Kungurtsev O. B, Chorba R. V. [/ Herald of Advanced Information Technology
2023; Vol.6 No.4: 297-307

DOI: https://doi.org/10.15276/hait.06.2023.19
UDC 004.41+005.2

Task execution flow management in the software
development process under the minor change event

Oleksii B. Kungurtsev”

ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author Id: 57188743440
Radim V. Chorba®

ORCID: https://orcid.org/0009-0005-9879-4375; radim.chorba@gmail.com

D Odessa Polytechnic National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ABSTRACT

In modern project management methodologies, insufficient attention is devoted to the process of promptly responding to minor
changes during task execution, which necessitate adjustments to the priorities of ongoing tasks. The existing approaches are not
sufficiently detailed for a fundamental reassessment of priorities while such changes significantly impact project execution. The
available materials and approaches do not provide ready-made solutions. This article proposes a task planning model during project
execution. The model comprises the following key elements: Executor, Task Set, Task Execution Progress, and Calculation of Task
Execution Quality Indicators. The Executor element contains information for identifying the developer and allocating their working
time. It is anticipated that under exceptional conditions, a portion of non-working time may be scheduled for task execution. The
Task Set element represents planned temporal characteristics and the priority of each task. The Task Execution Progress element
contains information about actual dates, hours, and durations of segments during which the task was executed. The calculations of
task execution quality indicators enable obtaining operational information about the progress of specific projects and assessing the
effectiveness of process management. Basic algorithms for managing task sequences have been developed. The “Addition of a New
Task” algorithm implements a task queue based on priority and start and end dates. The “Task Priority Change” algorithm envisages
the possible repositioning of a task, as well as cases of task transfer to another executor or rescheduling tasks during non-working
hours. Additionally, algorithms for notification of critical planning changes for dependent tasks (“Notification of Critical Planning
Change for Dependent Tasks™) and critical deprioritization of dependent tasks (“Notification of Critical Deprioritization for
Dependent Tasks”) have been developed. The proposed model and algorithms allow for accommodating micro-changes in the project
and responding to their occurrence. The validation of research results in a real project demonstrated the effectiveness of the proposed
model and algorithms while concurrently revealing a certain range of open questions requiring further consideration. Future research
directions include the classification of micro-change scenarios, analysis of possible scenarios for suspending the execution of current
tasks, and the development of scenarios and algorithms for selecting executors.

Keywords: Software development; project management; tasks planning; task queue; tasks priotitization; task priority change;
project microchanges

For citation: Kungurtsev O. B., Chorba R. V. “Task execution flow management in the software development process under the minor
change event”. Herald of Advanced Information Technology. 2023; Vol. 6 No. 4: 297-307. DOI: https://doi.org/10.15276/hait.06.2023.19

1. INTRODUCTION Due to the distinct nature of these tasks
compared to changes in requirements, both
functional and non-functional, which are typically
outlined as product requirements, these tasks do not
directly, impact the resulting functionality of the
product. However, from a development process
perspective, these tasks have a certain priority and
are mandatory to address, thus consuming time that
could be spent on resolving production tasks. In this
article, we will refer to such tasks as ‘“micro-
changes”. Since the nature and predicted volume of
these tasks cannot be accurately known during the
planning stage of a task block, and their impact on
the team overall work is uncertain, planning for

Commonly known solutions for planning work
on software projects, which allow for task
scheduling over a specific work period (release,
sprint in the Scrum methodology, etc.) [1, 2], [3]
include products such as Atlassian Jira, MS Project,
Primavera, Redmine, and to some extent, next-
generation products like Trello, Asana, and similar
ones. However, during the execution of a planned
block of tasks, numerous unforeseen tasks arise,
such as emergencies, urgent client inquiries,
immediate management requests, and others,
requiring resolution within a relatively short

timeframe. . . . : .
addressing these tasks is considered impractical.
Given that computational power of computer
© Kungurtsev O., Chorba R., 2023 systems has significantly increased in the last 5

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ deed.uk)

ISSN 2663-0176 (Print) Methodological principles of 297
ISSN 2663-7731 (Online) information technology

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

years, but engineers' ability to create software
solutions has not grown proportionally [5], the issue
of effective planning and control of such work is
pertinent. Therefore, there is a problem of the impact
of many sporadically occurring delays from tasks,
the precise planning of which is not feasible, on the
main project execution process.

In practice, research [6] shows that less than
15% of teams declaring the use of Agile/Scrum
methodologies actually adhere to basic agile
principles [1, 3], [5]. Therefore, it is reasonable to
assume that in more than 85 % of teams working
with flexible methodologies, engineers and
managers rely on empirical approaches to
reprioritize tasks in situations of micro-change
occurrences.

Traditional planning technologies, such as
Waterfall [2], do not provide a specific mechanism
for responding to the emergence of unforeseen tasks
of the discussed type (micro-changes). High-level
project status analysis approaches within this family
of methodologies, such as Critical Path [2, 7], allow
for assessing the impact on the project delivery date
post-factum (or at each specific moment when the
deviation from the work schedule is already known).

The application of the Monte Carlo simulation
method allows for assessing risk impact to the
project and obtaining estimates of possible
deviations from the project execution plan. Based on
simulation data, the project manager can evaluate
deviations and make decisions regarding the
necessity of creating reserves regarding budget and
execution timelines. While this approach allows
estimating necessary reserves for each project phase
at the macro level, it does not provide a specific
mechanism for managing micro-changes in the
project [8].

