semantic embeddings

Version Control Features

Extracted from Git: churn, recency, number of authors, co-change patterns

Open-Set Classifier

Predicts refactoring type or flags Unknown with calibrated uncertainty

Confidence Calibration .
scaling

Quantifies prediction confidence using entropy, dropout variance, or temperature

Effort & Benefit Estimation

Estimates refactoring cost and impact using structural + historical indicators

Prioritization Module

Ranks recommendations using benefit-to-effort ratio and confidence thresholds

Explanation Generator

and trust

Produces human-readable rationales for each recommendation to support review

Source: compiled by the authors

304

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Kurinko D. D., Kryvda V. I. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

In our system, clone detection is treated as a
pluggable preprocessing module. We assume that
clone groups have already been detected using
established tools such as NiCad, SourcererCC, or
CloneWorks, depending on the desired balance of
recall, precision, and scalability. Our
implementation primarily targets Type I-I1l clones,
which cover exact copies, syntactic variations, and
renamed or reordered elements while excluding
more abstract Type IV clones (semantic equivalence
without syntactic similarity), which require deeper
analysis beyond current scope.

Each clone group is passed through a
preprocessing pipeline that standardizes code
fragments for consistent downstream representation.
This includes:

e whitespace and comment normalization, to
remove irrelevant variability;

o AST sanitation, such as renaming identifiers
with placeholders (e.g., VAR_1, FUNC_2) to reduce
overfitting to naming patterns;

o control-flow slicing, which extracts the
minimal executable block that covers the clone,
preserving semantic boundaries;

o tokenization and parsing, preparing the code
for both graph construction and transformer-based
embedding.

Optionally, we apply context windowing to
extend clone fragments with a limited number of
surrounding lines (before/after), ensuring that local
dependencies or method headers are retained. This
provides richer inputs for downstream embeddings
without introducing excessive noise.

To filter out trivial clones or overly noisy
inputs, we enforce lightweight filtering rules (e.g.,
minimum LOC threshold, no empty-body methods,
no auto-generated code), which are customizable
based on project constraints.

This preprocessing ensures that each clone
fragment is converted into a standardized,
semantically meaningful, and model-friendly format,
suitable for both structural analysis (AST/PDG) and
semantic encoding (e.g., via transformer-based
models). It also decouples the refactoring logic from

any specific detection tool or input language,
making the system extensible and adaptable across
environments.

3.3. Code representation

Accurate and expressive representation of code
is critical for enabling machine learning models to
reason about clone similarity, refactoring intent, and
transformation applicability. Unlike traditional
approaches that rely solely on syntactic features
(e.g., token counts, AST node frequencies), our
method combines graph-based structural information
with semantic embeddings from large-scale
pretrained models.

This hybrid representation provides a more
complete view of the code, capturing both low-level
structure and high-level meaning.

Each code fragment is represented using three
complementary layers (Table 2).

1. Abstract Syntax Tree (AST): the AST
captures the syntactic structure of the code,
including expressions, control-flow statements, and
declarations. We use language-specific parsers to
construct ASTs and extract subgraphs relevant to the
cloned fragment. The AST provides the backbone
for structural feature extraction and serves as input
to graph neural networks (GNNSs) or graph kernels.

2. Program Dependency Graph (PDG): to
account for semantic and data-flow relationships, we
construct PDGs that capture control dependencies
(e.g., conditionals, loops) and data dependencies
(e.g., variable usage and assignment). These graphs
encode how the fragment behaves during execution,
helping to distinguish semantically different clones
that may be structurally similar.

3. Pretrained Code Embeddings: to enrich the
graph-based representation with learned contextual
information, we use transformer-based models
trained on large code corpora. Specifically, we apply
CodeBERT or GraphCodeBERT to obtain dense
vector embeddings for each fragment. These models
are capable of capturing naming conventions,
idiomatic usage, and token co-occurrence patterns
that are difficult to model with static graphs alone.

Table 2. Components of hybrid code representation

Component Format Captures Notes
AST features Graph / vector Syntactic structure Extracted using parser + feature
extractor
PDG features Graph / adjacency Control & data dependencies Control & data dependencies
Transformer Dense vector Semantic similarity, naming, Obtained via CodeBERT,
embedding idioms GraphCodeBERT
Fusion layer Concatenated + MLP | Unified input for classification Sepggg:é attention or learned fusion can

Source: compiled by the authors

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

305

Kurinko D. D., Kryvda V. . /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

The final representation is constructed by
concatenating and optionally fusing the outputs of
all three modalities: structural features (from AST),
dependency-aware features (from PDG), and
semantic embeddings (from transformers). A feature
projection layer ensures dimensional compatibility
for downstream classifiers.

By integrating these three layers, the system
builds a representation that is robust to superficial
code changes (e.g., renaming, formatting) while
remaining sensitive to deep behavioral differences
that matter for refactoring. This hybrid encoding
significantly improves the generalization capability
of the downstream classifier and enables support for
semantic clone groups, which would be
indistinguishable using shallow features alone.

3.4. Evolutionary feature extraction

While structural and semantic representations
of code provide critical insights into what a clone
does, they offer limited information about how it
behaves over time. Refactoring decisions are often
influenced not only by code structure or similarity,
but also by the evolutionary characteristics of the
code — such as stability, volatility, team ownership,
and defect history. To capture this dimension, we
extract a complementary set of evolution-aware
features from the project's version control history
(e.g., Git).

