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ABSTRACT

This research presents a locality-sensitive hashing framework that enhances approximate nearest neighbor search efficiency by
integrating adaptive encoding trees and BERT-based clusterization. The proposed method optimizes data space partitioning before
applying hashing, improving retrieval accuracy while reducing computational complexity. First, multimodal data, such as images and
textual descriptions, are transformed into a unified semantic space using pre-trained bidirectional encoder representations from
transformers embeddings. this ensures cross-modal consistency and facilitates high-dimensional similarity comparisons. Second,
dimensionality reduction techniques like Uniform Manifold Approximation and Projection or t-distributed stochastic neighbor
embedding are applied to mitigate the curse of dimensionality while preserving key relationships between data points. Third, an
adaptive encoding tree locality-sensitive hashing encoding tree is constructed, dynamically segmenting the data space based on
statistical distribution, thereby enabling efficient hierarchical clustering. Each data point is converted into a symbolic re presentation,
allowing fast retrieval using structured hashing. Fourth, locality-sensitive hashing_is applied to the encoded dataset, leveraging p-
stable distributions to maintain high search precision while reducing index size. The combination of encoding trees and Locality-
Sensitive Hashing enables efficient candidate selection while minimizing search overhead. Experimental evaluations on the CarDD
dataset, which includes car damage images and annotations, demonstrate that the proposed method outperforms state-of-the-art
approximate nearest neighbor techniques in both indexing efficiency and retrieval accuracy. The results highlight its adaptability to
large-scale, high-dimensional, and multimodal datasets, making it suitable for diagnostic models and real-time retrieval tasks.
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INTRODUCTION projections or complex indexing structures.
Furthermore, some traditional approaches, such as
“boundary-ordered” hashing, scale poorly when the
volume of data grows exponentially. Additionally,
classical locality-sensitive hashing(LSH) functions
generally do not account for the distribution of data,
leading to high indexing costs and insufficient
search accuracy.

Another important aspect is the necessity of
processing cross-modal data. In many practical
tasks, such as anomaly detection or diagnostic model
construction, it is necessary to integrate information
from different sources, including images, texts, and
tabular data. This requires a unified approach, where
binary hash codes must preserve high-level
semantics regardless of the input modality. Such
approaches are referred to as cross-modal or
multimodal. Therefore, a critical capability is the
dynamic updating of existing hash functions and
codes when new data types or categories are

Locality-sensitive hashing effectively means a
method that is based on probabilistic dimensionality
reduction of data, thus reducing a number of features
(columns) in a dataset, preventing a problem called
“curse of dimensionality” that hinders the model’s
ability to learn.

Several limitations complicate the direct
application of classical methods to real-world, often
high-dimensional, data. In particular, the well-
known “curse of dimensionality” leads to efficiency
loss: when the space has an excessively large
number of dimensions, the probability of collision of
“close” points (in terms of the original space metric)
in shared hash buckets behaves differently than
predicted by theoretical estimates for moderate
dimensions. This can increase both search error and
computational costs, as achieving adequate
performance often requires generating too many

introduced into the system. Conventional methods of
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expanded dataset are computationally expensive and
lead to catastrophic forgetting. Thus, the primary
direction of this research is the development of a
comprehensive strategy in which original codes
remain intact while new codes are incrementally
constructed, incorporating data clustering that
accounts for local density.

This research is especially relevant in the
context of rapidly growing multimodal data
environments, where traditional similarity search
methods struggle with high dimensionality,
scalability, and modality alignment. The proposed
hybrid methodology of encoding trees combined
with LSH directly addresses these issues, making it
applicable to domains such as automated
diagnostics, multimedia retrieval, and real-time
anomaly detection. However, the approach has
certain limitations: it requires pre-trained semantic
encoders like BERT, assumes relative consistency in
data distribution for effective clustering, and may
face reduced effectiveness in extremely sparse or
adversarial data scenarios. Despite these constraints,
the method’s adaptability, modularity, and improved
search performance make it a promising tool for
scalable cross-modal systems.

1. ANALYSIS OF LITERARY DATA

Locality-sensitive hashing (LSH) has been
widely explored as a fundamental technique for
approximate nearest neighbor (ANN) search in high-

dimensional spaces. Numerous studies have
investigated its theoretical foundations,
optimizations, and  applications. However,
challenges related to efficiency, scalability,

robustness, and applicability to multimodal data
remain open problems. This section reviews key
contributions from recent research and outlines their
limitations, which motivate the need for a different
approach.

Jafari et al [1] provide a comprehensive survey
of LSH techniques, classifying them based on their
hash function families and application domains.
They discuss traditional LSH variants such as
Hamming-based, Minkowski-based, Angular-based,
and Jaccard-based hashing, along with advanced
techniques like Multi-Probe LSH and Query
Adaptive LSH, which address issues like large index
sizes and false positives. The survey also covers
distributed LSH  implementations, including
MapReduce-based frameworks and Apache Spark
solutions, which enhance scalability in large-scale
data processing.

Although extensive categorization of LSH
applications across various domains, including

multimedia retrieval, cybersecurity, and biological
data analysis can be considered remarkable insights
in relation to LSH, critical comparative evaluation of
different LSH approaches on real-world benchmarks
still remain unavailable. Furthermore, while LSH’s
advantages over exact nearest neighbor searches are
considered, extensive discussion of emerging deep-
learning-based alternatives or hybrid approaches that
integrate neural embeddings with LSH need to be
clarified. This gap suggests the need for further
research into hybrid LSH models that optimize
performance  while  maintaining  theoretical
guarantees.

A more targeted contribution to improving LSH
efficiency is presented by McCauley et al in [2],
which introduces function inversion techniques to
optimize space utilization in ANN data structures.
The authors propose a general black-box framework
that reduces storage overhead in LSH without
significantly increasing query times. Their approach
replaces traditional reverse lookup tables with
function inversion mechanisms, thereby maintaining
retrieval effectiveness while reducing memory
usage [3].

This method successfully enhances space
efficiency in ANN indexing, particularly in
scenarios where high-dimensional datasets require
extensive storage. However, the benefits of function
inversion are highly parameter-dependent, and its
impact varies across different LSH families.
Additionally, while space complexity is reduced,
query time savings are modest, particularly for lower
approximation factors. The approach also assumes
that function inversion operations can be efficiently
computed, which may not always hold for large-
scale, real-world applications. These limitations
highlight the need for adaptive LSH models that
dynamically balance space, time, and accuracy
trade-offs based on the dataset characteristics.

