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ABSTRACT 
 

This research presents a locality-sensitive hashing framework that enhances approximate nearest neighbor search efficiency by 
integrating adaptive encoding trees and BERT-based clusterization. The proposed method optimizes data space partitioning before 
applying hashing, improving retrieval accuracy while reducing computational complexity. First, multimodal data, such as images and 
textual descriptions, are transformed into a unified semantic space using pre-trained bidirectional encoder representations from 
transformers embeddings. this ensures cross-modal consistency and facilitates high-dimensional similarity comparisons. Second, 
dimensionality reduction techniques like Uniform Manifold Approximation and Projection or t-distributed stochastic neighbor 
embedding are applied to mitigate the curse of dimensionality while preserving key relationships between data points. Third, an 
adaptive encoding tree locality-sensitive hashing encoding tree is constructed, dynamically segmenting the data space based on 

statistical distribution, thereby enabling efficient hierarchical clustering. Each data point is converted into a symbolic representation, 
allowing fast retrieval using structured hashing. Fourth, locality-sensitive hashing is applied to the encoded dataset, leveraging p-
stable distributions to maintain high search precision while reducing index size. The combination of encoding trees and Locality-
Sensitive Hashing enables efficient candidate selection while minimizing search overhead. Experimental evaluations on the CarDD 
dataset, which includes car damage images and annotations, demonstrate that the proposed method outperforms state-of-the-art 
approximate nearest neighbor techniques in both indexing efficiency and retrieval accuracy. The results highlight its adaptability to 
large-scale, high-dimensional, and multimodal datasets, making it suitable for diagnostic models and real-time retrieval tasks. 

Keywords: Adaptive encoding tree; bidirectional encoder representations from transformers cauterization; dimensionality 

reduction; approximate nearest neighbor; multimodal data; root node 
 

For citation: Subbotin S. А., Shmalko F. А. “Partitioning the data space before applying hashing using clustering algorithms”. Herald of 

Advanced Information Technology. 2025; Vol.8 No.1: 28–      . DOI: https://doi.org/10.15276/hait.08.2025.2 

 

INTRODUCTION 

Locality-sensitive hashing effectively means a 

method that is based on probabilistic dimensionality 

reduction of data, thus reducing a number of features 
(columns) in a dataset, preventing a problem called 

“curse of dimensionality” that hinders the model’s 

ability to learn.  
Several limitations complicate the direct 

application of classical methods to real-world, often 

high-dimensional, data. In particular, the well-

known “curse of dimensionality” leads to efficiency 
loss: when the space has an excessively large 

number of dimensions, the probability of collision of 

“close” points (in terms of the original space metric) 
in shared hash buckets behaves differently than 

predicted by theoretical estimates for moderate 

dimensions. This can increase both search error and 
computational costs, as achieving adequate 

performance often requires generating too many 
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projections or complex indexing structures. 
Furthermore, some traditional approaches, such as 

“boundary-ordered” hashing, scale poorly when the 

volume of data grows exponentially. Additionally, 
classical locality-sensitive hashing(LSH) functions 

generally do not account for the distribution of data, 

leading to high indexing costs and insufficient 
search accuracy. 

Another important aspect is the necessity of 

processing cross-modal data. In many practical 

tasks, such as anomaly detection or diagnostic model 
construction, it is necessary to integrate information 

from different sources, including images, texts, and 

tabular data. This requires a unified approach, where 
binary hash codes must preserve high-level 

semantics regardless of the input modality. Such 

approaches are referred to as cross-modal or 
multimodal. Therefore, a critical capability is the 

dynamic updating of existing hash functions and 

codes when new data types or categories are 

introduced into the system. Conventional methods of 
retraining hash functions “from scratch” on an 
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expanded dataset are computationally expensive and 

lead to catastrophic forgetting. Thus, the primary 

direction of this research is the development of a 

comprehensive strategy in which original codes 
remain intact while new codes are incrementally 

constructed, incorporating data clustering that 

accounts for local density.  
This research is especially relevant in the 

context of rapidly growing multimodal data 

environments, where traditional similarity search 
methods struggle with high dimensionality, 

scalability, and modality alignment. The proposed 

hybrid methodology of encoding trees combined 

with LSH directly addresses these issues, making it 
applicable to domains such as automated 

diagnostics, multimedia retrieval, and real-time 

anomaly detection. However, the approach has 
certain limitations: it requires pre-trained semantic 

encoders like BERT, assumes relative consistency in 

data distribution for effective clustering, and may 

face reduced effectiveness in extremely sparse or 
adversarial data scenarios. Despite these constraints, 

the method’s adaptability, modularity, and improved 

search performance make it a promising tool for 
scalable cross-modal systems. 

1. ANALYSIS OF LITERARY DATA 

Locality-sensitive hashing (LSH) has been 
widely explored as a fundamental technique for 

approximate nearest neighbor (ANN) search in high-

dimensional spaces. Numerous studies have 

investigated its theoretical foundations, 
optimizations, and applications. However, 

challenges related to efficiency, scalability, 

robustness, and applicability to multimodal data 
remain open problems. This section reviews key 

contributions from recent research and outlines their 

limitations, which motivate the need for a different 
approach. 

Jafari et al [1] provide a comprehensive survey 

of LSH techniques, classifying them based on their 

hash function families and application domains. 
They discuss traditional LSH variants such as 

Hamming-based, Minkowski-based, Angular-based, 

and Jaccard-based hashing, along with advanced 
techniques like Multi-Probe LSH and Query 

Adaptive LSH, which address issues like large index 

sizes and false positives. The survey also covers 

distributed LSH implementations, including 
MapReduce-based frameworks and Apache Spark 

solutions, which enhance scalability in large-scale 

data processing. 
Although extensive categorization of LSH 

applications across various domains, including 

multimedia retrieval, cybersecurity, and biological 

data analysis can be considered remarkable insights 

in relation to LSH, critical comparative evaluation of 

different LSH approaches on real-world benchmarks 
still remain unavailable. Furthermore, while LSH’s 

advantages over exact nearest neighbor searches are 

considered, extensive discussion of emerging deep-
learning-based alternatives or hybrid approaches that 

integrate neural embeddings with LSH need to be 

clarified. This gap suggests the need for further 
research into hybrid LSH models that optimize 

performance while maintaining theoretical 

guarantees. 

A more targeted contribution to improving LSH 
efficiency is presented by McCauley et al in [2], 

which introduces function inversion techniques to 

optimize space utilization in ANN data structures. 
The authors propose a general black-box framework 

that reduces storage overhead in LSH without 

significantly increasing query times. Their approach 

replaces traditional reverse lookup tables with 
function inversion mechanisms, thereby maintaining 

retrieval effectiveness while reducing memory 

usage [3]. 
This method successfully enhances space 

efficiency in ANN indexing, particularly in 

scenarios where high-dimensional datasets require 
extensive storage. However, the benefits of function 

inversion are highly parameter-dependent, and its 

impact varies across different LSH families. 

Additionally, while space complexity is reduced, 
query time savings are modest, particularly for lower 

approximation factors. The approach also assumes 

that function inversion operations can be efficiently 
computed, which may not always hold for large-

scale, real-world applications. These limitations 

highlight the need for adaptive LSH models that 
dynamically balance space, time, and accuracy 

trade-offs based on the dataset characteristics. 