Thus, we identify a significant gap in project
management methodologies in responding to micro-
changes, both for projects managed by classical
methodologies (Waterfall) and for modern
methodologies (Agile).

The aim of this research is to find an approach
that would enhance engineers' productivity when
micro-changes occur and experimentally validate it.

2. EXISTING SOLUTIONS REVIEW

Articles [3, 9] thoroughly emphasizes the
advantages of flexible methodologies (Agile) in a
rapidly changing environment. Indeed, this family of

project management methodologies is oriented
towards satisfying the customer as a key value.
However, the article does not propose an approach
to managing micro-changes in projects.
Furthermore, micro-changes affect both projects
managed by flexible methodologies and classical
methodologies, making the discussed problem
relevant for both approaches to the project
management.

The challenge of selecting an executor for a
task is analyzed in article [10]. The authors suggest a
mathematicl method for selecting a task executor
based on each engineer's capabilities and task
execution needs, using multi-factor analysis.
However, the article does not consider the execution
of an algorithm in a situation where engineers are
already working on a block of tasks, and a new
micro-change, to some extent, affects the tasks they
are already performing or will perform in the current
work block. The research also does not address the
frequency of task switching as an important factor
that needs to be avoided to protect engineers from
burnout and, consequently, a sharp decrease in
productivity [11]. The article only considers the
application of the methodology for Agile
methodology, while, as mentioned earlier, micro-
changes can also impact projects executed using
traditional methodologies.

Research [12] proposes a modern multi-criteria
approach to task allocation based on machine
learning technologies. Despite advocating its
applicability to flexible methodologies in the article,
we anticipate that the approach can also be used in
classical project management methodologies.

In the study [13], the impact of context
changes, which are a specific case of micro-changes,
on the productivity of engineers working in a multi-
project environment is analyzed. However,
recommendations for mechanisms to minimize loss
of production time are not provided.

In article [14], the author focuses on studying
the reasons for interruptions in the work process,
which in some cases also constitute micro-changes,
and their impact on the productivity of engineers.
The article offers only general approaches to
reducing the negative effect of interruptions without
specific action algorithms.

Considering characteristics of micro-changes
such as their potential urgency and potentially short
task execution period, it is necessary to note that the

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of information 298
technology

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

described approaches do not fully consider the need
to support a comfortable working environment. As
noted in materials [15, 16], [17], frequent task
switching, changing focus, and other abrupt changes
in activity significantly negatively impact the
productivity of engineers and, as a result, lead to
emotional burnout, resulting in a catastrophic drop
in engineer productivity and, consequently, failure
of task delivery deadlines.

From the presented analysis, it is evident that
there is a pressing need to develop an algorithm for
task reprioritization for a team in the event of a
micro-change during the execution of a planned
block of work. Such an algorithm should aim to
simplify the decision-making process during the
micro-change handling [18, 19] and increase team
productivity by reducing forced stoppage time and
minimizing context switches.

3. GOAL AND TASKS OF THE
RESEARCH

The aim of this study is to enhance the
productivity of engineering teams by improving the
task reprioritization algorithm considering the
micro-changes in a project.

To achieve the stated goal, the following tasks
need to be addressed:

1. Develop a model for task planning in the
project, taking into account micro-changes.

2. Design an algorithm to respond to the
addition of a new task in the current iteration of the
project.

3. Develop an algorithm to respond to changes
in the priority of a task in the current iteration of the
project.

4. Create algorithms for notifying stakeholders
of changes.

4. MODEL

It is proposed to present the scheduler model in
the form of a tuple:

Planner = Performer, mTask,
taskCompletion, Statistics >,

@)

where Performer — engineer assigned to the task;
mTask — set of the tasks; taskCompletion is flow of
the task execution; Statistics — are calculations on
the information stored in the model.

The “performer” element should contain
information to identify the developer and allocate his
working time (schedule):

Performer = PerformerName, Schedule >, (2)

where PerformerName — name of the engineer;
Schedule — his working schedule.

Taking into account the possible micro-changes
described above, it is proposed to outline the
schedule this way:

Schedule =
. . . (3)
restTime, nonWorkTime, workTime >,
where restTime — rest time, not subject to work
planning; nonWorkTime — are non-working hours,
may be scheduled to perform work under emergency
conditions; workTime — working time, subject to
work planning.
Rest time is to be presented by a tuple:

restTime = timeB, timeF >,

(4)

where timeB — beginninig of the time period (in form
of a time of the day, for example, 23:00); timeF —
ending of a time period (in form of a time of the
day, for example, 7:00).

Non-working time is fragmented and consists
of separate elements (Piece;), for each of which the
duration is indicated in the time of day, for example,
7:00 —9:00, 17:00 — 23:00.

nonWorkTime = {mPieceN,;}i = 1,h,

()

where piece; = timeBN;.timeFN; > .
Working time is fragmented by segments of
time allocated for work:

workTime = timeB, timeF, mPiece >,

(6)

where timeB — the beginning of a working time;
timeF is the ending of a working time; mPiece — a
set of time fragments: mPiece = {piece;},j = 1, k.

The number of fragments is determined by
tasks and their distribution in time; if there is a
single task, the set contains one element.