These features are designed to reflect the
temporal and collaborative context of each clone
fragment and help the model assess whether a
proposed refactoring is likely to be safe, beneficial,
or costly.

Key Evolutionary Features. For each clone
fragment (or its enclosing method/file), we extract
the following version history indicators:

1) Change Frequency (churn) — the total number
of commits in which the fragment (or file) was
modified. High-churn code often indicates instability
or active development, which may increase the risk
of refactoring;

2) Time Since Last Change — measures code
age or recency. Recently modified code may not be
mature enough for safe restructuring, while very old
code may reflect legacy debt;

3) Number of Distinct Authors — high author
count suggests shared ownership and potentially
inconsistent coding styles. Low count may indicate a
single maintainer or owner;

4) Authorship Entropy — normalized entropy
metric that captures how evenly the edits are
distributed among contributors. This complements
author count by identifying whether one developer
dominates maintenance;

5) Code Survival Rate — proportion of original
lines still present in the latest version. A low
survival rate suggests volatility and frequent
rewrites;

6) Defect Co-change Frequency (optional) — if
issue-tracking integration is available, we also track
whether the clone's file or method frequently co-
changes with bug-fixing commits.

These features are computed using lightweight
Git analysis (e.g., git blame, git log, diff parsing)
and optionally augmented with external bug-tracking
data. The features are normalized and integrated
with the static and semantic code representations
during training.

Motivation and Benefits. The inclusion of
evolutionary context offers three core advantages:

e risk awareness: the model can distinguish
between stable, legacy clones (often candidates for
safe refactoring) and volatile, high-risk code (which
may require human review);

o effort estimation: churn and author-related
features serve as proxies for understanding how
expensive or disruptive a refactoring may be in
social and technical terms;

e prioritization context: by including temporal
and team dynamics, the system can prioritize clones
that are not just structurally refactorable, but also
contextually actionable.

By incorporating these evolution-aware signals,
the proposed method supports time-sensitive and
context-aware clone refactoring recommendations,
helping teams focus effort where it is most justified.

3.4.1. llustrative example: evolution-aware
analysis of a clone fragment

To demonstrate the utility of evolutionary
features in clone refactoring analysis, we consider a
simple fragment from a Java-based e-commerce
system (Fig. 1).

This code computes the total price of items in a
shopping cart. While syntactically simple and
semantically consistent with other fragments in the
codebase, its evolutionary profile reveals important
contextual factors that influence its refactoring
potential.

public double calculateTotalPrice(List<Item> items) {
double total = @.8;
for (Item item : items) {
total += item.getPrice();

¥

return total;

Fig. 1. Sample code fragment
Source: compiled by the authors

306

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Kurinko D. D., Kryvda V. I. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

Version Control History (Git-based analysis).
We analyzed the fragment using Git history tools
(git log, git blame, and commit diffs) across a 24-
month project timeline. The extracted data is
presented in Table 3.

As a result, while the static structure and
semantic embedding may strongly recommend an
Extract Method transformation, the evolutionary
features provide a counterbalancing signal that may
lower the method’s refactoring priority — or flag it as
requiring human review.

3.5. Classifier and confidence estimation

At the heart of our system lies a machine
learning—based refactoring type classifier, trained to
predict the most appropriate transformation for each
clone group. However, unlike conventional closed-
set classifiers, our approach explicitly acknowledges
the open-set nature of real-world refactoring: not all
clones will match known transformation patterns,
and some may be unsuitable for any automated
suggestion. To address this, we design the classifier
to support confidence-aware prediction with open-
set rejection.

Refactoring as multi-class classification. The
classifier receives a hybrid input vector representing
a clone group — derived from structural features
(AST/PDG), semantic embeddings (e.g.,
CodeBERT), and evolutionary indicators (e.g.,
churn, author entropy).

It outputs a probability distribution over a
predefined set of refactoring types, such as:

 Extract Method;

 Pull Up Method;

* Move Method;

» Replace Temp with Query.

The predicted class corresponds to the
refactoring type with the highest probability.

Open-set handling via confidence thresholding.
Unlike closed-world scenarios, it is unrealistic to
assume that all incoming clone groups belong to
known refactoring categories. For example, a

fragment may represent a domain-specific pattern or
an anti-pattern not captured in training. Blindly
assigning a class in such cases risks generating
incorrect or harmful recommendations.

To mitigate this, we define an open-set
classification scheme using a confidence-based
rejection strategy. Specifically:

e let pyax = max,P(y = k|x) be the softmax
probability of the predicted class;

oif Pax <6, where 6 is a calibrated
threshold, the instance is rejected and assigned to an
Unknown class;

e otherwise, the predicted
argmax; P(y = k|x) is accepted.

This enables the system to abstain from
uncertain predictions, flagging them for manual
review or deferred decision-making.

Confidence Calibration. To ensure that the
classifier’s predicted probabilities reflect true model
confidence, we apply post-hoc calibration
techniques.

Temperature scaling: A scalar parameter T > 0
is learned on a validation set such that softmax
scores become:

class 9=

exp(z;/T)
X exp(z/T)

softmaxy(z;) =

1)

This reduces overconfidence in neural models,
especially important in safety-critical tasks like
refactoring.

Monte-carlo dropout: At inference time,
dropout is enabled during multiple forward passes.
The variance of predictions is used as a proxy for
epistemic uncertainty.