The integration of locality-sensitive filtering
(LSF) with LSH in Falconn++, introduced by Pham
et al in [4] represents another significant
advancement. This approach improves upon
traditional LSH-based ANN search by selectively
filtering out distant points from hash buckets before
guerying, reducing false positives and unnecessary
computations.  Theoretical  improvements  in
Falconnt+ lower the exponent p governing the
space-query efficiency tradeoff, leading to more
optimized performance in high-recall settings.

Experimental evaluations on real-world datasets
demonstrate that Falconn++ outperforms standard
LSH techniques while competing with state-of-the-
art graph-based ANN methods such as Hierarchical
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Navigable Small World (HNSW). However, the
method’s effectiveness is highly dependent on
threshold  selection for filtering, and its
generalizability to distance metrics beyond angular
similarity remains uncertain. Additionally, while it
improves recall-speed tradeoffs, it does not
fundamentally alter the structural limitations of LSH
when dealing with multimodal data. These factors
suggest the need for LSH frameworks that
incorporate  data  distribution-aware filtering
mechanisms applicable across multiple similarity
measures.

Kapralov et al. [5] investigate LSH’s robustness
against adversarial attacks, revealing a key
vulnerability in traditional hashing schemes. Their
study demonstrates that an adversary can
systematically construct queries that force LSH to
return incorrect results, highlighting a critical
weakness in security-sensitive applications. The
theoretical findings are supported by empirical
evidence, showing that adversarial attacks can
significantly =~ degrade = LSH’s  effectiveness,
particularly in sparser datasets.

While this work provides valuable insights into
LSH’s susceptibility to adversarial manipulation, its
reliance on isolated points in the dataset limits its
applicability to real-world scenarios. Furthermore,
while potential defenses such as differential privacy
and randomized hashing are mentioned, they are not
explored in detail. Given the growing importance of
secure and privacy-preserving similarity search,
there is a pressing need for LSH-based models that
incorporate adversarial resilience while maintaining
efficiency.

DeepLSH [6] developed by Remil et al,
introduces a deep-learning-based approach that
learns hash functions capable of approximating
custom similarity measures for crash report
deduplication. Using a Siamese neural network,
DeepLSH generates locality-sensitive hash codes
that maintain theoretical guarantees while adapting
to various similarity metrics, such as Jaccard and
Cosine similarity. The method demonstrates high
recall and efficiency in large-scale crash report
retrieval, surpassing traditional LSH and deep
hashing baselines.

Despite its advantages, DeepLSH relies on a
supervised learning paradigm, requiring extensive
labeled training data. This constraint makes it
challenging to deploy in scenarios where annotated
datasets are scarce. Additionally, while it generalizes
across similarity measures, its performance is
sensitive to hyperparameter tuning and data
distribution. Another concern is the potential impact

of adversarial inputs, which is not explicitly
addressed in the study. These challenges suggest the
need for hybrid models that integrate the adaptability
of deep learning with the efficiency and robustness
of traditional LSH.

2. THE PURPOSE AND OBJECTIVES OF THE
RESEARCH

The purpose of this research is to develop an
effective methodology for approximate nearest
neighbor search in diagnostic models by integrating
encoding trees with locality-sensitive hashing
(LSH). The proposed approach ensures the
preservation of semantic relationships between data
samples of different modalities while optimizing
computational efficiency [7].

The objectives of the research include:

1) to encode multimodal diagnostic data into a
unified vector space using a pre-trained neural
model [8], followed by dimensionality reduction
techniques ( UMAP and t-SNE) to mitigate the curse
of dimensionality while retaining key features;

2) to construct an adaptive encoding tree (ET)
using symbolic representations based on local data
density, thereby enabling dynamic space partitioning
for efficient hierarchical clustering and candidate
filtering;

3) to integrate BERT-based clustering with
LSH, using p-stable distributions for improved
precision, and to evaluate the proposed hybrid
method’s diagnostic accuracy through comparative
analysis with traditional and deep learning-based
retrieval techniques.

3. RESEARCH METHODS

The proposed method is based on the usage of
previously trained neural network model for coding
input data of different modalities in a general vector
space. Each sample, which is presented in a textual
or visual information form gets transformed into a
multidimensional vector format with a subsequent
reduction of its dimensionality for the purpose of
eliminating “curse of dimensionality” [9]. Vector
presentation is performed into a lower space, which
allows saving of main semantic connections with
objects and increasing calculations efficiency.

Next procedure corresponds with building of an
adaptive encoding tree (ET), that dynamically
defines threshold values for each coordinate [10].
Based on this, the symbolic representation of each
sample is performed, that is then used in tree-like
structure building. The uniqueness of the proposed
method lies in the combinatory usage of LSH and
ET, coupled with BERT clustering of the data,
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which in total results in a robust and efficient nearest
neighbors search in multidimensional space.

The experimental evaluation of the proposed
method was backed by the multimodal dataset
usage, which included textual descriptions and
images. Training of the parameters was
accompanied by the cost function, which reduced
the likelihood of semantically similar objects
diverging from each other. For the purposes of
semantic space coherence, the weights regulation
process was engineered, which increases the quality
of different modality object correspondences.

The algorithm was tested on a subset of
samples, which underwent a mechanism of
correspondence correctness check. Results analysis
included the comparison of search efficiency with
the usage of different parameters of encoding
structure, such as the amount of levels in the tree,
space dimensionalities after projection and locality-
sensitive hash-functions characteristics. The usage
of combinatory method created a possibility of
optimizing the nearest neighbors’ identification
process in a cross-modal environment, retaining high
accuracy considering lowered computation costs.

4. RESEARCH RESULTS

The proposed method of locality-sensitive
hashing with an adaptive encoding tree in cross-
modal tasks implies the step sequence, the aim of
which is the keeping of semantic proximity between
samples of different types (text or image
information) and the approximate nearest neighbor
(ANN) search realization in a big data space with a
potentially high dimensionality. At first, the
encoding of all samples is performed with the usage
of previously trained BERT model. It is implied, that
{x;}IL, is a set of input samples that have different
modalities [11].

For each x; the vector representation gets
calculated:

e; = BERTQ(XJ

where 6 represents BERT model parameters, which
give an opportunity to calculate contextual and
semantic properties of each sample. Due to the fact
that e; € R4 often has quite high dimensionality d,
there is a need to use dimensionality reduction
methods, like t-SNE [12] or UMAP [13], which is
motivated by “dimensionality curse” influence
reduction and at the same time by the need to save
main semantic connections between samples.
Formally, the non-linear representation f gets

chosen, whose function is to transfer e; in a lower
dimensionality space R*, where k « d.
This results in:

ei, = f(ei) Withei’ € Rk.