The maximum length of the fragment —
minuteMax is equal to the duration of the working
day, which is defined in the organization. The
minimum length of the fragment — minuteMin is
determined by the ability of the developer to switch
to a new task and perform the minimally significant
work for this task. Let us consider minuteM €=
lhour.

Each fragment can be presented in way:

piece; = idT;, timeB;, minuteN; >,

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of
information technology

299

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

where idT; — task identifier, if there is no task it is
set to zero; timeB; — time of the schedeuled
beginning of the task execution; minuteN; -
estimated amount of minutes for the task execution.

In exceptional cases, some tasks may be
performed outside working hours. In this case, it will
be presented similarly to working hours:

nonWorkTime = timeB, timeF, mPiece >
piece; = idT;, timeB;, minuteN; >.

Notification — communication to the person
involved into a process in some role. It is used to
inform the stakeholder or engineer about a change in
the status of the task. It can be a reminder about the
need to perform the task (sent to the engineer
responsible for the task), information about a change
in prioritization, a notice of cancellation of the task
or other, which is sent to the customer requested the
task.

It is suggested to submit the message in the
form of a tuple:

Notification = TextT', Task,

NotrifType, NotifFreg>, O

where TextT' — notification text; Task — task to
which notification is related; NotifType — type of
the notification from the set (‘remainder’,
‘priorityAlert’, ‘movedToQueueAlert’,
’taskCancelledAlert’); NotifFreq is frequency of the
notification.

Task is outlined as a set:

mTask = {task;}i = 1,nTask, (8)
where each task is a tuple:
Task = TextT,idT,TimeB, TimeF,
Dur, Priority, TimeFR, DurR, 9
Customer, Dependencies >,
whereTextT — task description; idT - task

identifier; TimeB — expected time of the beginning
of work on the task (date, time); TimeF — expected
(requested) task delivery date (date, time). This field
may not be filled in if a specific date and time when
the task must be completed has not been received
from the customer. However, the team during
iteration planning can set or change this value
downwards in a situation where the execution of this
task from the team'’s point of view blocks other tasks
or for some reasons this task must be completed
earlier; Dur — estimated task execution timeframe

(amount of hours and minutes); Priority — task
priority.

Values of priority are: PO — Critical (needs to be
executed as soon as possible); P1 — High (execute
with priority); P2 — Normal (default priority); P3 —
Low (nice to have this task executed); P4 — Minimal
(if there is no any higher priority task); TimeFR —
real task completion time (date, time); DurR — real
task execution timeframe (amount of hours and
minutes); Customer — requestor of the
task;Dependencies — set of the tasks which are
dependent on this task (can be empty).

The execution of the task involves the
determination of real dates, hours and duration of
fragments during which the task was performed.

(10)

where mPiece’ — set of time segments during which
the task was performed.

Each segment is defined by a start time and a
duration

taskCompletion = idT, mPiece’ >,

piece’ = timeB', minuteN >.

Calculations based on model data. The data
contained within the model allow for obtaining real-
time information about the progress of specific
projects and assessing the effectiveness of managing
the design process.

Below are some possible computational quality
management characteristics:

e Deviation between actual and planned task
execution times.

o Degree of plan execution.

¢ Relative quantity of canceled tasks.

o Degree of execution of canceled tasks.

¢ Relative quantity of tasks not completed on
time.

¢ Relative quantity of tasks not completed.

o Utilization of working time.

Task management algorithms
Algorithm 1 — Add a new task

Tasks are added to the execution queue based on
priority and specific start and/or completion times if
specified. Various scenarios of task addition during
the iteration execution phase are illustrated in Fig. 1.

Fig. 1 depicts the initial work plan in the first
block, consisting of three tasks with priorities of 1,
1, and 2, and durations of 12, 8, and 8 time units,
respectively. The timeline is oriented from left to
right, with task 1 being in progress for 4 time units.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of information
technology

300

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

Time line |
Now
Initial plan |

Task 1 (P1)

Task 2 (P1) Task 3 (P2)

Scenario 1. PO emergency

Incoming change Task 4 (PO} Emergency, needs to be addressed immediately
Resulting plan
Task 1 (P1) Task 4 (PD) [Task 1 (P1) Task 2 (P1) Task 3 (P2)
Scenario 2. New PO activity scheduled (for instance, a meeting)
Incoming change Scheduled for the given timeframe
Resulting plan
Task 1 (P1) [Task 4 (PO) [maski(P1y] Task 2 (P1) Task 3 (P2)
Scenario 3. New P1 task, no timeframe defined
Incoming change Task 4 (P1) Same priority, no exact timeframe specified
Resulting plan

Task 1 (P1) [

Task 2 (P1) [Taskap1) | Task 3 (P2)

Fig.1. Time diagrams of some task addition scenarios
Source: compiled by the authors

Microchanges are represented in three blocks.
Scenario 1 involves adding a task with an urgent
priority (PO), which needs to be completed
immediately. An example of such a task could be an
emergency or unforeseen force majeure
circumstances. In this case, the execution of Task 1
is urgently halted, and Task 4 is taken up for
execution. After completing Task 4, work on Task 1
resumes. The priority of other tasks remains
unchanged, but they are shifted along the timeline.