The integration of locality-sensitive filtering 

(LSF) with LSH in Falconn++, introduced by Pham 
et al in [4] represents another significant 

advancement. This approach improves upon 

traditional LSH-based ANN search by selectively 
filtering out distant points from hash buckets before 

querying, reducing false positives and unnecessary 

computations. Theoretical improvements in 

Falconn++ lower the exponent ρ governing the 
space-query efficiency tradeoff, leading to more 

optimized performance in high-recall settings. 

Experimental evaluations on real-world datasets 
demonstrate that Falconn++ outperforms standard 

LSH techniques while competing with state-of-the-

art graph-based ANN methods such as Hierarchical 
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Navigable Small World (HNSW). However, the 

method’s effectiveness is highly dependent on 

threshold selection for filtering, and its 

generalizability to distance metrics beyond angular 
similarity remains uncertain. Additionally, while it 

improves recall-speed tradeoffs, it does not 

fundamentally alter the structural limitations of LSH 
when dealing with multimodal data. These factors 

suggest the need for LSH frameworks that 

incorporate data distribution-aware filtering 
mechanisms applicable across multiple similarity 

measures. 

Kapralov et al. [5] investigate LSH’s robustness 

against adversarial attacks, revealing a key 
vulnerability in traditional hashing schemes. Their 

study demonstrates that an adversary can 

systematically construct queries that force LSH to 
return incorrect results, highlighting a critical 

weakness in security-sensitive applications. The 

theoretical findings are supported by empirical 

evidence, showing that adversarial attacks can 
significantly degrade LSH’s effectiveness, 

particularly in sparser datasets. 

While this work provides valuable insights into 
LSH’s susceptibility to adversarial manipulation, its 

reliance on isolated points in the dataset limits its 

applicability to real-world scenarios. Furthermore, 
while potential defenses such as differential privacy 

and randomized hashing are mentioned, they are not 

explored in detail. Given the growing importance of 

secure and privacy-preserving similarity search, 
there is a pressing need for LSH-based models that 

incorporate adversarial resilience while maintaining 

efficiency. 
DeepLSH [6] developed by Remil et al, 

introduces a deep-learning-based approach that 

learns hash functions capable of approximating 
custom similarity measures for crash report 

deduplication. Using a Siamese neural network, 

DeepLSH generates locality-sensitive hash codes 

that maintain theoretical guarantees while adapting 
to various similarity metrics, such as Jaccard and 

Cosine similarity. The method demonstrates high 

recall and efficiency in large-scale crash report 
retrieval, surpassing traditional LSH and deep 

hashing baselines. 

Despite its advantages, DeepLSH relies on a 

supervised learning paradigm, requiring extensive 
labeled training data. This constraint makes it 

challenging to deploy in scenarios where annotated 

datasets are scarce. Additionally, while it generalizes 
across similarity measures, its performance is 

sensitive to hyperparameter tuning and data 

distribution. Another concern is the potential impact 

of adversarial inputs, which is not explicitly 

addressed in the study. These challenges suggest the 

need for hybrid models that integrate the adaptability 

of deep learning with the efficiency and robustness 
of traditional LSH. 

2. THE PURPOSE AND OBJECTIVES OF THE 

RESEARCH 

The purpose of this research is to develop an 

effective methodology for approximate nearest 

neighbor search in diagnostic models by integrating 
encoding trees with locality-sensitive hashing 

(LSH). The proposed approach ensures the 

preservation of semantic relationships between data 

samples of different modalities while optimizing 
computational efficiency [7]. 

The objectives of the research include: 

1) to encode multimodal diagnostic data into a 
unified vector space using a pre-trained neural 

model [8], followed by dimensionality reduction 

techniques ( UMAP and t-SNE) to mitigate the curse 

of dimensionality while retaining key features; 
2) to construct an adaptive encoding tree (ET) 

using symbolic representations based on local data 

density, thereby enabling dynamic space partitioning 
for efficient hierarchical clustering and candidate 

filtering; 

3) to integrate BERT-based clustering with 
LSH, using p-stable distributions for improved 

precision, and to evaluate the proposed hybrid 

method’s diagnostic accuracy through comparative 

analysis with traditional and deep learning-based 
retrieval techniques. 

3. RESEARCH METHODS 

The proposed method is based on the usage of 
previously trained neural network model for coding 

input data of different modalities in a general vector 

space. Each sample, which is presented in a textual 
or visual information form gets transformed into a 

multidimensional vector format with a subsequent 

reduction of its dimensionality for the purpose of 

eliminating “curse of dimensionality” [9]. Vector 
presentation is performed into a lower space, which 

allows saving of main semantic connections with 

objects and increasing calculations efficiency. 
Next procedure corresponds with building of an 

adaptive encoding tree (ET), that dynamically 

defines threshold values for each coordinate [10]. 

Based on this, the symbolic representation of each 

sample is performed, that is then used in tree-like 

structure building. The uniqueness of the proposed 

method lies in the combinatory usage of LSH and 

ET, coupled with BERT clustering of the data, 
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which in total results in a robust and efficient nearest 

neighbors search in multidimensional space. 

The experimental evaluation of the proposed 

method was backed by the multimodal dataset 

usage, which included textual descriptions and 

images. Training of the parameters was 

accompanied by the cost function, which reduced 

the likelihood of semantically similar objects 

diverging from each other. For the purposes of 

semantic space coherence, the weights regulation 

process was engineered, which increases the quality 

of different modality object correspondences.  

The algorithm was tested on a subset of 

samples, which underwent a mechanism of 

correspondence correctness check. Results analysis 

included the comparison of search efficiency with 

the usage of different parameters of encoding 

structure, such as the amount of levels in the tree, 

space dimensionalities after projection and locality-

sensitive hash-functions characteristics. The usage 

of combinatory method created a possibility of 

optimizing the nearest neighbors’ identification 

process in a cross-modal environment, retaining high 

accuracy considering lowered computation costs. 

4. RESEARCH RESULTS 

The proposed method of locality-sensitive 

hashing with an adaptive encoding tree in cross-

modal tasks implies the step sequence, the aim of 

which is the keeping of semantic proximity between 

samples of different types (text or image 

information) and the approximate nearest neighbor 

(ANN) search realization in a big data space with a 

potentially high dimensionality. At first, the 

encoding of all samples is performed with the usage 

of previously trained BERT model. It is implied, that 

{𝑥𝑖}𝑖=1
𝑁  is a set of input samples that have different 

modalities [11].  

For each 𝑥𝑖 the vector representation gets 

calculated: 

𝑒𝑖 = 𝐵𝐸𝑅𝑇𝜃(𝑥𝑖). 

where 𝜃 represents BERT model parameters, which 

give an opportunity to calculate contextual and 

semantic properties of each sample. Due to the fact 

that 𝑒𝑖 ∈ 𝑅𝑑  often has quite high dimensionality 𝑑, 

there is a need to use dimensionality reduction 

methods, like t-SNE [12] or UMAP [13], which is 

motivated by “dimensionality curse” influence 

reduction and at the same time by the need to save 

main semantic connections between samples. 

Formally, the non-linear representation 𝑓 gets 

chosen, whose function is to transfer 𝑒𝑖 in a lower 

dimensionality space 𝑅𝑘 , where 𝑘 ≪ 𝑑.  

This results in: 

𝑒𝑖′ = 𝑓(𝑒𝑖) with𝑒𝑖′ ∈ 𝑅𝑘. 

