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ABSTRACT 

Automated refactoring plays a crucial role in the maintenance and evolution of object-oriented software systems, where 

improving internal code structure directly impacts maintainability, scalability, and technical debt reduction. This paper presents an 

extended review of current approaches to automated refactoring, emphasizing methodological foundations, automation levels, the 

application of artificial intelligence, and practical integration into CI/CD workflows. We examine rule-based, graph-based, machine 

learning–based (CNNs, GNNs, LLMs), and history-aware (MSR) techniques, along with hybrid systems incorporating human-in-the-

loop feedback. The taxonomy of refactoring types is aligned with established terminology – particularly Fowler’s classification – 

distinguishing structural, semantic (architectural), and behavioral transformations, all grounded in the principle of behavior 

preservation. Formal models are introduced to describe refactorings as graph transformations governed by preconditions and 

postconditions that ensure semantic equivalence between program versions. The paper provides a concrete example of a 

transformation generated by the DeepSmells tool, demonstrating the «before/after» change and explaining the rationale behind the 

AI-driven recommendation. The study also addresses the challenges of explainability and semantic drift, proposing mitigation 

strategies such as SHAP-based analysis, attention visualization in transformer architectures, integration with formal verification tools 

(e.g., SMT solvers, symbolic execution), and explainable AI recommendations. Special attention is given to the limitations of 

automated refactoring in dynamically typed languages (e.g., Python, JavaScript), where the lack of static type information reduces 

the effectiveness of traditional techniques. Generalization to multilingual systems is supported through models like CodeBERT, 

CodeT5, and PLBART, which operate over token-level, syntactic, and graph-based representations to enable language-agnostic 

refactoring. The paper also discusses real-world integration of automated refactoring into CI/CD environments, including the use of 

bots, refactoring-aware quality gates, and scheduled transformations applied at commit or merge time. Practical examples illustrate 

the verification of behavior preservation through regression testing or formal methods. This work targets software engineers, 

researchers, and tool developers engaged in intelligent software maintenance and automated quality assurance. By offering a 

consolidated classification, tool selection criteria, and practical scenarios, the paper delivers applied value for designing custom 

refactoring solutions or adopting existing technologies across diverse project constraints–ranging from safety-critical systems to 

large-scale continuous delivery pipelines. 
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INTRODUCTION, FORMULATION OF THE 

PROBLEM 

Given the history of changing software and 

growing complex systems, the maintainability and 

adaptability of software source code have emerged 

as deciding factors for whether projects succeed or 

fail in the long run. As systems get larger, they 

accumulate technical debt (inefficient, redundant, or 

overly complicated code), which not only makes it 

less readable, reusable and scalable. Degraded 

internal software quality results in higher 

development costs, prolonged debugging time, and 

enfeebled efficiency [1]. 
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Refactoring – transforming the internal quality 

of a code base without changing its function – has 

become a Linus for dealing with such concerns. 

Regular and disciplined refactoring ensures that 

developers are able to keep the code as clear as 

possible code smells and align its implementation to 

the latest design goals and architectural rules [2]. 

Nevertheless, traditional, manual refactoring in 

big object-oriented systems is time-consuming, 

prone-to-error and has high demand on developers' 

knowledge. In the agile and continuous delivery 

world, this challenge is further aggravated, as bug 

fixes are propagated with the next features, and there 

is usually no time to do deep work on the code. 

Accordingly, the need for automatic and semi-

automatic refactoring tools and techniques is 

increasing continuously [3]. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0 /deed.uk) 
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Automated refactoring speeds up the 

maintenance and guarantees consistency across 

different code bases, decreases human factor error 

rate, and promotes best practices. In the era of 

intelligent systems, machine learning and big code 

analysis, there are new opportunities to make 

refactoring more adaptive, context-sensitive, and 

developer-centric. Therefore, to re-evaluate and 

examine all existing automated refactoring 

approaches and to determine their strengths and 

weaknesses and to also forecast future promising 

research topics is important for the future software 

engineering community. 