In scenario 2, Task 4 is added, also with an
urgent priority, but the start and end times of this
task are specified, and the start time does not
coincide with the current time. Thus, the execution
of Task 1 will be interrupted to perform Task 4, but
this interruption will not be urgent. Similar to
scenario 1, after completing Task 4, work on Task 1
resumes. The priority of other tasks remains
unchanged, but they are shifted along the timeline.

Scenario 3 involves the appearance of Task 4
with the same priority as the task currently being
executed. Unlike previous scenarios, the new task is
placed in the queue according to priority, i.e.,
between tasks 2 and 3. In this case, only Task 3
progresses along the timeline.

Scenarios of adding a task with a priority lower
than any of the planned tasks are not shown in the
figure, as it is evident that such a task will be put to
the end of the queue.

1.1. Task is received in the form of

Task; = TextT;, TimeF;, Dur;,
Priority;, Customer; >.

1.2. Task identifier is created automatially.

1.3. TimeB is set to the current date and time if
not provided explicitly for the task.

1.4. The availability of time to complete the
Task; is checked. The time free from work tl is
identified in the workTime set.

Options:

1.4.1. There is enough time tI> Dur;.

1.4.1.1. If there is a task in the schedule with a
lower priority than Task; and its due date allows to
move it to the right (later time), then the shift and
insertion is performed according to the priority of
the tasks in such a way that priority tasks, as well as
tasks with an earlier due date, are executed first.

1.4.1.2. For every task which was affected,
TimeS is changed by adding Dur; value.

1.4.1.3. For the new task TimeS is set to
TimeS; + Dur; , where i is the index of the task
which is pereceding to the newly added.

1.4.2. There is no enough time tl < Dur;.

1.4.21. If task Task; has Priority; <=
Priority; , which means thet priority of the newly
added task is lower than priority for the tasks which
were planned already, for each of mTask in the
workTime set, system reports the inability to plan
the task Task; within the normal working time
schedule for the given engineer.

The options proposed are:

—transfer Task; to another developer;

— request the possibility for the developer to
perform the task within the nonWorkTime time

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of
information technology

301

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

period (in case of the negative answer, this step is
repeated but this option becomes unavalable);

— cancel the execution of the task in the current
iteration and put the task in the queue for planning
and execution in normal mode (to the backlog);

— reject the execution of the task, which means
task will be not executed at all.

1422 If task Task; has Priority; >
Priority;, which means that priority of the new tas
is bigger than at least one of the tasks in mTask in
the workTime timeframe, task Task; is inserted
before the first task for which Priority; >
Priority;. For the rest of the tasks possibility to
keep the task in the iteration is analysed. Rest of the
tasks are analysed for the possibility to keep them
within the current iteration, considering the
workTime, corresponding to the initial sequence,
which means decreasing Priority; and increasing
TimeF. At the same time, TimeS is changed by
adding the value of Dur;

For the tasks which can not be kept in the
workTime timeframe, the following options are
available:

— transfer task to another developer;

— request the possibility for the developer to
perform the task within the nonWorkTime time
period (in case of the negative answer, this step is
repeated but this option becomes unavalable).

1.5. In the situation when the algorithm
execution has reached this step, meaning the task is
placed in the execution plan, and also for the very
first task in mTask condition Prioity; >Prioity, is
true, which means that current task has a lower
priority than the new one. The question arises about
the appropriateness and the most opportune moment
to interrupt the execution of the current task. This is
exactly the question that | aim to address in my
work. Due to operational necessity, such a need
arises often; however, the delay caused by
interrupting the ongoing task is usually much greater
than the sum of the durations of the interrupting
tasks. This introduces additional delays and risks to
the execution of the current block of project tasks.

1.6. Information about changes in the task
execution plan is stored in Statistics

1.7. Algorithm 3 and algorithm 4 are executed.

Algorithm 2 — Changing the priority of one
of the tasks in the current iteration

If it is necessary to change the priority of the
task, its position in the execution queue will change
according to the new priority and the start and end
dates, if they are set.

2.1. Priority change is accepted in form of
idT, Priority’, where idT is the task identifier;
Priority’ is the new priority

2.2. New position for the Task; is determined.

2.2.1. If Priority < Priority’ which means
task priority is increased, the new position is found
by traversing the mTask by increasing the index
until both conditions are met: Priority’ >
Priority; and TimeF < TimeF;.

2.2.2. In other case, new position is found by
traverse mTask by decreaseing index until both
conditions are met: Priorty’ < Priorty; and
TimeF = TimeF;.

2.3. The task is moved to a new position, while
the rest of the tasks are shifted while preserving the
original order.

2.3.1. If the new position of the task is equals to
zero, which means that the task must replace the task
currently being performed, the question arises about
the need to interrupt the execution of the current
task, similar to the one considered in clause 1.5.

2.4. For each task starting from the new
position, estimated start time is updated as
TimeS; = TimeS;_1 + Dur;_4.

2.5. For each task starting from the new
position, condition TimeS + Dur > TimeF is
verified.

2.5.1. For those tasks where this condition is
true, the task completion deadline will be violated.
Options available are:

o transfer the task to another developer;

o offer the selected developer to complete the
task in the nonWorkTime timeframe (in case of the
negative answer, this iteration of the algorithm is
repeated, but this option becomes unavailable);

e ignore (in this case, it is accepted as normal
that the result of the task will be delivered later than
the expected deadline).