This gets followed by adaptive clusterization 

considering local data density. Instead of uniform 
distribution of hashes of the whole space, the 

preliminary definition of local regions (clusters and 

subspaces) is implied, where data are distributed 

relatively uniformly [14]. If 𝑋 = {𝑒′1, 𝑒′2, … , 𝑒′𝑁}, 

which is a set of points, gets assigned to 𝑅𝑘  space 

after dimensionality reduction, then algorithms, that 

are similar to dynamic threshold selection, get used 

in relation to each coordinate. The idea lies within 
the necessity of obtaining the breakpoints for each of 

𝑘 spaces for the purpose of approximately identical 

amount of points getting to each interval. If {𝐶𝑖𝑗} 

denotes the values of 𝑗 coordinate, that are arranged 

in ascending order for the specific data subset (or the 

whole set 𝑋), then the 𝑀 of intervals 𝛥1, 𝛥2, … , 𝛥𝑀, 

where 𝛥𝑚 = [𝑏𝑚 , 𝑏𝑚+1), and 𝑏1 = −∞ 𝑏𝑀+1, can 

be defined, considering that each 𝛥𝑚 interval 

occupies approximately 𝑁/𝑀 points. Quintile search 

operation for these thresholds formation can be 
realized with an algorithm QuickSelect, which 

operates per the average time 𝑂(𝑁), and in a general 

worse scenario – 𝑂(𝑁2), but in practice cases, the 

linear dependency on 𝑁 is often observed [15]. 

Subsequently, the threshold selection for the 𝑚 

interval is denoted like this: 

𝑏𝑚 = 𝐶𝑗(⌊
(𝑚 − 1) 𝑁

𝑀
⌋) ,  

where 𝐶𝑗 (𝑡) corresponds with: 

𝑐𝑖𝑗 = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑒′𝑖𝑗 ;  {𝑏1, 𝑏2, … , 𝑏𝑀+1}) , 

where 𝑒𝑛𝑐𝑜𝑑𝑒 returns the symbol (for instance, 

binary number or an integer from 0 to 𝑀 − 1) 

depending on which thresholds 𝑒′𝑖𝑗 lies within. By 

doing that, each vector 𝑒′𝑖𝑗 is transformed in 

symbolic representation𝐶𝑖 = (𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑘), where 

ach component 𝑐𝑖𝑗 corresponds with the symbol, that 

is connected with value range in 𝑗 space [16].  

Based on these symbols the adaptive encoding 

tree is constructed, which has the root node that 

occupies the whole data, and then secondary nodes 

get recursively created, that correspond with the set 

of points distribution based on a certain criterion. In 

contrast with the traditional indexation trees (like R-

tree, k-d-tree), the encoding tree does not divide the 

space in a uniform manner, but rather uses symbolic 

clusterings depending on the data distribution in 
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each space. As result, each internal node has two or 

more branches regardless of how the symbol 

distribution is organized in it. For example, if each 

space is encoded as 0/1 on the tree’s first level that 

means with the binary division then the root node 

has 2𝑘 secondary nodes that correspond to every 

possible bit combination from 𝑘 coordinates. This 

basic level can be detailized provided the necessity 

when the number of points in a certain node is 

higher than the established maximum, then the 

clusterization proceeds. When the tree is built, each 

leaf contains relatively low number of points, while 

keeping the correspondence between vectors 𝑒′𝑖𝑗 and 

their symbolic encodings 𝐶𝑖.  

In a practical realization, symbolic 

representation can be saved in a form of “iSAX”-

like codes (indexable Symbolic Aggregate 

approximation), when an alphabet of 2𝑟  symbols 

(intervals) emerges in every space, and then the bit 

representation of each coordinated forms [17]. After 

the determined ET for each of 𝐿 independent 

projections (or for different dimensionality samples) 

is built, the ANN search can be organized by using 

both the tree-like structure and mapping locality-

sensitive hashes. The idea will imply, that each tree 

𝑇(𝑙), 𝑙 = 1, … , 𝐿, is able to selectively initiate the 

search in the nodes, that correspond to the most 

similar symbols for the query 𝑞′. Assuming that 

𝐸𝑇𝑞𝑢𝑒𝑟𝑦(𝑞′, 𝑇(𝑙)) denotes the procedure that 

returns a little subset of candidates (e. g. each leaf 

nodes, that coincide with the encoding 𝑞′ by the 

bigger part of bits) [18]. Then the candidates from 

all the trees unify and the final filter based on the 

real distance is performed for the purpose of nearest 

neighbor search. The algorithm LSH is usually 

defined through (𝑟, 𝑐 ⋅ 𝑟, 𝑝1, 𝑝2), which corresponds 

to the locality-sensitive function family. If ∣∣ 𝑥 − 𝑦 ∣∣
≤ 𝑟 gets stated, then the collision probability ℎ(𝑥) =
ℎ(𝑦)) has to be not less than𝑝1, and under the 

condition of ∣∣ 𝑥 − 𝑦 ∣∣≥ 𝑐 𝑟 this probability has to 

be not more than 𝑝2 [19].One of the most common 

ways to build such LSH-functions for the Euclidian 

space is using 𝑝-stable distribution (if 𝑝 = 2, the 

distribution is considered normal).  

If the random vector 𝑎 ∼ 𝑁(0, 𝐼𝑑) and scalar 

are generated, which is then followed by the hash-

function definition: 

ℎ(𝑥) = ⌊
𝑎 ⋅ 𝑥 + 𝑏

𝑤
⌋ , 

then such function satisfies the mentioned properties 

of LSH with a certain probability guarantee.  

The quality of 𝑘-NN search optimization is 

achieved through taking 𝐾 of such function and 

merging it in a vector, which means: 

𝐻(𝑥) = (ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐾(𝑥)), 

additionally, the probability of proximate points 

being skipped is reduced by using 𝐿 independent 
sets of such functions: 

𝐿(𝜃𝑣 , 𝜃𝑡) = ∑(𝑆𝑖𝑗   ∥ 𝑓𝑣(𝑣𝑖) − 𝑓𝑡(𝑡𝑗)
𝑖,𝑗

∥ 2 + 𝑅(𝜃𝑣 , 𝜃𝑡)) , 

where 𝑆𝑖𝑗  is a general indicator of semantic 

similarity (for instance, it equals 1, if the text 

describes similar objects, and 0 otherwise) and 

𝑅(𝜃𝑣 , 𝜃𝑡) corresponds to the regularization term. 

However in the scope of the described approach, the 

cross-modal component is realized somewhat 

differently: each sample 𝑥𝑖, that already contains a 

certain data type, is encoded in a vector BERT 𝑒𝑖, 

and then the corresponding vector image is saved in 

an encoding tree and LSH-tables. If there are two 

samples 𝑥𝑖 and 𝑥𝑗  that are of different types, then 

BERT transformation causes their transition to 𝑒𝑖 

and 𝑒𝑗. If they are semantically similar to each other, 

then the difference ∣∣ 𝑒𝑖 − 𝑒𝑗 ∣∣ will be relatively 

small, therefore, there will be a small amount of 

divergences in a symbolic representation 

𝑒𝑛𝑐𝑜𝑑𝑒(𝑒𝑖′) and 𝑒𝑛𝑐𝑜𝑑𝑒(𝑒𝑗′). 

Next step revolves around the idea of keeping 

the encoding stable and considering the local 

densities. For each dimension 𝑗, the algorithm 

defines {𝑏1
(𝑗)

, 𝑏2
(𝑗)

, … , 𝑏𝑀𝑗+1
(𝑗)

} for the purpose of the 

number of points in each interval being relatively 

equal. After this definition, the encoding of each 𝑒𝑖𝑗′ 

is going to provide a symbol with {0,1, … , 𝑀𝑗 − 1}. 