This gets followed by adaptive clusterization
considering local data density. Instead of uniform
distribution of hashes of the whole space, the
preliminary definition of local regions (clusters and
subspaces) is implied, where data are distributed
relatively uniformly [14]. If X = {e'y, €5, ...,e'n}s
which is a set of points, gets assigned to R* space
after dimensionality reduction, then algorithms, that
are similar to dynamic threshold selection, get used
in relation to each coordinate. The idea lies within
the necessity of obtaining the breakpoints for each of
k spaces for the purpose of approximately identical
amount of points getting to each interval. If {C;;}
denotes the values of j coordinate, that are arranged
in ascending order for the specific data subset (or the
whole set X), then the M of intervals 44,4, ..., 4y,
where 4, = [by, bps1), and by = —o0 by, 4, Can
be defined, considering that each 4,, interval
occupies approximately N /M points. Quintile search
operation for these thresholds formation can be
realized with an algorithm QuickSelect, which
operates per the average time O(N), and in a general
worse scenario — O(N?), but in practice cases, the
linear dependency on N is often observed [15].

Subsequently, the threshold selection for the m
interval is denoted like this:

—-1)N
b = G,

where C; (t) corresponds with:
c;j = encode(e';;; {by,by, ..., by11}),

where encode returns the symbol (for instance,
binary number or an integer from 0 to M — 1)
depending on which thresholds e’;; lies within. By
doing that, each vector e';; is transformed in
symbolic representationC; = (c;1, Ciz, -+, Cix ), Where
ach component c;; corresponds with the symbol, that
is connected with value range in j space [16].

Based on these symbols the adaptive encoding
tree is constructed, which has the root node that
occupies the whole data, and then secondary nodes
get recursively created, that correspond with the set
of points distribution based on a certain criterion. In
contrast with the traditional indexation trees (like R-
tree, k-d-tree), the encoding tree does not divide the
space in a uniform manner, but rather uses symbolic
clusterings depending on the data distribution in
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each space. As result, each internal node has two or
more branches regardless of how the symbol
distribution is organized in it. For example, if each
space is encoded as 0/1 on the tree’s first level that
means with the binary division then the root node
has 2% secondary nodes that correspond to every
possible bit combination from k coordinates. This
basic level can be detailized provided the necessity
when the number of points in a certain node is
higher than the established maximum, then the
clusterization proceeds. When the tree is built, each
leaf contains relatively low number of points, while
keeping the correspondence between vectors e’;; and
their symbolic encodings C;.

In a practical realization,  symbolic
representation can be saved in a form of “iISAX”-
like codes (indexable Symbolic Aggregate

approximation), when an alphabet of 2" symbols
(intervals) emerges in every space, and then the bit
representation of each coordinated forms [17]. After
the determined ET for each of L independent
projections (or for different dimensionality samples)
is built, the ANN search can be organized by using
both the tree-like structure and mapping locality-
sensitive hashes. The idea will imply, that each tree
TW,1=1,..,L, is able to selectively initiate the
search in the nodes, that correspond to the most
similar symbols for the query gq'. Assuming that
ETquery(q', T®) denotes the procedure that
returns a little subset of candidates (e. g. each leaf
nodes, that coincide with the encoding g’ by the
bigger part of bits) [18]. Then the candidates from
all the trees unify and the final filter based on the
real distance is performed for the purpose of nearest
neighbor search. The algorithm LSH is usually
defined through (7, c - r,p1, p2), Which corresponds
to the locality-sensitive function family. If [| x — y ||
< r gets stated, then the collision probability h(x) =
h(y)) has to be not less thanp,, and under the
condition of || x —y [I= cr this probability has to
be not more than p, [19].0ne of the most common
ways to build such LSH-functions for the Euclidian
space is using p-stable distribution (if p = 2, the
distribution is considered normal).

If the random vector a ~ N(0,1;) and scalar
are generated, which is then followed by the hash-
function definition:

a-x+b

h(x) = | 1,

then such function satisfies the mentioned properties
of LSH with a certain probability guarantee.

The quality of k-NN search optimization is
achieved through taking K of such function and
merging it in a vector, which means:

H(x) = (hy (), hy(x), ..., hy (),

additionally, the probability of proximate points
being skipped is reduced by using L independent
sets of such functions:

L6 = ) (S Il 0 = fi(6) 1 2+ R(6,,6,)),
ij

where S;; is a general indicator of semantic
similarity (for instance, it equals 1, if the text
describes similar objects, and 0 otherwise) and
R(6,,6;) corresponds to the regularization term.
However in the scope of the described approach, the
cross-modal component is realized somewhat
differently: each sample x;, that already contains a
certain data type, is encoded in a vector BERT e;,
and then the corresponding vector image is saved in
an encoding tree and LSH-tables. If there are two
samples x; and x; that are of different types, then
BERT transformation causes their transition to e;
and e;. If they are semantically similar to each other,
then the difference |l e; —e; I will be relatively
small, therefore, there will be a small amount of
divergences in a symbolic  representation
encode(e;") and encode(e;").

Next step revolves around the idea of keeping
the encoding stable and considering the local
densities. For each dimension j, the algorithm

defines {bij),bgj), ...,bgl?ﬂ} for the purpose of the

number of points in each interval being relatively
equal. After this definition, the encoding of each e;;’
is going to provide a symbol with {0,1,...,M; — 1}.
It is assumed, that the binary scheme is used for the
simplicity, which means that M; — 2 is true for every
J, then the symbol ¢;; € {0,1} and the whole point
are being encoded by the k-bit string. As mentioned,
this corresponds with the simplest alternative,
though it can be generalized into greater alphabets.
The encoding tree then has 2% leaf nodes on the first
level, each of which corresponds to the unique
combination ((c;q, ..., i ). If some leaf contains the
excessive amount of points, the further clusterization
continues (e. g. for each of the coordinates the
operation {0,1} - {00,01,10,11} is performed, and
so on) [20]. As a result of this, the tree submerges in
those regions, where there are a lot of points, and on
the contrary, regions of low density usually get
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occupied with the more little portions of it, which in
total has a positive impact on the search efficiency.

Approximate  nearest  neighbor query
realization, which is described using an example of a
new query g, which corresponds to q’' € R*q’, after
BERT transformations and dimensionality reduction,
is done in the following manner. First of all, it gets
encoded encode(q’) — C,. Then all the nodes, that
partially coincide with C, (for example, if one or
two divergences are allowed in a binary code, or the
node is being searched for, that corresponds to the
exact sane code C,) are selected on the root node.
Consequently, if a node that was found has a low
quantity of points, the distances between ¢’ and
those points are instantly getting calculated. If there
are too many of them, the tree allows for a deeper
submergence. That is how the rough candidate
selection that works under the principle of LCH
identification, is performed. When the subset of
candidates S c X is obtained, the fine calculation of
distances |l ¢' — e'; Il or cosine similarity is done, in
order to sort the candidates and find the nearest ones
[21]. If [ S| is limited from the above (because the
average node size is limited), then such a search is
performed considerably faster in comparison to
calculation of distances for all N points. The high
quality hash construction requires code coincidence
metric definition.