Model Selection and Training. We
experimented with several classifier architectures:
o Multi-Layer Perceptron (MLP): baseline

classifier using concatenated features;
eTransformer-based Classifier Head: directly
fine-tunes CodeBERT for classification;

Table 3. Extracted data from VCS analysis

Feature Value Interpretation
Change_frequency 19 commits | High: the method is frequently edited, indicating active development
Last_modified_days 12 days ago | Recent: the code is still undergoing frequent changes
Num_authors 6 developers | Medium-high: shared ownership increases coordination complexity
Authorship_entropy 0.84 High entropy: changes are evenly distributed among contributors
Survival_ratio 0.55 Low-moderate: significant portions of the method have been rewritten
Bugfix_cochange_count 4 times (Ie\lrcr)(t)a;ts))le: frequently changed alongside bugfix commits (e.g., rounding

Source: compiled by the authors

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

307

Kurinko D. D., Kryvda V. . /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

+Graph Neural Network (GNN): processes AST
or PDG graph structures;

e Hybrid Late-Fusion Model:
semantic and structural branches.

The models are trained using cross-entropy loss
with optional entropy regularization. For open-set
tuning, we employ confidence-aware validation to
select the optimal threshold O\thetah, maximizing
coverage while controlling false positives.

Benefits and Applications. By combining high-
capacity classification with calibrated rejection, our
system provides:

e Robustness to unknown patterns: prevents
invalid recommendations;

e Confidence-aware
confidence predictions
automatically;

e Human-in-the-loop support: low-confidence
cases can be deferred or presented with explanation
for review;

o Safer integration into CI/CD pipelines and
developer workflows.

This component transforms the system from a
static predictor into an interactive, self-aware
recommendation agent, capable of adapting to real-
world code heterogeneity and uncertainty.

combines

prioritization:
can be acted

high-
upon

3.6. Effort and benefit estimation

In practical software development, not all
refactorings are equally valuable or equally costly.
Developers often operate under time and resource
constraints, and even correct clone refactorings may
be deferred or avoided if the perceived effort
outweighs the expected benefit. To support such
reasoning, our system includes a dedicated module
for estimating both refactoring effort and potential
benefit, enabling cost-aware prioritization of clone
transformations (Table 4).

Estimation Goals. Given a clone group G and a
predicted refactoring type R, the module aims to
compute two scores:

e Effort(G,R): the estimated technical and
social cost of performing the transformation;

e Benefit(G,R): the estimated long-term
positive impact (e.g., maintainability, defect
reduction).

These values are used to derive a prioritization
metric:

Prioritv(C. R) — Benefit(G,R) 5
riority(G,R) = —Effor(G,R) . 2
This scalar is then combined with the

classifier’s confidence to rank clone refactoring
candidates.

Effort Estimation. We define effort as a proxy
for the amount of developer work required to
refactor the clone group. It is approximated using the
following indicators:

o Lines of code (LOC): size of the clone group;

e Cyclomatic complexity: number of decision
points in the control flow;

o AST edit distance: cost of transforming the
clone group to a shared abstraction;

e Code scattering: number
involved in the clone group;

o Contributor count: more authors imply higher
coordination overhead,

e Change frequency (churn): frequently
modified code may require conflict resolution.

of files/classes

Effort = a,-LOC + a, - Complexity + @)

+as - Scattering + ---.

Weights «; are learned or heuristically set
based on validation data.

Table 4. Indicators for Effort and Benefit Estimation

Metric Type Used in Description
LOC Static Effort Number of lines in the clone group
Cyclomatic complexity Static Effort Control-flow branching factor
AST edit distance Structural Effort Cost to abstract clones into one shared method
Scattering (file count) Structural Effort Number of locations affected
Churn Evolutionary | Effort/Benefit | Frequency of changes over time
Co-change density Evolutionary | Benefit How often clone instances are changed

together

Contributor count Social Effort Number of unique authors in clone history
Redundancy ratio Structural Benefit Proportion of duplicated logic
Bug propagation history | Evolutionary | Benefit g;?nnneﬂigrrelatlon with past bug-fixing

Source: compiled by the authors

308 Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Kurinko D. D., Kryvda V. I. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

Benefit Estimation. We define benefit as the
expected long-term improvement in code quality and
maintainability. This includes:

o Clone redundancy reduction: fewer copies lead
to lower maintenance effort;

o Defect propagation risk: refactoring reduces
chance of bugs being copied,

e Code churn reduction: if refactored code
changes less frequently afterward;

 Historical co-change density: if clones often
change together, abstraction is beneficial;

e Module cohesion gain: merging clones may
improve architectural clarity.

These signals are aggregated into a scalar
benefit estimate via linear regression or decision
trees trained on historical data (e.g., past refactorings
and their outcomes).

Usage and Interpretation. The effort-benefit
estimation allows the system to:

o promote low-effort, high-impact clones for
immediate refactoring;

o defer high-effort or low-benefit clones for later
review or manual inspection;

e avoid costly or risky refactorings that may
harm stability.

This ranking supports actionable decision-
making under constraints such as sprint deadlines or
technical debt reduction goals.

By quantifying both technical difficulty and
potential impact, the system transitions from generic
recommendations to prioritized and context-aware
guidance, tailored to the needs and constraints of
real-world development teams.

3.7. Prioritization and explanation layer

The final stage of our system integrates the
outputs of the classifier, uncertainty estimator, and
effort-benefit module into a unified refactoring
advisory layer.

This layer performs two key functions:

1) Prioritization: Selects and ranks clone
refactoring candidates based on multiple decision
criteria;

2) Explanation: Generates human-readable
rationales for each recommendation to support trust,
transparency, and human-in-the-loop review.