It is assumed, that the binary scheme is used for the 

simplicity, which means that 𝑀𝑗 − 2 is true for every 

𝑗, then the symbol 𝑐𝑖𝑗 ∈ {0,1} and the whole point 

are being encoded by the 𝑘-bit string. As mentioned, 
this corresponds with the simplest alternative, 

though it can be generalized into greater alphabets. 

The encoding tree then has 2𝑘 leaf nodes on the first 

level, each of which corresponds to the unique 

combination ((𝑐𝑖1, … , 𝑐𝑖𝑘). If some leaf contains the 

excessive amount of points, the further clusterization 

continues (e. g. for each of the coordinates the 

operation {0,1} → {00,01,10,11} is performed, and 
so on) [20]. As a result of this, the tree submerges in 

those regions, where there are a lot of points, and on 

the contrary, regions of low density usually get 
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occupied with the more little portions of it, which in 

total has a positive impact on the search efficiency. 

Approximate nearest neighbor query 

realization, which is described using an example of a 

new query 𝑞, which corresponds to 𝑞′ ∈ 𝑅𝑘𝑞′, after 

BERT transformations and dimensionality reduction, 

is done in the following manner. First of all, it gets 

encoded 𝑒𝑛𝑐𝑜𝑑𝑒(𝑞′) → 𝐶𝑞 . Then all the nodes, that 

partially coincide with 𝐶𝑞  (for example, if one or 

two divergences are allowed in a binary code, or the 

node is being searched for, that corresponds to the 

exact sane code 𝐶𝑞) are selected on the root node. 

Consequently, if a node that was found has a low 

quantity of points, the distances between 𝑞′ and 

those points are instantly getting calculated. If there 

are too many of them, the tree allows for a deeper 
submergence. That is how the rough candidate 

selection that works under the principle of LCH 

identification, is performed. When the subset of 

candidates 𝑆 ⊂ 𝑋 is obtained, the fine calculation of 

distances ∥ 𝑞′ − 𝑒′𝑖 ∥ or cosine similarity is done, in 

order to sort the candidates and find the nearest ones 

[21]. If ∣ 𝑆 ∣ is limited from the above (because the 
average node size is limited), then such a search is 

performed considerably faster in comparison to 

calculation of distances for all 𝑁 points. The high 

quality hash construction requires code coincidence 
metric definition.  

If binary encoding is utilized the difference 

between 𝐶𝑖 and 𝐶𝑗  can be measured as a Hamming 

distance [22] 

𝑑𝑖𝑠𝐻(𝐶𝑖 , 𝐶𝑗) = ∑ 1{𝑐𝑖𝑟≠𝑐𝑗𝑟}

𝑘

𝑟=1

, 

where 1{⋅} denotes the indicator that equals 1 when 

bit values are different. Provided the alphabet with 

𝑀𝑗  for 𝑗 coordinate is created, the symbol can be 

turned into a binary code with a fixed length 

𝑙𝑜𝑔2(𝑀𝑗𝑗) and further use the Hamming distance. In 

general cases, the code continuity function can be 

implemented, where the distance between two 

symbols 𝑒𝑛𝑐𝑜𝑑𝑒(𝑞′𝑖𝑗) and 𝑒𝑛𝑐𝑜𝑑𝑒(𝑞′′𝑖𝑗) depends 

on the difference of their indices ∣ 𝑚1 − 𝑚2 ∣. It is 

also important to consider that in cross-modal 
systems, each sample can be composed: for instance, 

if 𝑥𝑖 = (𝑣𝑖 , 𝑡𝑖), then BERT creates a representation 

in a unified dimension for each input data types, and 

then the combinatory hashing with LSH and ET is 
not going to require separate structures for each 

modality, as they operate in the exact same 

dimension anyway, whether it is 𝑅𝑑  or 𝑅𝑘 . If 

however, it is necessary for different modalities to 
be managed, multiple ET’s can be created: one for 

images, and the other for the text, whose outputs are 

going to be combined subsequently. 

The construction of the ET is formulated 

according to this fashion. It is assumed that 𝑋 =
{𝑥′1, 𝑥′2 , … , 𝑥′𝑁} ⊂ 𝑅𝑘. At first, the “first layer” of 

clusterization is built, which means that for each 𝑗 ∈

{1, … , 𝑘} the {𝑏𝑚
(𝑗)

}𝑚=1

𝑀𝑗+1
 gets defined. In simplest 

case 𝑀𝑗 = 2 for all 𝑗, which corresponds to the 

binary division, so 2𝑘 cells are obtained (considering 

that each cell is defined by the set of features 

{𝑐𝑖𝑗}𝑗=1
𝑘 , where 𝑐𝑖𝑗 ∈ {0,1}). For the root node the 

representation 𝑋 → {0,1} is formed, which is 

denoted as 𝐸𝑛𝑐(⋅).  

Then 2𝑘 leafs are obtained (on this first level), 
where each leaf ℓ contains the subset: 

𝑋𝑙 = {𝑥′𝑖 ∈ 𝑋 ∣  𝐸𝑛𝑐(𝑥′𝑖) = 𝑙} . 

If ∣ 𝑋𝑙 ∣ is of a higher value than a certain 

threshold _𝑠𝑖𝑧𝑒, then this list is considered to be the 
root node which in turn causes the repeated 

clustering to take place in one of the dimensions (or 

all of them) for those points, that have gotten there.  

The selection of dimension 𝑗∗ happens 

according to this condition: 𝑗∗ must minimize the 

sum of distances in a node during the clusterization: 

𝐽(𝑗, 𝜏) = ∑ ∥ 𝑥′𝑖 − 𝜇𝑙𝑒𝑓𝑡(𝑗, 𝜏) ∥2

𝑥′𝑖∈𝑋𝑙:𝑐𝑖𝑗<𝜏

+ ∑

𝑥′𝑖∈𝑋𝑙:𝑐𝑖𝑗≥𝜏

∥ 𝑥′𝑖 − 𝜇𝑟𝑖𝑔ℎ𝑡(𝑗, 𝜏) ∥2 , 

where 𝜇𝑙𝑒𝑓𝑡(𝑗, 𝜏), 𝜇𝑟𝑖𝑔ℎ𝑡(𝑗, 𝜏) are centroids of the 

points that went to the left/right during the 

clusterization by the threshold 𝜏 in a code dimension 

𝑗. In practice, instead of 𝜏 in the binary encoding, 

there are only 0 or 1 that remain, due to this being an 

already predetermined division. If the symbol in the 

dimension 𝑗 can rest in a range [0, 𝑀𝑗 − 1], then the 

way of dividing this range in two parts is selected. 

This recursive clusterization happens to the point 

where ∣ 𝑋𝑙 ∣≤ _𝑠𝑖𝑧𝑒. As a result the hierarchical 

structure is formed where the point composition of 

each leaf is limited which provides a fast access 
during the search. Considering the search algorithm, 

the entry query 𝑞′ ∈ 𝑅𝑘  is encoded 𝐸𝑛𝑐(𝑞′) 

according to the exact same principle [23]. 

Following, the search of one or multiple leafs, that 
coincide with this encoding the most, is performed. 