2.6. Information about changes in the task
execution plan is stored in Statistics

2.7. Algorithm 3 is executed.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of information
technology

302

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

Algorithm 3 — Notification of a critical
change in the planning of dependent tasks

As a result of the operation of Algorithms 1 and
2, caused by a microchange, for some tasks the
expected completion time may change in such a way
that it turns out to be greater than what is requested
in the task. In this case, it is necessary to notify the
customer about a possible delay.

3.1. All tasks affected by the priority change
are recursively detected as the result of execution of
algorithm 1 or 2

3.2. For those with TimeS + Dur > TimeF,
Notification is sent to the Customer. Notification
has Task equals to the current task in question,
NotifType equals to ‘priorityAlert’, TextT contains
the details of the impact on the task rescheduling,
including the potential affect on the TimeF.

3.3. Notification is not performed for the rest of
the tasks.

Algorithm 4 — Notification regarding critical
prioritization of dependent tasks

As a result of the execution of Algorithm 1,
caused by a microchange, a decision may be made
for part of the tasks to cancel its execution in the
current iteration or its impracticality. In this case, it
is necessary to notify the customer about a critical
change in the work schedule for the task requested
by him.

4.1. Notification is sent for every task pushed
out of the iteration. Notification has Task equals to
the current analysed task, NotifType equals to
‘movedToQueueAlert’, TextT' with the details of
the critical priority change and inability to meet the
deadline.

4.2. Notification is sent for each task which
was cancelled on the step 1.4.2.1. Notification has
Task equals to the current analysed task, NotifType
equals to ‘taskCancelledAlert’, TextT' with the
information of the inability to execute the task.

5. PROBATION OF THE RESULTS
OBTAINED

To conduct the scientific research, testing of the
proposed models and algorithms was carried out on
a real project. Since, as mentioned above, tasks in
projects vary in duration, to validate the model and
assess the efficiency of the proposed algorithms, it is

To ensure the validity of the testing, the project
team chosen as experimental must meet the
requirements of a Scrum team, as described earlier,
and the project performance results, as well as the
measured characteristics, must be predictable to
avoid the influence of fluctuations on measurement
outcomes.

To meet these requirements, a real software
development project was selected, susceptible to the
influence of micro changes, and for which historical
information was available to populate the model.
Additionally, the actual application of algorithms in
this project allows tracking changes in results.

As the experimental project, a development
project in a stable state was chosen (project duration:
7 years, product release cycle: 3 months, project
management methodology: Scrum, sprint duration: 2
weeks, team composition changes: absent, project
team composition: 2 Scrum teams, totaling 15
engineers).

Before the experiment began, the team and the
project were in a stable state, releasing planned sets
of new features without significant quality problems
(an average of 1 hotfix per year from 2019 to 2022).

There is no documented methodology for
responding to micro changes in the project.

Therefore, the system chosen for the
experiment meets all the specified requirements and
has sufficient stability characteristics to exclude the
influence of random factors on the experiment
results.

The chosen evaluation criterion was the
percentage of unfinished tasks at the end of a two-
week development iteration (sprint). Preliminary
analysis showed that this parameter has a certain
cycle associated with the completion of the release
cycle. Due to the organization work specifics, on the
last iteration of the release cycle, the team focuses
on testing (the percentage of unfinished tasks is
minimal), while on the first iteration of the new
release cycle, the team transitions to new
functionality (the percentage of unfinished tasks is
maximal). Subsequently, during the release cycle,
the considered indicator typically decreases (see
Figure 2, the considered indicator is shown on the
graph with a thin line, the trend line is thick). Here,
the completion of the release cycle falls on iterations
1, 7, and 13, and the start corresponds to iterations 2,
8, and 14.

necessary to gather information that closely
approximates natural conditions.
ISSN 2663-0176 (Print) Methodological principles of 303

ISSN 2663-7731 (Online)

information technology

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

30
)
i}
E .
iy 20
B 4N
n
E
[¥]
B
=
“ 10
o
o
]
&

0

2 4 B & 10 12 14 16

Iterations, 2023 (2-weeks)

== % of tasks not completed timely

== Trendline

Fig.2. The dynamics of changes in the share of incomplete tasks during iterations, 2023
Source: compiled by the authors

The experiment started from iteration 12 (one
iteration before the completion of the release cycle,
considered the safest moment for implementing
changes). In Fig. 2, the trend line for the percentage
of tasks not completed on time is shown by a thick
line, calculated as the average of 4 samples. It can be
seen that the application of algorithms reduced the
average percentage of unfinished tasks by the end of
the iteration. The calculation shows that the average
percentage of unfinished tasks since the start of the
experiment was 14.7 %, whereas before the
experiment, this indicator was 18.3%. Thus, the
experiment confirmed the positive impact of
applying algorithms on team productivity.

However, the experiment revealed several areas
that require further improvement.

In the scenario of canceling a task scheduled for
an iteration, additional free time arises. Typically, in
practice, tasks are postponed to fill the freed time
interval. Since this situation does not create
additional risks for the project progress, its
importance is less obvious, but it also creates a
moment of uncertainty for engineers. The algorithm
for this scenario should be formalized, despite the
apparent simplicity of the situation.

The scenario where a task is completed before
the deadline also does not create risks for the

project, but this micro change also affects the start
dates of subsequent tasks, similar to point 1.