Together, these outputs transform the system
from a predictive model into a practical decision-
support tool suitable for integration into developer
workflows.

Multi-Factor Prioritization Strategy. Each
clone group G with a predicted refactoring type R is
scored along four dimensions:

e Conf (G, R) — model confidence (calibrated);

e Effort(G,R) — estimated transformation
cost;

e Benefit(G, R) — expected long-term gain;

e Risk(G) — uncertainty or mismatch indicator.

The final priority score is computed as:

Benefit(G,R)
Effort(G,R)) '

-Conf(G,R) - A(G).

Score(G) = (@

where A(G) € [0,1] is a penalty factor for risky or
low-trust predictions (e.g., high entropy, known bug
history, unknown classification); clone groups below
a score threshold t are omitted or flagged for manual
review.

This prioritization strategy ensures that high-
impact, low-effort, high-confidence refactorings are
surfaced first, while uncertain or costly
transformations are postponed or annotated for
inspection.

Explanation Generation. To foster developer
trust and support traceability, each recommendation
is accompanied by a structured natural-language
explanation, which includes:

o Refactoring suggestion:
transformation type;

 Confidence level: qualitative indicator (e.g.,
high / medium / low);

o Key features
salient input signals;

o Effort and benefit summary: size, complexity,
potential impact;

e Optional caveats: e.g., “High churn and low
survival ratio — consider reviewing manually”.

This explanation is synthesized from
interpretable model features, confidence metrics, and
domain heuristics.

Example Output:

¢ Suggested Refactoring: Extract Method;

« Confidence: High (94%);

e Why: Clone group has high structural
similarity, low complexity, and appears in 3 methods
across 2 files;

o Effort Estimate: Low — all clones are small
and co-located;

e Benefit Estimate: High — reduces 42
duplicated lines, shared churn history indicates
frequent co-editing;

e Note: Recent bugfix associated with this
method — consider additional review.

4. EXPERIMENTAL SETUP

To evaluate the proposed clone refactoring
advisor, we designed an empirical study that

predicted

influencing decision: most

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

309

Kurinko D. D., Kryvda V. . /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

simulates realistic development conditions across
diverse software systems. This section presents the
selected projects, clone extraction and labeling
strategy, feature processing pipeline, model
configuration, and evaluation protocol. Throughout,
we integrate both quantitative and qualitative
procedures to ensure rigor and reproducibility.

Subject Systems. We selected four mature,
open-source Java systems that differ in functionality,
scale, and development activity. These systems
provide a rich variety of clone types, architectural
styles, and evolutionary patterns (Table 5).

These systems were chosen to ensure broad
applicability of the proposed method and to provide
realistic challenges such as legacy code, high churn,
and cross-team contributions.

Clone Detection and Labeling. Clone groups
were extracted using the NiCad clone detector,
configured at the function level with default
similarity thresholds. The analysis focused on
Type-1, Type-2, and Type-3 clones, which cover
exact, renamed, and syntactically modified
duplications. Type-4 clones (semantic clones) were
excluded due to their high annotation cost and
inconsistent detection quality.

To ensure high-quality input, we applied post-
filtering rules to exclude:

o methods with fewer than 5 LOC;

e autogenerated boilerplate (e.g., constructors,
accessors);

o trivial duplication patterns such as logging
wrappers.

Next, a manual labeling phase was conducted.
A subset of 600 clone groups was randomly sampled
and annotated by two senior engineers.

Each group was assigned to one of the
following refactoring categories:

1) Extract Method,;

2) Move Method;

3) Pull Up Method;

4) Inline Method;

5) No Refactoring (Retain);

6) Unknown / Other.

Disagreements were resolved through joint
review. The final dataset was stratified and split into
training (60 %), validation (20 %), and test (20 %)
sets, ensuring no project overlap across splits.

Feature Extraction Pipeline. The input
representation for each clone group was constructed
through a multi-modal feature extraction process:

e Structural Features: Extracted from ASTSs
using the Eclipse JDT parser, including node counts,
nesting depth, and control-flow complexity;

¢ PDG Features: Built using the JavaPDG
toolkit to represent control and data dependencies;

e Semantic Embeddings: Obtained using the
CodeBERT-base model (768d), pooled over method
tokens using [CLS] and average pooling strategies;

o Evolutionary Features: Computed from Git
history using custom scripts, including:

= change frequency (churn),

= recency of last modification,

= number of unique contributors,

= authorship entropy,

= |ine survival ratio,

= bug co-change density (via commit
message heuristics).

All numeric features were z-score normalized
before fusion. The final input vector to the classifier
was formed by concatenating all feature modalities.

Classifier Configuration and Training. The
classifier was implemented as a multi-layer
perceptron (MLP) with two hidden layers of 256 and
128 units, using ReLU activations and dropout (p =
0.2). The model was trained using the AdamW
optimizer with a learning rate of 1 x 10~* and early
stopping on validation loss.

To enable open-set classification, we applied
temperature scaling for confidence calibration. A
softmax rejection threshold 6 was selected using the
validation set to distinguish uncertain examples
assigned to the Unknown class.

Additionally, effort and benefit were estimated
using Random Forest regressors trained on manually
rated examples of clone complexity and historical
impact (based on bug propagation, churn reduction,
etc.).