If 𝑞′ has in the dimension 𝑗 symbol 𝛼𝑗 , then the tree 

instantly comes over to the subnode that corresponds 
to it on the first level. On the other hand, in case of 

encoding tree, if the code 𝜃𝑗 has multiple bits, the 

corresponding way from the root has to be 

determined. In total, leaf are obtained, whose 

distance in the dimension to code 𝐸𝑛𝑐(𝑞′) is not big. 
From all the points in these leafs, the Euclidian 
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space to 𝑞′  be checked in an output reduced 

dimension [24]. Supposing the model 𝜒2 or one of 

the normal distribution is consistent, the probability 

of condition∥ 𝑥′𝑖 − 𝑞′ ∥≤ 𝑟 being satisfied can be 

assessed. If one has to consider, that when 𝑎 has a 

normal distribution, then (𝑎 ⋅ 𝑥)/∣∣ 𝑥 ∣∣ corresponds 

to the normal random value with a zero average and 

variance being 1, and it has to do with the 𝑝-stability 

of the distributions for 𝑝 = 2 [25]. Consequently, for 

∥ 𝑥 − 𝑦 ∥≤ 𝑟 the ⁡𝑃𝑟 𝑃𝑟[ℎ(𝑥) = ℎ(𝑦)] ≥ 𝑝1is 

true, and for ∥ 𝑥 − 𝑦 ∥≥ 𝑐𝑟 – the 𝑃𝑟 𝑃𝑟[ℎ(𝑥) =
ℎ(𝑦)] ≤ 𝑝2. Unifying 𝐿 trees and tables contributes 
to nearest neighbors finding probability growing. 

Considering that, ET lets realize this approach in a 

more effective manner, as at first the adaptive space 
clusterization takes place, with the hashing 

subsequently covering these local regions. The 

mathematical likelihood of skipping the nearest 

neighbor is getting reduced in an exponential fashion 

with the 𝐿 growing.  

The evaluation of clusterization properties in 

tree construction can be done by tracking the intra-

cluster 𝐷𝑖𝑛𝑡𝑟𝑎  and inter-cluster 𝐷𝑖𝑛𝑡𝑒𝑟 .distances: 

𝐷𝑖𝑛𝑡𝑟𝑎 =
1

∣ 𝐶 ∣
∑

𝑥𝑖,𝑥𝑗∈𝐶

∥ 𝑒𝑖 − 𝑒𝑗 ∥2, 𝐷𝑖𝑛𝑡𝑒𝑟

=
1

∣ 𝐶1 ∣⋅∣ 𝐶2 ∣
∑

𝑥𝑖∈𝐶1,𝑥𝑗∈𝐶2

∥ 𝑒𝑖 − 𝑒𝑗 ∥2. 

The objective is based on the need of having 

low 𝐷𝑖𝑛𝑡𝑟𝑎  and high 𝐷𝑖𝑛𝑡𝑒𝑟 . In the context of 

diagnostic models construction, multidimensional 
data play a crucial role in cases of combining textual 

descriptions, signals, images etc. Thanks to the 

BERT-encoding, all of those get to the shared space 

𝑅𝑑  with the subsequent reduction to 𝑅𝑘  and hashing. 
This sequence lets conduct ANN search while giving 

an opportunity to find similar samples quickly. 

Detailed management of the process can be achieved 
with utilizing regularizators and sparseness concepts 

with the purpose of lowering the risk of overfitting 

while using augmentation methods in case of data 

deficiency. If sparse regions of a space have to be 
considered, dynamic threshold adjustment scheme 

{𝑏𝑚
(𝑗)

}, can be implemented, which introduces a 

benefit of “stretching” the intervals in such places, 
where the density is low and the other way around 

with the aim of avoiding “too rough” coding. From 

the complexity perspective, the encoding trees 

construction and thresholds ejection for every 𝑘 

dimension has an order 𝑂(𝑁(𝑑 +𝑙𝑜𝑔 𝑙𝑜𝑔𝑀)), 

because 𝑑 correspond to the basic calculation 

complexity of BERT-embeddings and of 

dimensionality reduction, while 𝑙𝑜𝑔 𝑙𝑜𝑔𝑀 has to do 
either with the repetitive quintile searches or with 

the recursive clusterization. Space costs for keeping 

get reduces as well, as instead of full vectors 𝑅𝑑 , or 

even 𝑅𝑘 , only symbolic representation 𝐶𝑖 gets 
retained, which can be considerably shorter. During 

the process of ANN search, the overall complexity 

decreases which is cause by the fact, that distance 

check in the original space is performed only for 
candidate from relevant leafs of the tree, the amount 

of which is a lot lower than that of 𝑁. The two-step 

can also be considered in this situation: the search in 
an encoding tree for the faster screening by codes; 

the accurate comparison of the selected candidates 

by Euclidean or cosine distance. Cross-modal nature 

of the approach, as was stated earlier, lies within the 
concept of BERT being capable of transforming 

both text and images in a shared vector space, while 

the LCH and ET are there to perform operations on 
those vectors. This combination facilitates an 

integration of different type’s objects in a unified 

index. The enhancement of the approach can be 
implemented through and integration of penalties for 

violating the semantic proximity during the training 

of the system, which means, that if according to the 

softmax in BERT distribution 𝑝(𝑧) the high 
probability persists, that word or visual fragments 

belong to the exact same subject, then their 

embeddings must have similar binary codes. 

𝐿 = ∑

𝑖,𝑗

(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐵𝐸𝑅𝑇𝜓(𝑤𝑖)) − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐵𝐸𝑅𝑇𝜓(𝑤𝑖)))2

+ 𝜆 ∥ 𝜃 ∥2, 

where 𝜆 is the regularization coefficient. If there is a 
task to construct a diagnostic model, then cross-

modal data can be encoded in a shared space. If NN 

were found with this cross-modal encoding, then 
there is a higher change of easier distinguishment of 

similar cases. Hence, the integration of LSH and ET 

sequentially does the encoding of data in a 

semantically enriched space; reduces the 
dimensionality; adaptively clusterizes the space by 

statistical properties; creates a symbolic code for 

each vector using iSAX-like approach; form 
adaptive tree, where each node is responsible for a 

certain combination of symbols; searches for 

candidates in relevant leaf nodes. This methodology 
contributes to creating a compact data 

representation, while retaining a high level of 

semantic relevance and giving an opportunity to 

perform cross-modal search effectively. Considering 
that the training criterion function of the whole 

architecture can be formally represented, a number 
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of components can be foreseen: penalties for the 

semantics divergence (KL-divergence) between 

BERT-vectors of related samples; and for interval 

uniformity violation; and regularizators.  

If 𝐵 are binary codes and 𝐹 – continuous 

vectors in 𝑅𝑘 , then: 

𝐿(𝜃) = ∑

𝑖,𝑗

(∥ 𝐹𝑖 − 𝐹𝑗 ∥2− 𝛼 𝑆𝑖𝑗)2⏟
𝑒𝑛𝑠𝑢𝑟𝑖𝑛𝑔 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

+ 𝛽 ∑

𝑖

∥ 𝐹𝑖 − 𝐵𝑖 ∥2 ⏟
𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 𝛾 ∑

𝑖

𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑗)⏟
𝑏𝑖𝑡𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

, 

where 𝑆𝑖𝑗  denotes the indicator or measure of 

semantic proximity (1, if they are similar and 0 

otherwise, or if the amount of shared topics is 

partially similar), 𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑗) corresponds to the 

measure of quantity divergence from the equality +1 

and -1 in 𝑗 bit [26]. After obtaining 𝐵 as a means for 

minimization task 𝐿(𝜃) accomplishment, the 

encoding tree can be reconstructed. First, the 

optimization of continuous vectors 𝐹 is performed 

(by the common error backpropagation 

optimization), then the 𝐵𝑖 = 𝑠𝑖𝑔𝑛(𝐹𝑖) gets 

calculated with the subsequent determination of 

thresholds for each dimension, which gets followed 

by the ET construction and LSH utilization.  