The scenario of delaying task completion is
similar to scenario 2, except that in this case, risks
for the project are created, and notification may be
required.

Observations 1-3 led to an understanding of the
need to classify micro changes as such and analyze
the reasons for their occurrence.

The relevance of studying scenarios of
interrupting the execution of the current task was
confirmed, as this scenario creates a moment of
uncertainty in the team, often blocks the work of
more than one engineer, necessitates frequent
context switching, and, consequently, introduces
significant risks to the project progress.

6. CONCLUSIONS

A model has been created that allows for the
collection and analysis of task planning indicators in
a project, taking into account micro changes. An
algorithm has been developed to respond to the
addition of a new task to the project. An algorithm
has been developed to respond to changes in the
priority of existing tasks. Algorithms for notifying
stakeholders in case of changes in task execution
deadlines, leading to violations of commitments
regarding their completion, have been developed.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of information
technology

304

Kungurtsev O. B, Chorba R. V. /

Herald of Advanced Information Technology

2023; Vol.6 No.4: 297-307

The model and algorithms were tested on a real
project, and performance characteristics were
collected and analyzed before and after the
experiment, confirming the effectiveness of the
algorithm.

Further research directions include:

o Clasterization [20] and/or classification of
scenarios of micro changes and development of the

e Analysis of possible scenarios for suspending
the execution of the current task to increase team
productivity by minimizing time losses for context
switching and reducing engineers' stress levels.

e Development of scenarios and algorithms for
choosing developer in situations where tasks need to
be transferred to another engineer, targeting for
minimizing time losses.

formal response algorithms

REFERENCES

1. Srivastava, A., Bhardwaj, S. & Saraswat S. “SCRUM model for agile methodology”. 2017
International Conference on Computing, Communication and Automation (ICCCA). Greater Noida: India.
2017. p. 864-869. DOI: https://doi.org/10.1109/CCAA.2017.8229928.

2. “PMBOK® Guide (2021)”. — Awvailable from:
standards/foundational/pmbok. — [Accessed: 28 July 2022]

3. Kolesnikova, K. V. & Lukianov, D. V. “Analysis of the effectiveness of combining the roles of
scrummaster and product owner in ScrumTeams”. Herald of Advanced Information Technology. 2021; 4 (1):
67—74. DOI: https://doi.org/10.15276/hait.01.2021.6.

4. Morana, G. “The beginning of a cognitive software engineering era with Self-Managing
applications”. IEEE/ACM 1st International Workshop on Software Engineering for Cognitive Services

https://www.pmi.org/pmbok-guide-

(SE4COGQG). Gothenburg, Sweden. 2018. p. 1-4,
https://www.scopus.com/authid/detail.uri?authorld=57197846381.
5. West, D. “What are the three scrum roles?” - Available from:

https://www.atlassian.com/agile/scrum/roles. — [Accessed: 28 July 2022].

6. Kuhrmann, M. et al. “What makes agile software development agile?” In IEEE Transactions on
Software Engineering. 2022; 48 (9): 3523-3539, https://www.scopus.com/authid/detail.uri?
Authored=14015954200. DOI: https://doi.org/10.1109/TSE.2021.3099532.

7. Saradhi, B. P., et al. “Hesitant fuzzy project planning and scheduling using critical path technique”.
Turkish Journal of Computer and Mathematics Education. 2021; 12 (6): 5272-5286. — Awvailable from:
https://www.proquest.com/openview/e67e5f6cf7af6h9342f39a41bf50d526/1 — [Accessed: 28 July 2022].

8. Galli, B. Jh. “Statistical tools and their impact on project management—how they relate”. The Journal
of Modern Project Management, 2021, 9 (2): 129-143.
https://www.scopus.com/authid/detail.uri?authorld=35931897100.

9. Biliavskyi, V. M. & Antoniuk, O. V. “Agile management tools and their impact on the effectiveness
of project implementation” (in Ukrainian). Aviation, Industry, Society: 1V International Science and Practice
Conf. Kremenchuk: Ukraine. 2023. p. 712-714.

10. Aslam. W. & ljaz, F. “A quantitative framework for task allocation in distributed agile software
development”. In IEEE Access. 2018; 6: 15380-15390, https://www.scopus.com/authid/detail.uri?
author1d=34972616300. DOI: https://doi.org/10.1109/ACCESS.2018.2803685.

11. Pachler, D., Kuonath, A., Specht, J., Kennecke, S., Agthe, M. & Frey, D. “Workflow interruptions
and employee work outcomes: The moderating role of polychronicity”. Journal of Occupational Health
Psychology. 2018; 23 (3), 417-427, https://www.scopus.com/authid/detail.uri?authorld=57195740187.
DOI: https://doi.org/10.1037/0cp0000094.

12. William, P., Kumar, P., G. S. Chhabra & K. Vengatesan, “Task allocation in distributed agile
software development using machine learning approach”. International Conference on Disruptive
Technologies for Multi-Disciplinary Research and Applications (CENTCON). Bengaluru: India. 2021.
p. 168-172, https://www.scopus.com/authid/detail.uri?authorld=57433493200.