Table 5. Summarization of the key characteristics of the selected projects

Method Domain LOC Commits | Contributors Notes
Apache Commons | Utility libraries | ~200,000 | 8,000+ 90+ Modular, widely reused
JHotDraw GUI framework | ~60,000 1,500+ 10+ Design-pattern-intensive
PMD Static analysis | ~100,000 | 6,500+ 60+ Frequent structural refactorings
JEdit Text editor ~150,000 7,200+ 80+ Frequent structural refactorings

Source: compiled by the authors

310

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Kurinko D. D., Kryvda V. I. /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

Evaluation Protocol. Model performance was
assessed across three key tasks:

1) Classification ~Accuracy: We measured
precision, recall, and macro-F1 across the known
refactoring classes;

2) Open-Set Robustness: The system’s ability
to reject unknown or unsuitable clones was
evaluated by computing:

= true positive rate (TPR) for known cases;
= false acceptance rate (FAR) on unknown
cases;

= AUROC for threshold-based rejection.

3) Recommendation Quality: Using NDCG@k
(Normalized Discounted Cumulative Gain), we
evaluated how well the system prioritized high-
benefit, low-effort clones in its top-k suggestions.

Three baselines were included for comparison:

e closed-set classifier ~ without open-set
rejection;

« model without evolutionary features;

« random ranking baseline for prioritization.

These baselines allow us to isolate the
contribution of evolutionary context, confidence
calibration, and prioritization logic.

This experimental setup ensures a
comprehensive, controlled, and multi-dimensional
evaluation of the system’s performance in realistic
software engineering scenarios. The next section
presents the results and comparative analyses based
on this protocol.

5. EVALUATION RESULTS

This section presents the empirical results of
our proposed refactoring advisor, structured around
three key evaluation criteria: classification
performance, open-set robustness, and prioritization
guality. We report both quantitative metrics and
comparative analyses against baseline systems.

Refactoring Classification Accuracy. We first
evaluate the system’s ability to correctly predict the
refactoring type for known clone groups. Table 6
reports the precision, recall, and Fl-score for each
class on the held-out test set.

The model demonstrates consistent
performance across common refactoring. Notably,

Extract Method is the most reliably predicted class,
likely due to its structural regularity and semantic
cohesion.

Open-Set Robustness. To assess the ability of
the model to reject uncertain or unseen clone groups,
we measured the Area Under the Receiver Operating
Characteristic Curve (AUROC) for distinguishing
known vs unknown classes. The calibrated model
achieves an AUROC of 0.91, indicating high
separability.

Moreover, we evaluated the false acceptance
rate (FAR) at different rejection thresholds:

¢ At threshold 6 = 0.80, the system correctly
rejects 824 % of unknown examples while
maintaining a true acceptance rate (TAR) of 88.3 %
on known cases;

o Without open-set handling,
misclassifies 31 % of unknowns
refactoring types.

These results confirm that confidence
calibration and softmax thresholding effectively
prevent overconfident misclassifications in open-
world settings.

Impact of Evolutionary Features. We
conducted an ablation study to evaluate the
contribution of evolutionary features. When
removing version control-based signals (e.g., churn,
survival, authorship entropy), the overall macro-F1
dropped from 0.76 to 0.70, and rejection
performance degraded (AUROC from 0.91 to 0.83).

These results validate our hypothesis that
evolution-aware context provides discriminative
signals for both refactoring classification and
uncertainty management.

Prioritization Effectiveness. To evaluate the
quality of ranked refactorings suggestions, we used
Normalized Discounted Cumulative Gain at rank k
(NDCG@k). Each suggestion was scored based on
its predicted benefit/effort ratio and confidence.
Clone groups labeled by human experts as “high
priority” served as ground truth.

As shown in Table 7, the proposed system
consistently outperforms both the closed-set baseline
and the random ordering baseline.

the classifier
into incorrect

Table 6. Classification Performance by Refactoring Type

Refactoring Type Precision Recall F1-Score
Extract Method 0.86 0.83 0.84
Move Method 0.81 0.78 0.79
Pull Up Method 0.74 0.71 0.72
Inline Method 0.69 0.66 0.67
No Refactoring 0.75 0.80 0.77
Macro Average 0.77 0.76 0.76

Source: compiled by the authors

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

311

Kurinko D. D., Kryvda V. . /

Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

Table 7. Evaluation of the proposed method

Method NDCG@3 NDCG@5 NDCG@10
Proposed (full method) 0.89 0.86 0.82
No Evolutionary Features 0.81 0.77 0.73
Closed-set (no Unknowns) 0.75 0.72 0.69
Random baseline 0.42 0.39 0.35

Source: compiled by the authors

The gap widens at lower k, indicating that our
model surfaces more relevant refactorings near the
top of the list, which is critical for developer
attention and actionability.

Effort vs Benefit Distribution. Finally, we
analyze the relationship between the model's
predicted effort and benefit. High-priority candidates
cluster in the top-right quadrant (high benefit, low
effort), confirming that the system learns to
distinguish trivial duplications from architecturally
meaningful clones.

Examples in the bottom-left quadrant are
correctly demoted or rejected, as they tend to be
unstable, buggy, or highly entangled, despite their
apparent duplication.

Summary of Key Results:

e The classifier achieves macro-F1 = 0.76 on
known classes and AUROC = 0.91 for open-set
rejection;

e Evolutionary features contribute a +6 %
absolute gain in classification and improved
prioritization;

e The system ranks high-benefit, low-effort
refactorings at the top, outperforming all baselines in
NDCG@k.

These results demonstrate the system’s utility
as a trustworthy and context-aware refactoring
advisor, capable of generalizing to realistic, noisy,
and evolving codebases.

CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a machine learning—
based approach for clone refactoring
recommendation that goes beyond traditional clone
detection. Our method combines structural,
semantic, and evolutionary features to classify clone
groups, estimate refactoring effort and benefit,
handle previously unseen patterns via open-set
classification, and produce prioritized, explainable
suggestions suitable for practical use.

Empirical evaluation across several real-world
Java projects demonstrated that the proposed system
achieves high classification accuracy (macro-F1 of

0.76), strong robustness in rejecting uncertain clones
(AUROC of 0.91), and effective ranking of
actionable refactorings (NDCG@3 of 0.89).
Notably, the integration of evolutionary features and
effort-benefit estimation significantly improved both
the quality and interpretability of the
recommendations.

Our findings suggest that clone refactoring can
benefit from a shift from detection to decision
support, especially in large, evolving codebases. The
system encourages developers to reason not only
about what clones exist, but also about which ones
are worth refactoring, and why.

Future Work. Several avenues remain open for
further research and enhancement:

o Extension to additional refactoring types. Our
current taxonomy focuses on four method-level
refactorings. Future work could integrate higher-
level transformations (e.g., Extract Interface,
Convert Hierarchy);

o Cross-language generalization. We plan to
adapt the approach to other languages (e.g., Python,
C++) using multilingual embeddings and language-
agnostic graph representations;

e Human-in-the-loop refinement. Integrating
developer feedback through active learning or
interactive explanation could further improve
precision and trust;

« IDE integration and user studies. Embedding
the system into real development environments and
conducting longitudinal studies would provide
deeper insights into adoption, usability, and impact;

 Confidence modeling under shift. Improving
uncertainty estimation under codebase evolution or
domain shift remains a challenge for open-set
learning in software engineering.

By releasing our dataset, source code, and
tooling, we hope to foster future work on intelligent,
transparent, and context-aware support for clone
management and software maintenance more
broadly.

312

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology
2025; Vol.8 No.3: 301-315

REFERENCES

1. Wang, W. & Godfrey, M. W. “Recommending clones for refactoring using design, Context, and
History”. Proceedings of ICSME. 2014. DOI: https://doi.org/10.1109/ICSME.2014.55.

2. Yue, R., Gao, Z., Meng, N., Xiong, Y., Wang, X. & Morgenthaler, J. D. “Automatic clone
recommendation for refactoring based on the present and the past”. arXiv. 2018.
DOI: https://doi.org/10.48550/arXiv.1807.11184.

3. Wang, W., Li, G., Ma, B., Xia, X. & Jin, Z. “Detecting code clones with graph neural network and
flow-augmented abstract syntax tree”. Proceedings of SANER. 2020. DOl:
https://doi.org/10.1109/SANER48275.2020.9054857.

4. Zhang, Y., Yang, J., Dong, H., Wang, Q., Shao, H., Leach, K. & Huang, Y. “ASTRO: An AST-
assisted approach for generalizable neural clone detection”. arXiv. 2022.
DOI: https://doi.org/10.48550/arXiv.2208.08067.

5. Xue, Z., Jiang, Z., Huang, C., Xu, R., Huang, X. & Hu, L. “SEED: Semantic graph based deep
detection for Type-4 Clone”. arXiv. 2021. DOI: https://doi.org/10.48550/arXiv.2109.12079.

6. Lei, M., Li, J,, Peng, X., Xing, Z., Liu, J. & Wang, X. “Deep learning application on code clone
detection: A systematic review”. Journal of Systems and Software. 2022; 185: 111211.
DOI: https://doi.org/10.1016/j.jss.2021.111211.

7. Nair, A., Roy, A. & Meinke, K. “funcGNN: A graph neural network approach to program similarity”.
arXiv. 2020. DOI: https://doi.org/10.48550/arXiv.2007.13239.

8. Zubkov, M., Spirin, E., Bogomolov, E. & Bryksin, T. “Evaluation of contrastive learning with
various code representations for code clone detection”. arXiv. 2022. DOl:
https://doi.org/10.48550/arXiv.2206.08726.

9. Choi, E., Yoshida, N. & Inoue, K. “What kind of and how clones are refactored? A case study of
three OSS projects”. Proc. ICSE Workshops (WRT). 2012. DOI: https://doi.org/10.1145/2328876.2328877.

10. Kanwal, J., Magbool, O., Basit, H. A., Sindhu, M. A. & Inoue, K. “Historical perspective of code
clone refactorings in evolving software”. PL0oS ONE. 2022; 17 (12): e0277216.
DOI: https://doi.org/10.1371/journal.pone.0277216.

11. Thompson, S., Li, H. & Schumacher, A. “The pragmatics of clone detection and elimination”. arXiv.
2017. DOI: https://doi.org/10.48550/arXiv.1703.10860.

12. Kurbatova, Z., Veselov, 1., Golubev, Y. & Bryksin, T. “Recommendation of move method
refactoring using path-based representation of code”. arXiv. 2020. DOl:
https://doi.org/10.48550/arXiv.2002.06392.

13. Wagner, S., Abdulkhaleq, A., Kaya, K. & Paar, A. “On the relationship of inconsistent software
clones and faults: An Empirical Study”. arXiv. 2016. DOI: https://doi.org/10.48550/arXiv.1611.08005.

14. Mondal, M., Roy, C. K. & Schneider, K. A. “A survey on clone refactoring and tracking”. Journal
of Systems and Software. 2020; 159: 110429. DOI: https://doi.org/10.1016/j.jss.2019.110429.