In summary, all of this lets system find relevant 

samples regardless of their nature during the search 

by a new query 𝑞. In order for this method to be 

integrated outside of the scope of this research, it 

might be supplemented by data augmentation 

techniques, according to which, noise variations 

𝑒̃𝑖 = 𝑒𝑖 + 𝜖 with 𝜖 ∼ 𝑁(0, 𝜎2𝐼) are generated for the 

purpose of increasing the training set volume and 

obtaining more stable clusterization [27]. 

The motivation for using the steps described in 

this section is driven by the need to establish an 

efficient foundation for approximate nearest 

neighbor search in diagnostic systems, where data 

can be hybrid, multi-format, and high-dimensional 

[28]. By employing dynamic space partitioning 

(instead of a rigid grid) [29], it is possible to better 

account for the actual distribution of objects, thereby 

improving search accuracy and speed. 

Mathematically, the method offers high flexibility: 

the number of trees 𝐿, the clusterizations in each 

dimension 𝑀𝑗 , and the size of leaf nodes can be 

controlled to balance accuracy and efficiency. 

Formally, probabilistic guarantees can be estimated 

for finding the 𝑐-approximate nearest neighbor, 

similar to classical LSH analysis. Thus, the 

described integrated locality-sensitive hashing 

architecture, operating in conjunction with an 

encoding tree and prior BERT encoding, forms the 

basis for flexible, fast, and efficient cross-modal 

diagnostic models that handle heterogeneous data 

types while preserving key semantic relationships in 

low-dimensional or binary spaces, which are 

convenient for search and analysis. 

5. EXPERIMENTAL STUDY 

The experimental study was divided into 

several tasks, with the first one formulating the 

experimental setup which involved data preparation, 
BERT encoding while the main focus was on 

dimensionality reduction application. The main 

objective of task 2 was to construct an adaptive ET 

accounting for adaptive thresholds and symbolic 
representation. Task 3 involved BERT-Based 

Clusterization for LSH particularly focusing on p-

stable distributions and data-driven cauterization – 
to accelerate approximate nearest neighbor (ANN) 

queries.  

So the processing stages included: 

– preliminary encoding: the BERT model was 
used to generate vector representations of all 

samples, enabling both textual and visual 

information to be mapped into a unified semantic 
space.; 

– dimensionality reduction: to mitigate the 

“curse of dimensionality”, t-SNE and UMAP 
methods were applied, effectively reducing the 

spatial complexity to 𝑅𝑘 , where 𝑘 = 64; 

– encoding tree construction: an adaptive space 

partitioning method was used, taking into account 
the local density of data; 

– hashing: LCH based on 𝑝-stable distributions 

was implemented to enhance the efficiency of 

nearest neighbor search; 
– performing a search: the method's 

performance was compared against exact distance 

computation, allowing for an evaluation of the 
accuracy in detecting similar damages; 

– evaluation and comparison of the proposed 

method with the related studies. 

1. Dimensionality Reduction stage. For large-
scale runs (thousands of samples), UMAP can be 

more efficient while still preserving neighborhood 

information. In terms of parameter tuning, k=64 and 
k=128 were tested. Ultimately k=64 turned out to be 

sufficient to retain about 90-95 % of the local 

neighborhood structure while greatly lowering 
computation in subsequent hashing. 
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In order to project and validate the choice of the 

reduction method, the quality of the reduced 

representations was measured by comparing 

pairwise similarities (cosine or Euclidean) before 
and after dimension reduction. Then the rank 

correlations (Spearman’s 𝜌) are computed between 

distances in the original and reduced spaces. 

The study of the efficiency of the proposed 

locality-sensitive hashing method with a dynamic 

encoding tree was conducted on the CarDD dataset, 

which was developed in the work [30] for the 
purpose of the SOD task. This dataset contains 4,000 

high-quality images of car damages with over 9,000 

annotated damage instances, as demonstrated in 
Fig. 1.  

All damages are classified into six categories: 

dent, scratch, crack, glass shatter, lamp broken, and 
tire flat. To ensure the correctness of performance 

evaluation for the proposed method, the original 

dataset was split into training (2,816 images, 

70.4%), validation (810 images, 20.25 %), and test 
(374 images, 9.35 %) sets. 

In pilot runs on CarDD, Spearman’s 𝜌 was in 

the range of 0.88-0.92, confirming high preservation 
of local neighborhoods. Run time for downstream 

hashing decreased by roughly 25-30% compared to 

operating in the original BERT dimension. 

2. Constructing an adaptive Encoding Tree. For 

each of the 𝑘 reduced coordinates, breakpoints are 

identified so that each interval holds approximately 

the same number of data points. This dynamic 

partitioning avoids the pitfalls of uniform cuts in 

skewed data distributions. Thereafter each 

coordinate is transformed into a symbolic alphabet 
({0.1} in a binary scheme or {0.1,…, M−1} for 

multi-bit). Then, each data point is encoded as a 

short code (if k=64 and we perform a single-bit split 
per coordinate). The root node is conceptually the 

entire distribution. Children nodes emerge from 

splitting along each coordinate’s bit-based partition. 
If a leaf node exceeds a threshold (200 or 300 

samples), they are recursively split in the dimension 

that yields the most balanced partition. Building the 

ET is approximately 𝑂 ( ⋅ ( 𝑘 + log ⁡ 𝑀 ) ) 

O(N⋅(k+logM)), which remains manageable for 

large 𝑁 N. The adaptive tree typically reduces the 

candidate search region significantly in later queries. 
On CarDD, it was observed that candidate filtering 

needed to check only 12–15% of the dataset on 

average during retrieval, compared to a naive 

approach that might involve checking all data points. 
3. BERT-Based Clustering for Locality-

Sensitive Hashing. Random vectors are sampled to 

form hash functions, ensuring that close points 
collide in the same bucket with higher probability. 

LSH procedure is replicated L times (with L=3 or 5) 

to reduce the chance of missing near neighbors. The 

codes from the ET guide which local sub-partitions 
or buckets are needed to be explored.  

 

Fig. 1. Examples of annotated images in the CarDD dataset  
Source: compiled by the [30]
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A given query 𝑞, gets reduced to 𝑅𝑘 , while its 

symbolic code is computed from the ET. The 

matching (or nearly matching) codes are looked up 

in multiple LSH tables. Then the results are refined 

by actual distance checks. 

6. DISCUSSION OF THE RESULTS 

This section corresponds to the comparison of 

the proposed approach with related methods and its 

subsequent evaluation.. The central approach of this 

work underwent a comparison with different 

methods in two stages. First, CE-LSH was evaluated 

in comparison with DL methods like Mask R-CNN, 
Cascade Mask R-CNN, GCNet, HTC, DCN. Second, to 

improve illustrative power, analogous LSH method was 

introduced to the comparison, namely Locality-Sensitive 

Hashing with Query-based Dynamic Bucketing (DB-

LSH) used for ANN search as well [31]. 

Comparison with Deep Learning methods is 

illustrated in Table 1.  

Table 1.Quantitative Results during comparison 

with DL methods 

Method 
AP@50 

(Instance 

Segmentation) 

AP@75 

(Instance 

Segmentation) 

AP 

(Object 

Detection) 
Mask R-

CNN 
49.4 50.6 66.0 

Cascade 

Mask R-

CNN 
49.2 51.0 63.9 

GCNet 50.9 52.4 67.6 
HTC 50.9 52.1 65.8 
DCN 52.5 54.5 68.7 

Proposed 

Method 
57.0 58.4 77.7 

Source: compiled by the authors 

Insights from Table 1 show that for the “crack” 

category, the method achieved improved recognition 

accuracy by reducing confusion with scratches. 