Refactoring automation is key for the 

efficiency, uniformity and long-term sustainability 

of software evolution tasks. Classical manual 

refactoring is based largely on developer experience 

and subjective reasoning whereas automated 

refactoring 'techniques can provide systematic, 

reproducible and scalable ways to improve the 

quality of code [4]. 

Among the main advantages of refactoring 

automation is the time savings that occur when the 

burden of locating and materializing code 

improvements is dramatically reduced, particularly 

where large and complex object-oriented systems 

are concerned. Automated refactoring tools like can 

easily identify structural problems (code duplication, 

long methods and deep inheritance trees), and 

propose suitable transformations based on sound 

software engineering principles. 

In addition, automated refactoring guarantees 

the coherence of the codebase by removing the 

human element and forcing conventional best 

practices. It becomes a benefit for your continuous 

integration/continuous deployment (CI/CD) pipeline 

in no time by fitting nicely into your day-to-day 

workflow and giving you confidence in changes that 

you want to move safe and validated with minimal 

impact on your production systems [5]. 

Due to machine learning combined with 

intelligent code analysis, trends like context-

awareness are pulling more and more into today's 

refactoring tools and allow refactoring tools to 

intelligently reason about code structure. Such 

evolution improves their capability to produce 

suggestions preserving the original program 

semantics and improving their maintainability. 

Automated refactoring not only saves time and 

energy for developers, but also helps projects 

maintain health and long-term success with clean, 

modularity, and adaptability [6]. 

Thus, the purpose of this research is to 

analyze existing approaches to the automation of 

refactoring in object-oriented software systems, 

identify their strengths and limitations, and outline 

promising directions for further development and 

improvement. 

To achieve this purpose, the following 

objectives have been defined: 

1) to explore the theoretical foundations of 

software refactoring and its role in improving code 

quality; 

2) to classify and analyze current tools and 

methods used for automated refactoring; 

3) to evaluate the advantages and limitations of 

different refactoring automation approaches, 

including rule-based, heuristic, and machine 

learning-based methods; 

4) to identify common challenges and open 

issues in the implementation of automated 

refactoring systems; 

5) to formulate key trends and future directions 

in the development of intelligent and context-aware 

refactoring tools. 

By addressing these objectives, the study aims 

to contribute to a better understanding of the current 

landscape of automated refactoring and provide a 

foundation for the design of more effective and 

intelligent solutions. 

This survey paper is targeted at a wide 

readership consisting of both the academia as well as 

the industry. As a comparison analysis for the 

methods and tools available, the work supports 

software engineers and design tool developers to 

choose refactoring strategies according to system 

size, language, and project restrictions. For 

academics, the review organizes the trends in 

machine learning based refactoring, current open 

challenges (e.g., explainability and behavior 

preservation), and future directions of investigation. 

The practical impact of the research is that it 

can help to design intelligent refactoring assistants, 

enable better integration in CI/CD pipelines, and 

shape the application of hybrid techniques that mix a 

rule-based precise approach with a learning-based 

more adaptable one. By combining a variety of 

techniques – from classical syntactic transformations 

to large language model–based suggestions–the 

paper also works towards narrowing the gap 

between research results from theory and practical 

software maintenance practises. 

1. THEORETICAL FOUNDATIONS OF 

SOFTWARE REFACTORING 

Refactoring is the function of restructuring code 

that already exists, but not to change its external 

behavior. Refactoring supports the process of 
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modifying software to correct these so that the 

resulting use of a software product is not 

compromised by the presence of remaining defects. 

Martin Fowler is credited for the popularization 

of the concept of refactoring, which he defined as «a 

disciplined technique for restructuring an existing 

body of code, altering its internal structure without 

changing its external behavior» [7]. This progress 

consists of a series of small transformations that do 

not change the behavior of the system but raise the 

level of design. 