If binary encoding is utilized the difference
between C; and C; can be measured as a Hamming
distance [22]

k
disy (G, G) = Z Licipzcjry
r=1
where 1¢; denotes the indicator that equals 1 when
bit values are different. Provided the alphabet with
M; for j coordinate is created, the symbol can be
turned into a binary code with a fixed length
log,(M;j) and further use the Hamming distance. In
general cases, the code continuity function can be
implemented, where the distance between two
symbols encode(q';;) and encode(q";;) depends
on the difference of their indices | m; —m, |. It is
also important to consider that in cross-modal
systems, each sample can be composed: for instance,
if x; = (v;,t;), then BERT creates a representation
in a unified dimension for each input data types, and
then the combinatory hashing with LSH and ET is
not going to require separate structures for each
modality, as they operate in the exact same
dimension anyway, whether it is R® or Rk. If
however, it is necessary for different modalities to
be managed, multiple ET’s can be created: one for

images, and the other for the text, whose outputs are
going to be combined subsequently.

The construction of the ET is formulated
according to this fashion. It is assumed that X =
{x'1,x'5, ..., x'n} € Rk. At first, the “first layer” of
clusterization is built, which means that for each j €

{1, ...k} the (b)Y gets defined. In simplest

m=1
case M; =2 for all j, which corresponds to the
binary division, so 2* cells are obtained (considering
that each cell is defined by the set of features
{cij}=1, where ¢;; € {0,1}). For the root node the
representation X — {0,1} is formed, which is
denoted as Enc(-).

Then 2% leafs are obtained (on this first level),
where each leaf { contains the subset:

X, ={x';€X | Enc(x'y) =1}.

If | XI| is of a higher value than a certain
threshold _size, then this list is considered to be the
root node which in turn causes the repeated
clustering to take place in one of the dimensions (or
all of them) for those points, that have gotten there.

The selection of dimension j* happens
according to this condition: j* must minimize the
sum of distances in a node during the clusterization:

]G0 =

x1i€XLicij<t

I x'; = piereGhT) 12 + I x's = trigne G, D) 112,

xri€Xlicij2T

where .. (j, T), #4550, T) are centroids of the

points that went to the left/right during the
clusterization by the threshold = in a code dimension
j. In practice, instead of 7 in the binary encoding,
there are only 0 or 1 that remain, due to this being an
already predetermined division. If the symbol in the
dimension j can rest in a range [0, M; — 1], then the
way of dividing this range in two parts is selected.
This recursive clusterization happens to the point
where | X; I< _size. As a result the hierarchical
structure is formed where the point composition of
each leaf is limited which provides a fast access
during the search. Considering the search algorithm,
the entry query q € R* is encoded Enc(q")
according to the exact same principle [23].
Following, the search of one or multiple leafs, that
coincide with this encoding the most, is performed.
If ¢’ has in the dimension j symbol «;, then the tree
instantly comes over to the subnode that corresponds
to it on the first level. On the other hand, in case of
encoding tree, if the code 6; has multiple bits, the
corresponding way from the root has to be
determined. In total, leaf are obtained, whose
distance in the dimension to code Enc(q’) is not big.
From all the points in these leafs, the Euclidian
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space to q' be checked in an output reduced
dimension [24]. Supposing the model x? or one of
the normal distribution is consistent, the probability
of condition|l x’; — ¢’ I< r being satisfied can be
assessed. If one has to consider, that when a has a
normal distribution, then (a - x)/Il x || corresponds
to the normal random value with a zero average and
variance being 1, and it has to do with the p-stability
of the distributions for p = 2 [25]. Consequently, for
lx—ylI<r the JoiPrPr[h(x)= h(y)]=plis
true, and for | x —y 1= cr — the PrPr[h(x) =
h(y)] < p2. Unifying L trees and tables contributes
to nearest neighbors finding probability growing.
Considering that, ET lets realize this approach in a
more effective manner, as at first the adaptive space
clusterization takes place, with the hashing
subsequently covering these local regions. The
mathematical likelihood of skipping the nearest
neighbor is getting reduced in an exponential fashion
with the L growing.

The evaluation of clusterization properties in
tree construction can be done by tracking the intra-
cluster D;jpsrq and inter-cluster D;,;.,.distances:

1 2
Dintra = m Z Il e; — € I, Dinger
X% j€C
_ 1
Cictrcz|

X{€CLx;EC2

2
II € — € 1=

The objective is based on the need of having
Iow Djpirq and high Diter. In the context of
diagnostic models construction, multidimensional
data play a crucial role in cases of combining textual
descriptions, signals, images etc. Thanks to the
BERT-encoding, all of those get to the shared space
R¢ with the subsequent reduction to R* and hashing.
This sequence lets conduct ANN search while giving
an opportunity to find similar samples quickly.
Detailed management of the process can be achieved
with utilizing regularizators and sparseness concepts
with the purpose of lowering the risk of overfitting
while using augmentation methods in case of data
deficiency. If sparse regions of a space have to be
considered, dynamic threshold adjustment scheme

{bf,’l)}, can be implemented, which introduces a
benefit of “stretching” the intervals in such places,
where the density is low and the other way around
with the aim of avoiding “too rough” coding. From
the complexity perspective, the encoding trees
construction and thresholds ejection for every k
dimension has an order O(N(d +log logM)),
because d correspond to the basic calculation
complexity of BERT-embeddings and of

dimensionality reduction, while log logM has to do
either with the repetitive quintile searches or with
the recursive clusterization. Space costs for keeping
get reduces as well, as instead of full vectors R¢, or
even R¥, only symbolic representation C; gets
retained, which can be considerably shorter. During
the process of ANN search, the overall complexity
decreases which is cause by the fact, that distance
check in the original space is performed only for
candidate from relevant leafs of the tree, the amount
of which is a lot lower than that of N. The two-step
can also be considered in this situation: the search in
an encoding tree for the faster screening by codes;
the accurate comparison of the selected candidates
by Euclidean or cosine distance. Cross-modal nature
of the approach, as was stated earlier, lies within the
concept of BERT being capable of transforming
both text and images in a shared vector space, while
the LCH and ET are there to perform operations on
those vectors. This combination facilitates an
integration of different type’s objects in a unified
index. The enhancement of the approach can be
implemented through and integration of penalties for
violating the semantic proximity during the training
of the system, which means, that if according to the
softmax in BERT distribution p(z) the high
probability persists, that word or visual fragments
belong to the exact same subject, then their
embeddings must have similar binary codes.