Meanwhile, for “scratch”, false positive cases were 

minimized due to enhanced contour detection. In the 

“glass shatter” category, the proposed method 

provided high damage localization accuracy, even 

under challenging shooting angles. 

The proposed method ensures optimal search 

efficiency by reducing the number of distance 

evaluations in high-dimensional space, as shown in 

Table 2. 

This means that indexing time was reduced by 

35.7% compared to DCN, while search time was 

decreased by 40.2 %, making the method suitable 

for real-world applications in automotive diagnostic 

systems. 

Table 2.Analysis of calculation complexity 

Method 
Indexation time 

(s) 
Search time 

(ms) 
Mask R-CNN 321.4 134.8 

DCN 287.1 115.3 
Proposed 

Method 
184.6 68.9 

Source: compiled by the authors 

Comparison with DB-LSH. Although both 

methods ultimately aim at efficient ANN searches, 
they diverge significantly in how they organize data 

before hashing, how they manage query-time 

partitioning, and the extent to which they 
incorporate advanced encoding or clustering steps to 

tackle boundary problems, indexing costs, and query 

recall. 

The CE-LSH approach is expressly motivated 
by modern cross-modal data scenarios, in which 

image, text, or tabular information must be 

consolidated in a single high-dimensional space. 
DB-LSH, on the other hand, works with a more 

traditional p-stable or standard normal–based 

approach to building K hash functions, repeated L 
times, but attempts to address classical concerns 

about memory cost and boundary effects by making 

the bucket assignment dynamic with respect to a 

query. Whereas older static (K, L)-index methods fix 
a bucket width and rely on a large K to discriminate 

points, DB-LSH modifies or “stretches” the bucket 

width at query time so that if a user’s query is in a 
region that might straddle boundaries, the search 

region can be incrementally enlarged. This approach 

effectively defers the boundary decision and is 
reminiscent of multi-probe LSH in the sense that the 

system searches multiple overlapping buckets 

around the hash coordinates of the query. Yet DB-

LSH differs from the multi-probe technique by using 
a multi-dimensional index structure, that can 

expedite window queries over each projected space. 

A candidate region is thus a hypercubic window 
with edges determined adaptively at query time. 

When a new query arrives with a target radius r, the 

indexing structure identifies points whose projected 

coordinates lie within a “dynamic” bucket, of width 
proportional to r, so that more candidate points 

(possibly from “neighboring” buckets) are returned 

in one or very few passes.  
Other than that, DB-LSH retains the framework 

of a simpler pipeline: it depends solely on random 

compound hash functions, each mapping original 
data into K-dimensional spaces. Once the data are 

assigned to multi-dimensional indexes in these 

projected spaces, the system can decide at query 

time how large the search window should be. This 
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approach is notably beneficial when queries vary 

widely in their search radii or approximation factors, 

as the method can adapt to each query’s 

approximation factor c. It is demonstrated by authors 
that for c>1, they can scale to extremely large data 

while guaranteeing a better asymptotic exponent ρ*. 

In certain standard benchmarks (such as SIFT or 
GIST) with purely Euclidean data, DB-LSH’s results 

in the reference experiments show a stable 

advantage over classical E2LSH or LSB-Forest in 
that it avoids building many different indexes for 

multiple discrete radii. However, if the data are 

strongly heterogeneous due different sensors or 

textual descriptions that have non-Euclidean 
relationships, DB-LSH (in its original design) does 

not unify them as effectively as CE-LSH, which 

explicitly merges them via BERT and clustering. So 
while DB-LSH might be simpler to integrate in 

purely numeric tasks such as indexing floating-point 

descriptors for conventional image retrieval, it may 

not achieve the same level of cross-modal semantic 
alignment that is essential in certain specialized 

domains, such as advanced diagnostics or anomaly 

detection across different data types. One also 
observes that CE-LSH places emphasis on a 

hierarchical structure (the adaptive encoding tree), 

allowing for deeper splits where data are dense. This 
hierarchical approach strongly controls how many 

candidate points are retrieved, because once a leaf is 

reached, only a relatively small number of points 

remain for distance checks, thus lowering 
verification overhead in high dimensions. DB-LSH 

similarly benefits from bounding the region of 

search, but since it relies on an index that manages 
the entire K-dimensional projection, there can be 

scenarios in which if the data exhibit complex local 

distributions, it might require multiple window 
queries or expansions to find the best candidates. In 

that sense, if the data are well-clustered or if some 

modality transformation has made the data space 

extremely “patchy,” then a specialized approach like 
CE-LSH’s local thresholding can be more accurate. 

On the other hand, DB-LSH shows a consistent 

sub-linear performance with a thoroughly proven ρ* 
that can be smaller than 1/c if c is large, thus 

offering strong worst-case theoretical bounds in 

purely Euclidean settings. DB-LSH obtains near-

sub-linear scaling, though in certain heavily 
multimodal tasks, CE-LSH’s domain-specific design 

(especially with BERT-based transformations) might 

yield higher recall for the same or slightly smaller 
indexing overhead. Turning finally to the question of 

which method might be preferable, one should keep 

in mind that CE-LSH was constructed with cross-

modal or multimodal intelligence in mind, applying 

BERT embedding, dimension reduction, and 

distribution-aware encoding to reduce collisions and 

false positives. In tasks like diagnostic image 
retrieval or textual-visual alignment, its adaptive 

tree-based partitioning results in better retrieval 

accuracy, sometimes by double-digit percentage 
margins, while controlling indexing overhead 

through symbolic representation. DB-LSH, in a 

narrower sense, excels in classical Euclidean data 
retrieval, as it offers robust sub-linear time due to a 

smaller exponent ρ*, plus a single index structure 

that can adapt to any query radius rather than 

building multiple large (K, L)-indexes. Especially 
for purely numeric vectors (for instance, high-

dimensional image descriptors or large text-corpus 

embeddings that do not vary widely in dimensional 
distribution), DB-LSH can be simpler to implement 

and tune, often showing strong empirical speedups. 

It is comparatively more direct as a conceptual 

framework, but does not incorporate any domain-
based clustering or advanced semantic alignment. If 

a researcher’s primary concern is to unify textual, 

visual, or other modalities in a single integrated 
index and to precisely handle local data 

distributions, the CE-LSH approach reveals greater 

strength in that realm. If, however, the dataset is 
strictly numeric and one desires a minimalist 

pipeline with a well-bounded sub-linear query time, 

DB-LSH’s dynamic bucketing method can be 

straightforward and theoretically appealing. CE-
LSH’s advantage is most pronounced in experiments 

where data points exhibit strong cluster structures or 

cross-modal embeddings. DB-LSH, on the other 
hand, might produce smaller indexing times for 

certain purely numeric sets of large scale (hundreds 

of millions of vectors), as it builds fewer indexes 
(with user-chosen L) and conducts a dynamic 

hypercube-based bucketing strategy that can adapt 

well to queries that vary in scale. In terms of 

memory usage, CE-LSH is not as heavy as classical 
static LSH if it can keep the adaptive tree structure 

succinct, whereas DB-LSH uses multiple multi-

dimensional indexes but does not replicate entire 
data points for each bucket in the same sense that 

old (K, L)-index methods did. Therefore, memory 

overhead of the two approaches can be comparable, 

with DB-LSH sometimes incurring a smaller hidden 
cost for purely numeric data sets of uniform 

dimension, while CE-LSH shows memory 

advantages when it does not need to store repeated 
hash tables. Table 3 represents main numerical 

insights collected during cross-modal Retrieval  
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Table 3. Quantitative results during comparison with DB-LSHapproach 

Metric CE-LSH DB-LSH Notes 

Indexing Time (sec) 2,400 1,850 CE-LSH invests more time building 
clusters & adaptive encoding trees 

Memory Overhead 

(GB) 

4.2 3.9 Both require multiple index structures; 

CE-LSH’s overhead slightly higher for 
cluster info 

Recall@10 (%) 91 78 CE-LSH’s cluster-aware tree yields high 

recall in mixed-modal embeddings. 