Refactoring is used to eliminate code smells 

(i.e., duplicated code, long methods, large classes), 

to reduce technical debt and to make way for future 

code extensions or code optimizations. It's a 

cornerstone of agile software development, where 

it's all about ongoing code quality maintenance in 

order for a system to keep high levels of quality as 

time passes by [8]. 

By relentlessly optimizing code structure, 

refactoring leads to better understanding of the 

codebase, easier debugging capabilities and more 

confident code modifications whilst forming the 

basis of a much healthier and scalable software 

architecture. 

1.1. Goals and principles of refactoring 

The refactored software keeps its external 

functionality, but internal structure is improved. 

This renovation is aimed to help make better 

readable code and to make it easier for other 

developers to bugifx and develop and/or support the 

code base and also serves to remove duplication and 

future proof the system for future development or 

extension [9]. 

Refactoring is not about fixing bugs or adding 

functions; it’s about improving the design of existing 

code to make it easier to understand and modify. By 

constantly refactoring a code base, developers can 

forestall the rot and technical debt which would 

otherwise accumulate resulting in deterioration in 

maintainability and longevity of the software 

product [10]. 

The major objectives of refactoring are: 

1) maintain free + improved maintainability: 

the ability to make the code easier to read, 
understand and change; 

2) increased re-usability: separating concerns 

into cohesive modules; 

3) simplified complexity: simplification of 

control structures, breakdown of large methods and 

removal of needless dependencies; 

4) greater uniformity: code hews to coding 

standards and architectural principles. 

There are several basic principles behind the 
act of refactoring: 

1) behavior preservation – should retain the 

outer (syntaxialogical) behavior of the program as is 

for each transformation; 

2) tiny, safe transformations – refactoring 

happens in tiny, tested steps; 

3) iterative development – refactoring should 

not be an add-on to the development process; 

however it should rather be a continuation of the 

development process; 

4) automated TDD test suite – allowing me to 

refactor mess, without breaking everything. 

By following these goals and principles, 

refactoring is a disciplined engineering practice that 

enables a cleaner, more maintainable and higher-

quality software system. 

1.2. Classification of refactoring types 

Refactoring methods can be divided into 

different categories depending of their relative 

scope and type of edits. Structural, behavioral and 

semantic refactorings are the most typical 

classification. These categories are complementary 

for addressing specific facets of software quality and 

they have different objectives within the overall 

process of software maintenance [11]. 

Structural Refactoring. Structural refactoring is 

considered to enhance the organization and the 

appearance of the elements of the code preserving 

the syntactical and the working mechanism of the 

pro- gram. These changes focus on the structural 

properties of the codebase (e.g., modularity, 

encapsulation and dependencies).  

Examples include: 

1) picking out methods or classes to increase 

the level of the internal cohesion and diminish the 

code duplications; 

2) migrating methods or fields between classes 

for better spread of responsibility; 

3) we name variables, methods and classes, so 

that we can understand what you wrote. 

Behavioral Refactoring. Behavioral refactoring 

is the process of modifying internal behavior of a 

component without changing its observable behavior 

to the rest of the software system [12]. They are 

frequently used as refactoring in order to achieve 

performance improvements, greater robustness, or 

the implementation of particular design patterns. 

Examples include: 

1) taking conditionals out of the equation with 

polymorphism; 

2) changing the iteration routine preserving the 

output; 
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3) adding lazy init or cache for optimization. 

Semantic Refactoring. Semantic refactoring are 

broader changes that have a direct impact on the 

meaning or semantics of the code at an higher level, 

usually with interactions across several companies 

or layers. Such changes maintain the systems’ 

external behavior but potentially make a big 

difference for the semantic and design of code [13].  

Examples include: 

1) generalizing a class to extract a common 

superclass or interface; 

2) removing ad-hoc implementations with 

domain-specific abstractions; 

3) refactoring of imperative code to object 

oriented design. 