DOI: https://doi.org/10.1109/CENTCON52345.2021.9688114.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of 305
information technology

Kungurtsev O. B, Chorba R. V. [/ Herald of Advanced Information Technology
2023; Vol.6 No.4: 297-307

13. Tregubov, A., Boehm, B., Rodchenko, N. & Lane, J. A. “Impact of task switching and work
interruptions on software development processes”. In: Proceedings of the 2017 International Conference on
Software and System Process (ICSSP 2017). Association for Computing Machinery. New York: USA. 2017.
p. 134-138, https://www.scopus.com/authid/detail.uri?authorld=56764212800.

DOI: https://doi.org/10.1145/3084100.3084116.

14. Abad, Z. S. H., Karras, O., Schneider, K., Barker, K. & Bauer, M. “Task interruption in software
development projects: What makes some interruptions more disruptive than others?” In: Proceedings of the
22nd International Conference on Evaluation and Assessment in Software Engineering (EASE '18).
Association for ~ Computing ~ Machinery. New York: USA. 2018. p. 122-132
DOI: https://doi.org/10.1145/3210459.3210471.

15. Wiesche, M. “Interruptions in agile software development teams”. Project Management Journal.
2021, 52 (2), 210-222, https://www.scopus.com/authid/detail.uri?author1d=42962873700.
DOI: https://doi.org/10.1177/8756972821991365.

16. Walker, A “Surviving the zombie apocalypse”. - Available from:
https://www.infog.com/presentations/career-skills-self-management. — [Accessed: 28 July 2022].

17. Khristich, A. L., Kolot, S. A. & Polic, V. “Designing a professional burnout correction program
based on life-purpose orientations in wartime conditions”. Herald of Advanced Information Technology.
2023; 6 (1): 81-96. DOI: https://doi.org/10.15276/hait.06.2023.6.

18. Oborskyi, H. O., Saveleva, O. S., Stanovska, I. I. & Saukh, 1. A. “The information technologies of
anti-crisis solutions search in complex dynamic systems management”. Applied Aspects of Information
Technology. 2020; 3 (2): 72-82. DOI: https://doi.org/10.15276/hait.02.2020.7.

19. Olekh, H. S., Prokopovych, I. V., Olekh, T. M. & Kolesnikova, K. V. “Elaboration of a Markov
model of project success”. Applied Aspects of Information Technology. 2020; 3 (3): 191-202.
DOI: https://doi.org/10.15276/aait.03.2020.7.

20. Kungurtsev, O., Zinovatna, S., Potochniak, Ya. & Novikova, N. “Development of methods for pre-
clustering and virtual merging of short documents for building domain dictionaries”. Eastern-European
Journal of Enterprise Technologies. 2020; 5 (2(107)): 39-47,
https://www.scopus.com/authid/detail.uri?authorld=57188743440. DOI: http://doi.org/10.15587/1729-
4061.2020.215190.

Conflicts of Interest: the authors declare no conflict of interest

Received 04.09.2023
Received after revision 30.11.2023
Accepted 11.12.2023

DOI: https://doi.org/10.15276/hait.06.2023.19
YK 004.41+005.2

Il1anyBaHHS MOTOKY 3aBJaHb B YMOBAX MiHOPHHX 3MiH B
npoueci CTBOPEeHHsI NPOrPaMHOro 3a0e3nevYeHHs

Kynrypues OJiexciii Bopncoanl)

ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author Id: 57188743440
Yopoa Pagim Ba.nepiﬁoanl)

ORCID: https://orcid.org/0009-0005-9879-4375; radim.chorba@gmail.com

) Hanjonansuuii yuisepcurer «Onecska nonirexuixay, mp. llleuenxka, 1. Oneca, 65044, Ykpaina

ISSN 2663-0176 (Print) Methodological principles of information 306
ISSN 2663-7731 (Online) technology

Kungurtsev O. B, Chorba R. V. [/ Herald of Advanced Information Technology
2023; Vol.6 No.4: 297-307