L= Z (softmax(BERT,(w;)) — softmax(BERT,(w;)))?
N +A1617,

where 1 is the regularization coefficient. If there is a
task to construct a diagnostic model, then cross-
modal data can be encoded in a shared space. If NN
were found with this cross-modal encoding, then
there is a higher change of easier distinguishment of
similar cases. Hence, the integration of LSH and ET
sequentially does the encoding of data in a
semantically  enriched space; reduces the
dimensionality; adaptively clusterizes the space by
statistical properties; creates a symbolic code for
each vector using iSAX-like approach; form
adaptive tree, where each node is responsible for a
certain combination of symbols; searches for
candidates in relevant leaf nodes. This methodology
contributes to creating a compact data
representation, while retaining a high level of
semantic relevance and giving an opportunity to
perform cross-modal search effectively. Considering
that the training criterion function of the whole
architecture can be formally represented, a number
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of components can be foreseen: penalties for the
semantics divergence (KL-divergence) between
BERT-vectors of related samples; and for interval
uniformity violation; and regularizators.

If B are binary codes and F — continuous
vectors in R¥, then:

L =) (WF-FIP-as)?

ij ensuring semantic similarity
+BY  WE-BI
- had
i

+y Z Balance(}')w

quantization

bits balance

where S;; denotes the indicator or measure of
semantic proximity (1, if they are similar and 0
otherwise, or if the amount of shared topics is
partially similar), Balance(j) corresponds to the
measure of quantity divergence from the equality +1
and -1 in j bit [26]. After obtaining B as a means for
minimization task L(€) accomplishment, the
encoding tree can be reconstructed. First, the
optimization of continuous vectors F is performed
(by the common error  backpropagation
optimization), then the B; =sign(F;) gets
calculated with the subsequent determination of
thresholds for each dimension, which gets followed
by the ET construction and LSH utilization.

In summary, all of this lets system find relevant
samples regardless of their nature during the search
by a new query g. In order for this method to be
integrated outside of the scope of this research, it
might be supplemented by data augmentation
techniques, according to which, noise variations
& = e; + e withe ~ N(0,52I) are generated for the
purpose of increasing the training set volume and
obtaining more stable clusterization [27].

The motivation for using the steps described in
this section is driven by the need to establish an
efficient foundation for approximate nearest
neighbor search in diagnostic systems, where data
can be hybrid, multi-format, and high-dimensional
[28]. By employing dynamic space partitioning
(instead of a rigid grid) [29], it is possible to better
account for the actual distribution of objects, thereby
improving  search  accuracy and  speed.
Mathematically, the method offers high flexibility:
the number of trees L, the clusterizations in each
dimension M;, and the size of leaf nodes can be

similar to classical LSH analysis. Thus, the
described integrated locality-sensitive hashing
architecture, operating in conjunction with an
encoding tree and prior BERT encoding, forms the
basis for flexible, fast, and efficient cross-modal
diagnostic models that handle heterogeneous data
types while preserving key semantic relationships in
low-dimensional or binary spaces, which are

convenient for search and analysis.
5. EXPERIMENTAL STUDY

The experimental study was divided into
several tasks, with the first one formulating the
experimental setup which involved data preparation,
BERT encoding while the main focus was on
dimensionality reduction application. The main
objective of task 2 was to construct an adaptive ET
accounting for adaptive thresholds and symbolic
representation. Task 3 involved BERT-Based
Clusterization for LSH particularly focusing on p-
stable distributions and data-driven cauterization —
to accelerate approximate nearest neighbor (ANN)
queries.

So the processing stages included:

— preliminary encoding: the BERT model was
used to generate vector representations of all
samples, enabling both textual and visual
information to be mapped into a unified semantic
space.;

— dimensionality reduction: to mitigate the
“curse of dimensionality”, t-SNE and UMAP
methods were applied, effectively reducing the
spatial complexity to R, where k = 64;

— encoding tree construction: an adaptive space
partitioning method was used, taking into account
the local density of data;

— hashing: LCH based on p-stable distributions
was implemented to enhance the efficiency of
nearest neighbor search;

— performing a search: the method's
performance was compared against exact distance
computation, allowing for an evaluation of the
accuracy in detecting similar damages;

— evaluation and comparison of the proposed
method with the related studies.

1. Dimensionality Reduction stage. For large-
scale runs (thousands of samples), UMAP can be
more efficient while still preserving neighborhood
information. In terms of parameter tuning, k=64 and
k=128 were tested. Ultimately k=64 turned out to be
sufficient to retain about 90-95 % of the local

controlled to balance accuracy and efficiency. neighborhood structure while greatly lowering
Formally, probabilistic guarantees can be estimated computation in subsequent hashing.

for finding the c-approximate nearest neighbor,
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In order to project and validate the choice of the
reduction method, the quality of the reduced
representations was measured by comparing
pairwise similarities (cosine or Euclidean) before
and after dimension reduction. Then the rank
correlations (Spearman’s p) are computed between
distances in the original and reduced spaces.

The study of the efficiency of the proposed
locality-sensitive hashing method with a dynamic
encoding tree was conducted on the CarDD dataset,
which was developed in the work [30] for the
purpose of the SOD task. This dataset contains 4,000
high-quality images of car damages with over 9,000
annotated damage instances, as demonstrated in
Fig. 1.

All damages are classified into six categories:
dent, scratch, crack, glass shatter, lamp broken, and
tire flat. To ensure the correctness of performance
evaluation for the proposed method, the original
dataset was split into training (2,816 images,
70.4%), validation (810 images, 20.25 %), and test
(374 images, 9.35 %) sets.

In pilot runs on CarDD, Spearman’s p was in
the range of 0.88-0.92, confirming high preservation
of local neighborhoods. Run time for downstream
hashing decreased by roughly 25-30% compared to
operating in the original BERT dimension.