This taxonomy is useful to realize impact and 

risk of various refactoring types, and can be used by 

software developers to choose the right techniques, 

given the goals and context of the software project. 

1.3. Recognizing when to refactor: code 

smells and beyond 

Identifying where and when refactoring are to 

be applied is an important aspect for retaining 

software quality. The reason is that since refactoring 

does not add new functionality or repair known 

bugs, it must be motivated by some indication of a 

design flaw or code rot. There are two main 

mechanisms for detecting refactoring such as code 

smells and code quality measures (Table 1). 

In practice, the discovery of refactoring 

opportunities is typically driven by so-called code 

smells –observable characteristics of poor design. 

Based on the work of Fowler and Beck [7], these 

smells are heuristic instead of formal defects. They 

are most valuable in large codebases where you 

cannot search and read enough manually. 

Typical smells include: 

 Long Method – methods that have too much 

logic; 

 God Class – classes that are doing too much; 

 Feature Envy – methods stealing too much 

from other classes; 

 Copy Paste, Shotgun Surgery, and others. 

Though these categories are still fundamental, 

modern research indicates some drawbacks: 

 Subjectivity and Developer bias – just 

because one developer sees it as a smell doesn't 

mean others won't see that as an acceptable design 

choice. The lack of domain context leads to false 

positives; 

 Context-Free Detection – many static smell 

detection tools (e.g., PMD, Checkstyle) are context-

agnostic and tend to report symptoms rather than 

diagnoses. For instance, performance-sensitive code 

might not mind a long method at all; 

 Absence of Prioritization – traditional smell 

taxonomies do not provide measurements for 

seriousness and refactoring priority. This stands in 

the way of automated triage in largescale systems. 

To deal with these problems recent approaches 

have suggested the integration of metric-driven and 

learning-based methods. Smells can be scored with 

structural indicators (e.g., cyclomatic complexity, 

coupling metrics) and contextualized using machine 

learning models developed on labeled datasets of 

«smelly» vs «clean» code. 

Table 1. Identifying the Need for Refactoring (Code Smells vs. Code Quality Metrics) 

Criterion Code Smells Code Quality Metrics 

Definition 
Symptoms in code that may 

indicate deeper problems 

Quantitative indicators of internal code 

characteristics 

Granularity Typically, method or class level Various levels – class, package, system 

Detection Method 
Heuristic or rule-based analysis 

(e.g., bad smells catalog) 

Static analysis tools compute numerical 

thresholds 

Interpretability 
High – human-readable 

descriptions 

Medium – often requires interpretation of 

numeric values 

Tool Support 
Supported in IDEs like IntelliJ, 

Eclipse 

Broad tool support (e.g., SonarQube, 

Checkstyle) 

Automation Potential 
Moderate – requires human 

judgment for confirmation 
High – can be automated in pipelines 

Context Sensitivity 
Low – does not consider overall 

design intent 

Medium – reflects structural complexity but 

not intent 

Main Limitation 
Subjective and may vary between 

developers 

Thresholds may not generalize across 

projects 

Source: compiled by the authors 
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Furthermore, we are witnessing a move to 

behavior-informed smells where traces of runtime, 

history of code churn, and information on which 

code is more/less bug-prone can be used to correlate 

smells need with refactoring. For instance, a practice 

used for common bugs or poked at in every release 

might also seem deserving for analysis. 

For this paper, we take a middle-of-the-road 

view: pre-existing smells are a good starting point, 

but refactoring decisions should be made by 

incorporating per-project quality signals, historical 

context, and the expected impact on maintainability. 

Automated systems should therefore transition from 

catalog odor detection to adaptive, learning-

informed prioritization. 

2. MODERN APPROACHES TO AUTOMATED 

REFACTORING 

The challenge of maintaining code quality via 

manual refactoring is exacerbated by the growth in 

complexity and size of today’s software systems, 

which has made it more and more difficult to keep 

code coherent, efficient, and free from defects. 