AHOTAIIS

VY cydacHHX METONMKAxX YMPaBIiHHSA MPOEKTaMH HEIOCTaTHBO yBaru MPHUIUISETHCS NPOLECY OMEPaTHBHOTO pearyBaHHS Ha
MIHOpHI 3MiHM T Yac BHKOHAHHS 3aBJAaHb, SIKi BHMAaraloTh KOPUTYBaHHS IPIOPHUTETIB IOTOYHHUX 3aBIaHb. ICHyIOWI migxoan
HEJIOCTAaTHBO JIeTalli30BaHi Uil (PyHIaMEHTAIFHOI IePEOLiHKH MPIOPUTETIB B yMOBaX CYTTEBOTO BIUIMBY TaKHX 3MiH Ha BUKOHAHHS
npoexry. HasiBHI MaTepiaiii Ta HiIXOQu HE HAJAIOTh TOTOBHX pillleHb. Y ILiH CTaTTi HPOIOHYETHCS MOJIENb IUIAHYBAHHS 3aBJaHb IIiJ
4yac BMKOHAHHS HPOEKTy. Mozenb BKIIOYAE€ HACTYNHI KIOUYOBI eneMeHTH: Bukonaseus, HaGip 3aBnanb, IIporpec BuxonanHS
3ananb ta O6uncnenss [anukaropiB Skocti Bukonanus 3aBnank. EnementT BukoHaBIs MicTHTE iH(OpMaIito s 1IeHTU(IKAIIT
po3pobHUKa Ta po3mnofiay Horo pobouoro uyacy. Ilepenbadaerses, MO B OCOONMBHX yMOBaX YacCTHHY HEPOOOYOIro 4acy MOXHA
3aIUIaHyBaTH Ul BUKOHAHHS 3aBlaHb. Enement HaGopy 3aBnaHp npejcraBiisie 3aIUIaHOBaHI 4acOBI XapaKTEPHCTUKK Ta MPiOPUTET
koxHOro 3aBmaHHs. Enement Ilporpecy Buxonanns 3aBmaHp MicTHTH iHpOpMamito mpo (GakTH4HI IaTé, TOOWHH Ta TPUBATICTH
CErMEHTIB, MiJl Yac SKHX BUKOHYBajJacs 3aBIaHHS. Po3paxyHKH 1HIMKATOpIB SIKOCTI BUKOHAHHS 3aBJIaHb JI03BOJAIOTH OTPUMATU
orepaTHBHY iH(OPMAIiIo PO XiJ KOHKPETHUX MPOEKTIB Ta OLIHIOBATH e()eKTHBHICTH yIpaBIiHHA NporiecaMu. Po3pobieHo ocHOBHI
aJITOPUTMH YIIPABIIiHHS MOCIIZOBHOCTSMH 3aBJlaHb. ANroputM «JlogaBaHHS HOBOI'O 3aBIAHH» pealidye 4epry 3aBiaHb Ha OCHOBI
MpiOpUTETY Ta JaT MOYATKy Ta 3aKiHYeHHS. ANropHTM «3MiHa NPIOPUTETY 3aBJAaHHA» Mependadae MOXIUBE NEPETO3UI[IOHYBAHHS
3aB/IaHHsI, @ TAKOXK BUIAJIKK EPEHECEHH: 3aB/IaHHs Ha IHIIOr0 BUKOHABL UM NEPEIUIaHyBaHHS 3aBJaHb MiJ] YaC HepOOOUHX T'OMUH.
Kpim Toro, po3po0ieHo anropuTMu I CHOBIIIEHHS PO KPUTHYHI 3MiHH IUTAHYBAaHHS JUTSA 3aJIeKHNX 3aBIaHb («CHOBIIEHHS PO
KPUTHYHI 3MIHH IUTaHYBaHHS TS 3aJI€)KHHUX 3aBJIaHb)») Ta KPUTUIHOTO 3HIKEHHSI IPIOPHUTETY JUIS 3aJIeKHNX 3aB/IaHb («CIOBIIIEHHS
PO KPUTHYHE 3HWKEHHS NPIOPUTETY AN 3aJ€XKHHUX 3aBIaHb»). 3alpOIIOHOBAHA MOJIEIb Ta AITOPUTMH JI03BOJIAIOTH BPAXOBYBATH
MIKpO3MiHH B TPOEKTI Ta pearyBaTH Ha iX BHHUKHEHHs. IliZTBEp/KEHHS pe3yNbTaTiB JOCIIDKCHHS Ha DPEalbHOMY HPOEKTI
MIPOJIEMOHCTPYBAJIO €()EKTUBHICTH 3aIIPOIIOHOBAHOI MOJIETIi Ta aAITOPUTMIB, BOJHOYAC BHSBUBIIH IIEBHUH Ps BIAKPHTHX MMUTaHb, SIKi
MOTPeOyIOTh MOZANBIION0 BUBUCHHA. MaiiOyTHI HANpsSMKH JIOCHI/UKEHb BKIIOYAIOTh KiacH(ikallito CleHapiiB MIKpO3MiH, aHawi3
MOJMUIMBHX CLEHApiiB NPU3YNMHEHHS BUKOHAHHS OTOYHMX 3aBJIaHb Ta PO3POOKY CLEHapiiB Ta alrOpPUTMIB JUIsi BHOOPY BUKOHABLIIB.

KirouoBi cioBa: mporpamue 3a0e3leucHHs; KepyBaHHs NPOEKTOM; IUIAHYBaHHS 3aB/laHb, 4yepra 3aBlaHb, NMPIOPUTETH
3aBJ/laHb; 3MiHa NPIOPUTETIB 3aBJaHb, MIKPO3MiHH IPOEKTA

ABOUT THE AUTHORS

Oleksii B. Kungurtsev - PhD, Professor, Professor of the Department of Software Engineering. Odessa Polytechnic
National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author Id: 57188743440
Research field: Methods and means of increasing the productivity of information systems; communication means with
automated systems in natural language

Kynrypues OJiekciii BopucoBuy - xauaquaar TexHiYHUX HayK, npodecop kadenpu IHxenepii nmporpamuoro
3abe3neuenHs HanionanbHoro yHiBepeurery «Onecpbka nonitexuikay, np. lllepuenka, 1. Oneca, 65044, Ykpaina

Radim V. Chorba - Postgraduate student of the Department of Software Engineering. Odessa Polytechnic National
University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0009-0005-9879-4375; radim.chorba@gmail.com

Research field: Methods and means of increasing the productivity of the development teams

Yopoa Panim BasepiiioBuu - acmipant kadenpu Imkenepii nporpamHoro 3abesmnedeHHs HarioHanbHOro
yHiBepeuteTy «Onecbka nomuitexHika», np. llleBuenka, 1. Oneca, 65044, Ykpaina

ISSN 2663-0176 (Print) Methodological principles of 307
ISSN 2663-7731 (Online) information technology