2. Constructing an adaptive Encoding Tree. For
each of the k reduced coordinates, breakpoints are
identified so that each interval holds approximately

D\\_I 1itch

D glass shatter

the same number of data points. This dynamic
partitioning avoids the pitfalls of uniform cuts in
skewed data distributions. Thereafter each
coordinate is transformed into a symbolic alphabet
({0.1} in a binary scheme or {0.1,..., M—1} for
multi-bit). Then, each data point is encoded as a
short code (if k=64 and we perform a single-bit split
per coordinate). The root node is conceptually the
entire distribution. Children nodes emerge from
splitting along each coordinate’s bit-based partition.
If a leaf node exceeds a threshold (200 or 300
samples), they are recursively split in the dimension
that yields the most balanced partition. Building the
ET is approximately 0 ( - ( k + log i/oi M ) )
O(N-(k+logM)), which remains manageable for
large N N. The adaptive tree typically reduces the
candidate search region significantly in later queries.
On CarDD, it was observed that candidate filtering
needed to check only 12-15% of the dataset on
average during retrieval, compared to a naive
approach that might involve checking all data points.

3. BERT-Based Clustering for Locality-
Sensitive Hashing. Random vectors are sampled to
form hash functions, ensuring that close points
collide in the same bucket with higher probability.
LSH procedure is replicated L times (with L=3 or 5)
to reduce the chance of missing near neighbors. The
codes from the ET guide which local sub-partitions
or buckets are needed to be explored.

:tm, flat

Fig. 1. Examples of annotated images in the CarDD dataset
Source: compiled by the [30]
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A given query g, gets reduced to R¥, while its
symbolic code is computed from the ET. The
matching (or nearly matching) codes are looked up
in multiple LSH tables. Then the results are refined
by actual distance checks.

6. DISCUSSION OF THE RESULTS

This section corresponds to the comparison of
the proposed approach with related methods and its
subsequent evaluation.. The central approach of this
work underwent a comparison with different
methods in two stages. First, CE-LSH was evaluated
in comparison with DL methods like Mask R-CNN,
Cascade Mask R-CNN, GCNet, HTC, DCN. Second, to
improve illustrative power, analogous LSH method was
introduced to the comparison, namely Locality-Sensitive
Hashing with Query-based Dynamic Bucketing (DB-
LSH) used for ANN search as well [31].

Comparison with Deep Learning methods is
illustrated in Table 1.

Table 1.Quantitative Results during comparison
with DL methods

Table 2.Analysis of calculation complexity

Indexation time Search time
Method
(s) (ms)
Mask R-CNN 321.4 134.8
DCN 287.1 115.3
Proposed
Method 184.6 68.9

AP@50 AP@75 AP
Method (Instance (Instance (Object
Segmentation) | Segmentation) | Detection)
Mask R-
CNN 49.4 50.6 66.0
Cascade
Mask R- 49.2 51.0 63.9
CNN
GCNet 50.9 52.4 67.6
HTC 50.9 52.1 65.8
DCN 52.5 54.5 68.7
Proposed
Method 57.0 58.4 7.7

Source: compiled by the authors

Insights from Table 1 show that for the “crack”
category, the method achieved improved recognition
accuracy by reducing confusion with scratches.
Meanwhile, for “scratch”, false positive cases were
minimized due to enhanced contour detection. In the
“glass shatter” category, the proposed method
provided high damage localization accuracy, even
under challenging shooting angles.

The proposed method ensures optimal search
efficiency by reducing the number of distance
evaluations in high-dimensional space, as shown in
Table 2.

This means that indexing time was reduced by
35.7% compared to DCN, while search time was
decreased by 40.2 %, making the method suitable
for real-world applications in automotive diagnostic
systems.

Source: compiled by the authors

Comparison with DB-LSH. Although both
methods ultimately aim at efficient ANN searches,
they diverge significantly in how they organize data
before hashing, how they manage query-time
partitioning, and the extent to which they
incorporate advanced encoding or clustering steps to
tackle boundary problems, indexing costs, and query
recall.

The CE-LSH approach is expressly motivated
by modern cross-modal data scenarios, in which
image, text, or tabular information must be
consolidated in a single high-dimensional space.
DB-LSH, on the other hand, works with a more
traditional p-stable or standard normal-based
approach to building K hash functions, repeated L
times, but attempts to address classical concerns
about memory cost and boundary effects by making
the bucket assignment dynamic with respect to a
query. Whereas older static (K, L)-index methods fix
a bucket width and rely on a large K to discriminate
points, DB-LSH modifies or “stretches” the bucket
width at query time so that if a user’s query is in a
region that might straddle boundaries, the search
region can be incrementally enlarged. This approach
effectively defers the boundary decision and is
reminiscent of multi-probe LSH in the sense that the
system searches multiple overlapping buckets
around the hash coordinates of the query. Yet DB-
LSH differs from the multi-probe technique by using
a multi-dimensional index structure, that can
expedite window queries over each projected space.
A candidate region is thus a hypercubic window
with edges determined adaptively at query time.
When a new query arrives with a target radius r, the
indexing structure identifies points whose projected
coordinates lie within a “dynamic” bucket, of width
proportional to r, so that more candidate points
(possibly from “neighboring” buckets) are returned
in one or very few passes.

Other than that, DB-LSH retains the framework
of a simpler pipeline: it depends solely on random
compound hash functions, each mapping original
data into K-dimensional spaces. Once the data are
assigned to multi-dimensional indexes in these
projected spaces, the system can decide at query
time how large the search window should be. This
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approach is notably beneficial when queries vary
widely in their search radii or approximation factors,
as the method can adapt to each query’s
approximation factor c. It is demonstrated by authors
that for c>1, they can scale to extremely large data
while guaranteeing a better asymptotic exponent p*.
In certain standard benchmarks (such as SIFT or
GIST) with purely Euclidean data, DB-LSH’s results
in the reference experiments show a stable
advantage over classical E2LSH or LSB-Forest in
that it avoids building many different indexes for
multiple discrete radii. However, if the data are
strongly heterogeneous due different sensors or
textual descriptions that have non-Euclidean
relationships, DB-LSH (in its original design) does
not unify them as effectively as CE-LSH, which
explicitly merges them via BERT and clustering. So
while DB-LSH might be simpler to integrate in
purely numeric tasks such as indexing floating-point
descriptors for conventional image retrieval, it may
not achieve the same level of cross-modal semantic
alignment that is essential in certain specialized
domains, such as advanced diagnostics or anomaly
detection across different data types. One also
observes that CE-LSH places emphasis on a
hierarchical structure (the adaptive encoding tree),
allowing for deeper splits where data are dense. This
hierarchical approach strongly controls how many
candidate points are retrieved, because once a leaf is
reached, only a relatively small number of points
remain for distance checks, thus lowering
verification overhead in high dimensions. DB-LSH
similarly benefits from bounding the region of
search, but since it relies on an index that manages
the entire K-dimensional projection, there can be
scenarios in which if the data exhibit complex local
distributions, it might require multiple window
queries or expansions to find the best candidates. In
that sense, if the data are well-clustered or if some
modality transformation has made the data space
extremely “patchy,” then a specialized approach like
CE-LSH’s local thresholding can be more accurate.
On the other hand, DB-LSH shows a consistent
sub-linear performance with a thoroughly proven p*
that can be smaller than 1/c if ¢ is large, thus
offering strong worst-case theoretical bounds in
purely Euclidean settings. DB-LSH obtains near-
sub-linear scaling, though in certain heavily
multimodal tasks, CE-LSH’s domain-specific design
(especially with BERT-based transformations) might
yield higher recall for the same or slightly smaller
indexing overhead. Turning finally to the question of
which method might be preferable, one should keep
in mind that CE-LSH was constructed with cross-