15. Yang, J., Igaki, H., Hotta, K., Higo, Y. & Kusumoto, S. “Classification model for code clones based
on machine learning”. Empirical Software Engineering. 2015; 20 (4): 1095-1125.
DOI: https://doi.org/10.1007/s10664-014-9316-X.

16. Mens, T. & Tourwé, T. “A survey of software refactoring”. IEEE Transactions on Software
Engineering. 2004; 30 (2): 126-139. DOI: https://doi.org/10.1109/TSE.2004.1265817.

17. Choi, E., Fujiwara, K., Yoshida, N. & Hayashi, S. “A survey of refactoring detection techniques
based on change history analysis”. arXiv. 2018. DOI: https://doi.org/10.48550/arXiv.1808.02320.

18. Golubev, Y., Kurbatova, Z., AlOmar, E., Bryksin, T. & Mkaouer, M. W. “One thousand and one
stories: A Large-Scale survey of software refactoring”. arXiv. 2021. DOI:
https://doi.org/10.48550/arXiv.2107.07357.

19. Kaur, M., Rattan, M. & Verma, S. “A systematic literature review on the use of machine learning in
code clone related research areas”. Journal of Systems Architecture. 2023; 139: 102844.
DOI: https://doi.org/10.1016/j.sysarc.2023.102844.

20. Roy, C. K., Zibran, M. F. & Koschke, R. “The vision of software clone management: Past, Present,
and Future”. arXiv. 2020. DOI: https://doi.org/10.48550/arXiv.2005.01005.

ISSN 2663-0176 (Print) Theoretical aspects of computer science, 313
ISSN 2663-7731 (Online) programming and data analysis

Kurinko D. D., Kryvda V. . / Herald of Advanced Information Technology
2025; Vol.8 No.3: 301-315

21. Schulze, S., Kuhlemann, M. & Rosenmiiller, M. “Towards a refactoring guideline using code clone
classification”. Proceedings of AOSD. 2008. DOI: https://doi.org/10.1145/1636642.1636648.

22. AlOmar, E. A., Ashkenas, J., Feliciano, R., et al. “AntiCopyPaster 3.0: Just-in-Time Clone
Refactoring”. ACM Trans. Softw. Eng. Methodol. 2025. DOI: https://doi.org/10.1145/3749100.

23. Higo, Y., Sawa, Y. & Kusumoto, S. “Problematic code clones identification using multiple detection
results”. Proceedings of APSEC. 2009. DOI: https://doi.org/10.1109/APSEC.2009.30.

24. Sheneamer, A. M. “An automatic advisor for refactoring software clones based on machine
learning”. IEEE Access. 2020; 8: 124978-124988. DOI: https://doi.org/10.1109/ACCESS.2020.3006178.

25. Mostaeen, G., Islam, M. R., Roy, C. K. & Schneider, K. A. “A machine learning based framework
for code clone \wvalidation”. Journal of Systems and Software. 2020; 170: 110740.
DOI: https://doi.org/10.1016/j.jss.2020.110740.

26. Sajnani, V., Saini, V., Svajlenko, J., Roy, C. K. & Lopes, C. V. “SourcererCC: Scalable Near-Miss
Clone Detection”. Proceedings of ICSE. 2016. DOI: https://doi.org/10.1145/2884781.2884877.

27. Jiang, L., Misherghi, G., Su, Z. & Glondu, S. “DECKARD: Scalable and Accurate Tree-Based
Detection of Code Clones”. Proceedings of ICSE. 2007. DOI: https://doi.org/10.1109/1CSE.2007.30.

28. Kamiya, T., Kusumoto, S. & Inoue, K. “CCFinder: A Multilinguistic Token-Based Code Clone
Detection System for Large Scale Source Code”. IEEE Transactions on Software Engineering. 2002; 28 (7):
654-670. DOI: https://doi.org/10.1109/TSE.2002.1000449.

29. Roy, C. K. & Cordy, J. R. “NICAD: Accurate Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code Normalization”. Proceedings of CSMR. 2008. DOI:
https://doi.org/10.1109/CSMR.2008.44933109.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Received 18.08.2025
Received after revision 22.09.2025
Accepted 26.09.2025

DOI: https://doi.org/10.15276/hait.08.2025.19
V]IK 004.021:004.4°42:004.8

Pexomenaauis pedakTOpuHriB i3 0ararouijib0BOK ONNTUMI3ali€ro
Ta YPAXyBAHHAM HEBHM3HAYEHOCTI JJI TyOJTI0BAHHS KOLY

Kypiubko Imutpo JImurpoBuy?

ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

Kpugaa Bikropis IropiBaa?

ORCID: https://orcid.org/0000-0002-0930-1163; kryvda@op.edu.ua

D HanionanbHuii yriBepcuter «Onecbka [onitexnikay, np. llleBuenxka, 1. Ozneca, 65044, Vkpaina