Facing this challenge, researchers and industry 

practitioners have proposed various techniques 

aiming at automating refactoring activities on 

object-oriented programs [15]. Those approaches 

differ by theoretical background, automation level, 

and capability of considering contextual and sematic 

information of code. This section structurally 

summarizes the four main classes of automated 

refactoring techniques: tool-based, algorithmic, AI-

driven, and history-based (MSR–Mining 

SoftwareRepositories) approaches. 

Tool-Based Approaches. Tool-based 

refactoring tools are typically built into modern 

IDEs e.g. IntelliJ IDEA, Eclipse and Resharper. 

These tools provide a set of predefined refactoring 

operations, e.g. renaming, method extraction, and 

class moving, that can be performed either by 

graphical menus or using shortcuts [16]. While 

useful, these tools are generally confined to surface, 

syntax-level refications and are heavily dependent 

on the developer’s guidance to abstract and confirm 

changes. They offer inferior type of context 

reasoning and are not able to self-suggest structural 

reorganization. 

Algorithmic Approaches. The goal of 

algorithmic approaches is to automatically refactor 

code according to rules which might be around code 

smell, design patterns, graph representations and 

static analysis. Such methodologies generally 

consider the structural aspects of the code using 

concepts such as abstract syntax trees (ASTs), 

software metrics, and design smells to recognize the 

opportunities for transformation. Graph 

representation allows reasoning about structural 

properties, and it became possible to find 

refactoring candidates at scale. Although 

deterministic and interpretable, these frameworks 

are limited when it comes to adaptation and 

semantics because they are grounded into a rule-

based representation. 

AI-Driven Approaches. With the advent of 

large code repositories and advanced machine 

learning models, AI based approaches have started 

becoming an alternative to intelligent refactoring AI 

techniques [17]. Such approaches (meta-) learn from 

supervised and unsupervised learning models such 

as deep neural networks, graph neural networks 

(GNNs), transformers, and code embeddings to 

detect code smells, predict refactoring operations, 

and recommend transformations with low-level of 

human effort. Tools like DeepSmells, MoveRec, 

and frameworks built upon CodeBERT have been 

successful at discovering relevant patterns in source 

code and evolutionary traces. However, the 

strategies are often used as the black-box methods 

and it is hard to interpret one's recommendation or 

to guarantee the correctness of behavior. 

History-Based Approaches: The MSR 

Challenge. Another important class is mining 

software repositories (MSR) and finding patterns 

from previous refactoring activities. Through 

reviewing commit history, pull requests, and version 

control logs, these techniques are able to recognize 

recurring sequences of transformations and to draw 

conclusions from experienced developers based on 

the transformations they performed. RefDiff and 

RefactoringMiner are examples of this kind of tools 

that identify performed refactorings to guide next 

recommendations. These approaches offer utility in 

reality and explainability but are very sensitive to 

the availability and quality of version history [18]. 

Combined, these four classes of mechanisms 

provide complementary strengths: tool-oriented 

approaches are strong in terms of usability, 

algorithmic ones offer structural reasoning, AI-based 

techniques promise adaptivity and intelligence, and 

history-based approaches anchor their 

recommendations in empirical developer behavior 

(Table 2). 
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Table 2. Modern approaches to refactoring automation 

Criterion Tool-Based Algorithmic AI-Driven 
History-Based 

(MSR) 