modal or multimodal intelligence in mind, applying
BERT embedding, dimension reduction, and
distribution-aware encoding to reduce collisions and
false positives. In tasks like diagnostic image
retrieval or textual-visual alignment, its adaptive
tree-based partitioning results in better retrieval
accuracy, sometimes by double-digit percentage
margins, while controlling indexing overhead
through symbolic representation. DB-LSH, in a
narrower sense, excels in classical Euclidean data
retrieval, as it offers robust sub-linear time due to a
smaller exponent p*, plus a single index structure
that can adapt to any query radius rather than
building multiple large (K, L)-indexes. Especially
for purely numeric vectors (for instance, high-
dimensional image descriptors or large text-corpus
embeddings that do not vary widely in dimensional
distribution), DB-LSH can be simpler to implement
and tune, often showing strong empirical speedups.
It is comparatively more direct as a conceptual
framework, but does not incorporate any domain-
based clustering or advanced semantic alignment. If
a researcher’s primary concern is to unify textual,
visual, or other modalities in a single integrated
index and to precisely handle local data
distributions, the CE-LSH approach reveals greater
strength in that realm. If, however, the dataset is
strictly numeric and one desires a minimalist
pipeline with a well-bounded sub-linear query time,
DB-LSH’s dynamic bucketing method can be
straightforward and theoretically appealing. CE-
LSH’s advantage is most pronounced in experiments
where data points exhibit strong cluster structures or
cross-modal embeddings. DB-LSH, on the other
hand, might produce smaller indexing times for
certain purely numeric sets of large scale (hundreds
of millions of vectors), as it builds fewer indexes
(with user-chosen L) and conducts a dynamic
hypercube-based bucketing strategy that can adapt
well to queries that vary in scale. In terms of
memory usage, CE-LSH is not as heavy as classical
static LSH if it can keep the adaptive tree structure
succinct, whereas DB-LSH uses multiple multi-
dimensional indexes but does not replicate entire
data points for each bucket in the same sense that
old (K, L)-index methods did. Therefore, memory
overhead of the two approaches can be comparable,
with DB-LSH sometimes incurring a smaller hidden
cost for purely numeric data sets of uniform
dimension, while CE-LSH shows memory
advantages when it does not need to store repeated
hash tables. Table 3 represents main numerical
insights collected during cross-modal Retrieval
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Table 3. Quantitative results during comparison with DB-LSHapproach

Metric CE-LSH DB-LSH Notes
Indexing Time (sec) 2,400 1,850 CE-LSH invests more time building
clusters & adaptive encoding trees
Memory Overhead 4.2 3.9 Both require multiple index structures;
(GB) CE-LSH’s overhead slightly higher for
cluster info
Recall@10 (%) 91 78 CE-LSH’s cluster-aware tree yields high
recall in mixed-modal embeddings.
Mean Query Time (ms) 30 25 DB-LSH can be marginally faster at
query time (dynamic bucketing, single
structure)
Collision Reduction vs. 20 CE-LSH’s “adaptive splitting”
Baseline LSH (%) significantly lowers collisions for
borderline points

Source: compiled by the authors

experiment Ultimately, the overall choice depends
on the user’s priorities: if advanced semantic
integration is paramount and the dataset is truly
multimodal or cross-modal, CE-LSH can be superior
because it partitions the space adaptively after
advanced embedding. If a user mostly requires a
single pipeline for large-scale numeric retrieval tasks
with a range of approximation factors, DB-LSH’s
theoretical simplicity and dynamic query bucketing
can represent a robust alternative.

CONCLUSIONS AND PROSPECTS OF
FURTHER RESEARCH

The proposed locality-sensitive  hashing
methodology demonstrates several key advantages.
First, the use of a dynamic encoding tree optimizes
data space partitioning by considering the actual data
distribution, ensuring more balanced indexing and
reducing the likelihood of missing important similar
objects. Second, the integration of a cross-modal
approach enables effective processing of different
data types, which is particularly relevant for
diagnostic systems, where information can originate
from multiple sources. Preliminary clustering using
BERT models ensures semantic consistency within
subspaces, enhancing the accuracy of subsequent
hashing. Systematic analysis shows that the selected
approach exhibits high scalability, efficiently
handling both small and large datasets. Additionally,
due to its modular architecture, the system is easily
adaptable to new conditions, making it applicable
for constructing diagnostic models across various
domains, from medical diagnostics to technical
condition monitoring systems.

The experimental research with the usage of
CarDD dataset was structured around three
interdependent tasks, each of which was successfully
completed in accordance with the overarching

objective of improving approximate nearest
neighbor retrieval in  high-dimensional and
multimodal spaces, like in the unified semantic
embedding space that was created in the scope of
this research by applying BERT encoding to both
textual descriptions and visual data, achieving
reliable cross-modal alignment.

Addressing the first task, dimensionality reduction
using UMAP and t-SNE preserved up to 92 % of
local neighborhood structure with reduced spatial
complexity, leading to 25-30 % acceleration in
hashing and ANN search compared to operations in
full-dimensional BERT space.

The second task focused on building an
adaptive encoding tree, which was completed by
dynamically partitioning each reduced coordinate
based on data density. This allowed for symbol-
based code generation that captured fine-grained
structural patterns, ultimately reducing the candidate
search region to just 12-15 % of the dataset, thus
decreasing verification overhead during retrieval.
For the final task, the integration of p-stable LSH
with BERT-based clustering ensured that hash
buckets corresponded to semantically meaningful
regions, enhancing search precision and minimizing
boundary-based fragmentation. This resulted in a
recall@10 rate of 91 %, an improvement of 13 %
over DB-LSH, and a 20 % reduction in hash
collisions compared to classical LSH.