Mean Query Time (ms) 30 25 DB-LSH can be marginally faster at 
query time (dynamic bucketing, single 

structure) 

Collision Reduction vs. 

Baseline LSH (%) 

20 5 CE-LSH’s “adaptive splitting” 

significantly lowers collisions for 
borderline points 

Source: compiled by the authors 

experiment Ultimately, the overall choice depends 
on the user’s priorities: if advanced semantic 
integration is paramount and the dataset is truly 
multimodal or cross-modal, CE-LSH can be superior 
because it partitions the space adaptively after 
advanced embedding. If a user mostly requires a 
single pipeline for large-scale numeric retrieval tasks 
with a range of approximation factors, DB-LSH’s 
theoretical simplicity and dynamic query bucketing 
can represent a robust alternative. 

CONCLUSIONS AND PROSPECTS OF 

FURTHER RESEARCH 

The proposed locality-sensitive hashing 
methodology demonstrates several key advantages. 
First, the use of a dynamic encoding tree optimizes 
data space partitioning by considering the actual data 
distribution, ensuring more balanced indexing and 
reducing the likelihood of missing important similar 
objects. Second, the integration of a cross-modal 
approach enables effective processing of different 
data types, which is particularly relevant for 
diagnostic systems, where information can originate 
from multiple sources. Preliminary clustering using 
BERT models ensures semantic consistency within 
subspaces, enhancing the accuracy of subsequent 
hashing. Systematic analysis shows that the selected 
approach exhibits high scalability, efficiently 
handling both small and large datasets. Additionally, 
due to its modular architecture, the system is easily 
adaptable to new conditions, making it applicable 
for constructing diagnostic models across various 
domains, from medical diagnostics to technical 
condition monitoring systems. 

The experimental research with the usage of 
CarDD dataset was structured around three 
interdependent tasks, each of which was successfully 
completed in accordance with the overarching 

objective of improving approximate nearest 
neighbor retrieval in high-dimensional and 
multimodal spaces, like in the unified semantic 
embedding space that was created in the scope of 
this research by applying BERT encoding to both 
textual descriptions and visual data, achieving 
reliable cross-modal alignment. 
Addressing the first task, dimensionality reduction 
using UMAP and t-SNE preserved up to 92 % of 
local neighborhood structure with reduced spatial 
complexity, leading to 25-30 % acceleration in 
hashing and ANN search compared to operations in 
full-dimensional BERT space.  

The second task focused on building an 
adaptive encoding tree, which was completed by 
dynamically partitioning each reduced coordinate 
based on data density. This allowed for symbol-
based code generation that captured fine-grained 
structural patterns, ultimately reducing the candidate 
search region to just 12-15 % of the dataset, thus 
decreasing verification overhead during retrieval.  
For the final task, the integration of p-stable LSH 
with BERT-based clustering ensured that hash 
buckets corresponded to semantically meaningful 
regions, enhancing search precision and minimizing 
boundary-based fragmentation. This resulted in a 
recall@10 rate of 91 %, an improvement of 13 % 
over DB-LSH, and a 20 % reduction in hash 
collisions compared to classical LSH.  

Comparative evaluation against state-of-the-art 
methods confirmed that the proposed method 
outperformed not only DB-LSH in cross-modal 
retrieval accuracy and collision minimization but 
also deep learning-based object detectors in 
detection precision, with a 58.4 % AP@75 against 
54.5 % for DCN and a 40.2 % reduction in search 
time. 
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LISTS OF ABBREVIATIONS 

Abbreviation  Definition Ukrainian translation 

UDC/УДК Universal Decimal Classification Універсальна десяткова класифікація 

LSH Locality-Sensitive Hashing Локально-чутливе хешування 

ANN Approximate Nearest Neighbor Наближений найближчий сусід 

BERT Bidirectional Encoder Representations 

from Transformers 

Двоспрямовані кодувальні 

представлення з трансформерів 

UMAP Uniform Manifold Approximation and 

Projection 

Уніфіковане апроксимування та 

проєкція многовидів 

t-SNE t-Distributed Stochastic Neighbor 

Embedding 

t-розподілене вкладення стохастичної 

близькості 

ET Encoding Tree Кодувальне дерево 

CNN Convolutional Neural Network Згорткова нейронна мережа 

CLIP Contrastive Language–Image 

Pretraining 

Контрастивне попереднє навчання на 

основі мови та зображень 

CE-LSH Clustering-Enhanced LSH Локально чутливе хешування за 

посередництва кластеризації 

DB-LSH Locality-Sensitive Hashing with 

Query-based Dynamic Bucketing  

Локально чутливе хешування з 

динамічним бакетуванням на основі 

запитів 
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АНОТАЦІЯ 

Це дослідження представляє методологію локально-чутливого хешування, яка підвищує ефективність пошуку 
наближених найближчих сусідів шляхом інтеграції адаптивних кодувальних дерев і кластеризації на основі двоспрямовані 

кодувальні представлення з трансформерів. Запропонований підхід оптимізує розділення простору даних перед 
застосуванням хешування, що покращує точність пошуку та зменшує обчислювальні витрати. По-перше, мультимодальні 
дані, такі як зображення та текстові описи, перетворюються у спільний семантичний простір за допомогою попередньо 
навченої моделі двоспрямовані кодувальні представлення з трансформерів. Це забезпечує крос-модальну узгодженість і 
сприяє порівнянню у високорозмірному просторі. По-друге, методи зменшення розмірності, такі як уніфіковане 
апроксимування та проєкція многовидів або t-розподілене вкладення стохастичної близькості, застосовуються для усунення 
ефекту “прокляття розмірності” при збереженні ключових зв’язків між точками даних. По-третє, створюється адаптивне 
кодувальне дерево, яке динамічно сегментує простір даних на основі його статистичного розподілу, забезпечуючи 

ефективну ієрархічну кластеризацію. Кожна точка даних конвертується у символьне представлення, що дозволяє 
здійснювати швидкий пошук за допомогою структурованого хешування. До того ж, до закодованого набору даних 
застосовується локально-чутливе хешування, що використовує p-стабільні розподіли для підтримки високої точності 
пошуку та зменшення розміру індексів. Поєднання кодувальних дерев і локально-чутливе хешування сприяє ефективному 
відбору кандидатів при мінімізації витрат на пошук. Експериментальне тестування на наборі даних CarDD, який містить 
зображення пошкоджень автомобілів та їх анотації, демонструє, що запропонований метод перевершує сучасні техніки 
наближений найближчий сусід як за ефективністю індексації, так і за точністю пошуку. Результати підкреслюють його 
адаптивність до масштабних, високорозмірних та мультимодальних наборів даних, що робить його придатним для 
діагностичних моделей і завдань у режимі реального часу. 

Ключові слова: адаптивне кодувальне дерево; кластеризація двоспрямовані кодувальні представлення з 
трансформерів; зменшення розмірності; наближений пошук найближчих сусідів; мультимодальні дані; кореневий вузол  
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