AHOTALIA

KioHoBaui ¢parmentu koay (code clones) — me mMOBTOprOBaHI JiISIHKH MPOrPaMHOTO KOAY, SIKI MOXYTh YCKJIQIHIOBATH
HiATPUMKY IPOTPAMHOTO 3a0e3Me4eHHs 3a BiICYTHOCTI HAICKHOTO YIpaBIliHHA. ICHye 6araTo iHCTpYMEHTIB [UIsl BUSIBJICHHS KJIOHIB,
OIHAK OiMBLIICTh 3 HUX OOMEXYETHCsS JiMmie (GakToM BHUSBJICHHS Ta HE HAJae PEKOMEHJAlid MIONO0 IOLIIBHOCTI, cHocoly 4u
4eproBocTi ix pedaxropuHry. Y il cTaTTi 3ampONOHOBAaHO METOJ MAIIMHHOTO HaBYaHHSA JUI1 HAJaHHA pEKOMeHpaliil 3
pedakTopuHTY KIOHIB 3 ypaxyBaHHSM IIPIOPUTETHOCTI Ta OLIHKH BIIEBHEHOCTI. 3alpOINOHOBAHUH IMiAXiJ] BUKOPHUCTOBYE
KOMOIHOBaHe Tpe/ICTaBICHHS KOIy: abCcTpakTHI cuHTakcu4Hi nepeBa (AST), rpadu 3anexnocreit mporpamu (PDG) ta cemanTH4HI
BEKTOPH, OTPUMaHi 3a JOMOMOTOI0 TornepeaHbo HatpenoBanoi mozeni COdeBERT. J[onaTtkoBO BHKOPHUCTOBYIOTHCS E€BOJOIINHI
03HAKH 3 CHCTEMH KOHTPOIIIO BEpCiif, 30KpeMa 4acToTa 3MiH, BiK (parmMeHTra Ta CmiB3MiHU 3 iHImmMmE (aitnamu. Kiacudikarop
0arato-KJacoBOi MOJENi TMPOTHO3ye THUNI pe(aKkTOPHHTY, a MEXaHI3M BiJKPUTHX KJAciB J03BOJSE BIAXWISATH HEBHU3HAuYeHI abo
HeBinoMi Bunaaku. OLiHKa 3yCHIIb Ta KOPUCTI 103BOJISIE BIIOPSIIKOBYBAaTH peKOMEH alii 3a e)eKTHBHICTIO.

ExcrniepuMeHTansHa mepeBipka Ha 4OTUPHOX OPEN-SOUrce mpoekTax Ha Java 3 BpyuHy posmiueHnmu 600 rpynmaMu KIIOHIB
nokasaja gocsrHeHHs macro-F1 = 0.76 ans Bigomux tumiB pepaxkropunry, AUROC = 0.91 nsst BUsBICHHS HEBIIOMUX BHIQJIKIB Ta
NDCG@3 = 0.89 mns sixocti npiopuresanii. OTprMaHi pe3ynbTaTH AEMOHCTPYIOTb, 0 pedaKTOPUHT KIOHIB MOXKe OYTH eh)eKTHBHO

314 Theoretical aspects of computer science, ISSN 2663-0176 (Print)
programming and data analysis ISSN 2663-7731 (Online)

https://doi.org/#_blank
mailto:dmitrykurinko@gmail.com

Kurinko D. D., Kryvda V. I. / Herald of Advanced Information Technology

2025; Vol.8 No.3: 301-315

MiATPUMAHUI 3aBASKM TOEAHAHHIO CTPYKTYPHHX 1 CEMAaHTHYHHX O3HAK, MOJENIOBAHHS HEBU3HAYEHOCTI Ta MEXaHi3MiB
npiopuTe3arii. 3anpomnoHoBanuil miaxia TpaHcopmye KIOH-aHANI3 i3 MACHBHOI'O BHUSBICHHS Y MOBHOI[HHY CHCTEMY MiATPUMKH

pilieHb.
KaouosBi ciaoBa: P

e(aKkTOpUHI KJIOHIB; IITyYHHH IHTENEKT y IPOTpaMHIH IH)KeHepii; MallMHHE HaBYaHHS; TJIHOMHHE

HaBYaHHS; Kiacudikallisi KJIOHIB; BIIKpUTE pO3Mi3HABAaHHS; OIlIHKA HeBU3HAYEHOCTI

ABOUT THE AUTHORS

Dmytro D. Kurinko - PhD Student, Artificial Intelligence and Data Analysis Department, Odesa Polytechnic National
University, 1, Shevchenko Ave. Odesa, 65044

ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

Research field: Machine Learning and Artificial Intelligence, Machine Learning for Software Engineering, Pattern
Recognition, Computer Vision, Knowledge Representation in Software Systems

Kypinbko JImutpo murpoBuu - acmipant kadeapu llltyuHoro iHTenekty Ta aHamizy jpaHuX, HarioHambHui
yHiBepcurer «Onecbka [Tonitexnikay, np. IlleBuenxa, 1. Oneca, 65044, Ykpaina

Viktoriia I. Kryvda - PhD, Associate Professor, Department of Electricity and Energy Management, Head of
Department of Postgraduate and Doctoral Studies, Odesa Polytechnic National University, 1, Shevchenko Ave. Odesa,
65044

ORCID: https://orcid.org/0000-0002-0930-1163, kryvda@op.edu.ua

Research field: Machine Learning for Software Engineering, Pattern Recognition, Data-Driven Software Architecture
Analysis, Computer Vision, Knowledge Representation in Software Systems

Kpusaa Bikropisi IropiBHa - kaHa. TexHi4. HayK, AOUEHT Kadeapu EmekrporocrayaHHs Ta €HEPreTHYHOrO
MEHEDKMEHTY, 3aBijlyBad BiJIily aclipaHTypH i JOKTOpaHTypu, HauionansHuii yHiBepcutet «Opecbka ITomiTexHikay,
np. llleBuenka, 1. Oneca, 65044, Ykpaina

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Onlin

Theoretical aspects of computer science, 315
e) programming and data analysis