Comparative evaluation against state-of-the-art
methods confirmed that the proposed method
outperformed not only DB-LSH in cross-modal
retrieval accuracy and collision minimization but
also deep learning-based object detectors in
detection precision, with a 58.4 % AP@75 against
54.5 % for DCN and a 40.2 % reduction in search
time.
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LISTS OF ABBREVIATIONS

Abbreviation Definition Ukrainian translation
UDC/YK Universal Decimal Classification VYHiBepcalibHa IeCITKOBA Kiaacudikaris
LSH Locality-Sensitive Hashing JIoKaapbHO-4yTIMBE XEITyBaHHS
ANN Approximate Nearest Neighbor HabmmkeHnit HalOMmKInii Cycin

BERT Bidirectional Encoder Representations JIBocIipsiIMOBaHi KOAyBaJlbH1
from Transformers npeCTaBICHHS 3 TpaHChOpMEPIB
UMAP Uniform Manifold Approximation and VHipikoBaHe anpOKCUMYBAHHS Ta
Projection IPOEKIiss MHOTOBH/IIB
t-SNE t-Distributed Stochastic Neighbor t-posmoaineHe BKIaICHHS CTOXaCTUYHOT
Embedding OIU3BKOCTI
ET Encoding Tree KonyBanbhe nepeBo
CNN Convolutional Neural Network 3ropTrkoBa HelipoHHA Mepexa
CLIP Contrastive Language—Image KoHTpacTuBHE nonepeHe HaBUaHHS Ha
Pretraining OCHOBI MOBH Ta 300pakeHb
CE-LSH Clustering-Enhanced LSH JIokanbHO YyT/IMBE XEIIyBaHHS 32
NOCEPEHUIITBA KIIaCTepU3aIlil
DB-LSH Locality-Sensitive Hashing with JIokanbHO YyT/IMBE XEIIyBaHHS 3
Query-based Dynamic Bucketing QUHAMIYHUM OakeTyBaHHSM Ha OCHOBI
3aInTIB
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AHOTALIA

Ile nocnmimKeHHs IpPEACTaBIAE METOAONOTII0 JIOKAILHO-UYTIMBOTO XEIIyBaHHS, sKa MiABHUINYe e(EeKTUBHICT MOLIYKY
HaOMMKEeHNX HANOMDKINX CYCITiB IIISXOM iHTerpamnii aJalTHBHUX KOAYBaJbHUX JIEPEB 1 KJIacTepH3alii Ha OCHOBI JBOCHPSIMOBaHI
KOIYBaJIbHI TIPEJCTaBICHHS 3 TpaHCc(opMepiB. 3alpoNOHOBAaHMH MiAXiJ ONTHMI3ye pO3IUICHHS IPOCTOPY JMaHMAX Tepen
3aCTOCYBaHHSIM XCILIyBaHHs, IO MOKPAIIYe TOYHICTb MOLIYKY Ta 3MEHIIYe 0OYMCIOBabHI BUTpaTu. Ilo-niepire, MyIbTUMOAAIIbHI
JaHi, Taki sK 300pa)KeHHS Ta TEKCTOBI OIMCH, MEPETBOPIOIOTHCS y CHIIBHUA CEMaHTHUYHHMII IIPOCTIp 3a JIOIOMOIOK0 HONEPEIHbO
HaB4YeHOI MOJENi JBOCHPSIMOBAHI KOIYBaJIbHI INpejcTaBieHHs 3 TpaHchopmepiB. Lle 3abe3nedye Kpoc-MonaibHy y3rOKEHICTH i
Crpusie TOPIBHAHHIO Yy BHCOKOPO3MipHOMY mpocropi. Ilo-mpyre, MeTomy 3MEHIIEHHS pPO3MIpHOCTI, Taki sK YHi(ikoBaHe
aNpPOKCHMYBaHH Ta MPOEKIIiS MHOTOBHIIB 200 {-po3roaisieHe BKIaJeHHs CTOXaCTHYHOI OJIM3BKOCTI, 3aCTOCOBYIOTHCS ISl YCYHEHHSI
e(peKTy “mpoKIATTS po3MipHOCTI” TpH 30epeKeHHI KITIOUOBUX 3B’SI3KIB MK TOYKaMH JTaHUX. [lo-TpeTe, CTBOPIOEThCS aJaNTHBHE
KOZyBaJIbHE JEPEeBO, sIKE NUHAMIYHO CETMEHTYE MPOCTIp JaHMX HA OCHOBI HOro CTATMCTHYHOTO PO3MOJiNLY, 3a0e3nedyroun
edeKTHBHY iepapXiuHy Kiacrepusanito. KoxHa Touka JaHMX KOHBEPTYEThCS y CHMBOJIBHE INPEICTABIICHHS, IO JO3BOJISE
3[IMCHIOBATH IIBHIKMI MONIyK 3a JOMNOMOIOI CTPYKTYpPOBAaHOrO XeIlryBaHHS. Jlo TOro », A0 3aKOJOBAHOTO HAaOOpy IaHHX
3aCTOCOBYETHCS JIOKIBHO-UYTJIMBE XCIIyBaHHS, II0 BUKOPHCTOBYE P-CTAOUIBHI PO3MOAUIM JUIS MiATPUMKH BHCOKOI TOYHOCTI
TOIIYKY Ta 3MEHIIEHHs po3Mipy iHaekciB. [ToenHaHHSA KOAYBaJIbHUX JNEPEB 1 JIOKAIbHO-YYTJIMBE XEIIYBaHHS CIPUSE €EKTHBHOMY
BifOOpY KaHAWJATIB NP MiHiMi3alii BUTpaT Ha momyK. ExcriepuMeHTansHe TecTyBaHHS Ha Habopi manux CarDD, sikuii MicTUTh
300pakeHHs MOIIKO/PKEHb aBTOMOOITIB Ta iX aHOTallii, IEMOHCTPYE, IO 3alPONOHOBAHUH METOJ MEepeBEeplIye Cy4acHi TEXHIiKU
HaONMKeHN HaWOMMKYMA Cycil SK 3a eeKTHBHICTIO iHAEKcallii, TaK i 3a TOYHICTIO MOIIYKYy. Pe3ynbTaTu MiKpeciIrorTs HOro
aIaNTHBHICTh 10 MACIITaOHMX, BHCOKOPO3MIDHMX Ta MYJIBTUMOJAIBHMX HAOOpIB JaHUX, 1O pPOOUTH HOro NPHIATHUM s
JIarHOCTHYHHUX MOoJiesIell 1 3aBlaHb y PEKHMI PEealbHOro 4acy.

KoarouoBi cioBa: anantuBHEe KOIyBalbHE JEpeBO; KJIACTEpU3aLlisl JBOCIPSAMOBAaHI KOIYBajbHI IPEICTABICHHS 3
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