Foundation 

Manual or semi-

automated 

transformations via 

IDEs 

Rule-based, pattern-

driven, or graph-

based algorithms 

Machine learning 

and deep learning 

models 

Mining software 

repositories for 

historical changes 

Automation 

Level 

Partial – requires 

developer interaction 

High – can 

automatically detect 

and suggest changes 

High – learns from 

data to suggest 

transformations 

High – learns 

patterns from actual 

refactoring commits 

Context 

Awareness 

Low – limited to 

local code structures 

Medium – some 

structural reasoning 

via graphs 

High – can 

incorporate multiple 

contextual signals 

Medium – based on 

past developer 

behavior 

Semantic 

Understandi

ng 

Low – lacks deep 

semantic analysis 

Medium – syntax-

level or structural 

inference 

High – models can 

infer semantics from 

examples 

Medium – indirectly 

captures semantics 

via evolution 

Explainabilit

y 

High – user can 

inspect changes 

before applying 

Medium – defined 

rules or patterns can 

be traced 

Low to Medium – 

often black-box 

behavior 

Medium – examples 

from history are 

interpretable 

Scalability 

Moderate – 

dependent on IDE 

capabilities 

High – algorithms 

can handle large 

codebases 

High – scalable with 

sufficient computing 

resources 

High – can scale 

with project size and 

history depth 

Adaptability 
Low – static and 

rule-based actions 

Low – rigid rules, 

difficult to adapt to 

new contexts 

High – models can 

generalize to new 

cases 

Medium – tied to 

availability of 

version history 

Tool Support 
IntelliJ IDEA, 

Eclipse, ReSharper 

RefactoringMiner, 

Designite 

DeepSmells, 

MoveRec, 

CodeBERT-based 

systems 

RefDiff, 

RefactoringWatcher 

Main 

Limitation 

Limited to 

predefined 

operations, not 

project-aware 

Hard-coded rules 

reduce flexibility and 

learning 

Lack of transparency 

and need for large 

training data 

Dependent on quality 

and completeness of 

repository data 

Source: compiled by the authors 

3. AI-BASED AUTOMATED REFACTORING 

OF OBJECT-ORIENTED CODE 

3.1. AI in Code Refactoring: Background 

and Trends 

Refactoring is the process of restructuring of an 

existing computer program without altering its 

external behavior. 

The traditional refactoring tools depend on 

manually-developed heuristics, and static analyses, 

where as in recent years, the rapid progress has been 

observed in AI-based approaches to automate or 

help refactoring in object-oriented (OO) systems 

[19]. 

From 2020 to 2025, machine learning 

(ML)/deep learning and large language models 

(LLMs) have gained more attention from researchers 

for analyzing code for «code smells» (design 

weaknesses/bugs) and for recommending (or even 

applying automatically) refactoring changes. This 

overview provides a comprehensive picture of the 

current state-of-the-art of such AI-based refactoring 

techniques in terms of key contributions, followed 

methodologies, evaluation strategies, and 

outstanding challenges. 

Key Trends: Initial AI refactoring research has 

targeted supervised ML for the detection of code 

smells or the classification of refactoring types. For 

instance, some researchers apply ensemble ML (e.g. 

with XGBoost) for classification of the specific 

kind of refactoring (like Rename Method or Move 

Method) to the commit message text used in the 

refactoring operation [20]. 

With the availability of data (e.g., mining Git 

commits for known refactorings) deep learning 

became more popular. With the recent advancements 

in the NLP community, researchers started looking at 

neural models that are trained on code syntax and 
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structure rather than handcrafted features. Deep 

learning architectures, such as convolutional (CNN), 

recurrent (RNN/LSTM) and very recently graph 

neural networks (GNN), have been used to identify 

code smells (e.g., Long Method, God Class, Feature 

Envy) and recommend code refactoring 

recommendations. By 2023-2024 the arrival of strong 

code-based LLM applications (e.g. CodeT5, GPT 

models) prompted new directions: fine-tuning 

pretrained models to produce refactored code or 

utilizing prompt-driven LLMs for refactoring 

proposals. 

Hybrid AI approaches that combined deep 

learning with search-based optimization or human-

in-the-loop feedback were also investigated by 

researchers. The key new findings in these areas are 

presented below. 

3.2. Machine Learning for Code Smell 

Detection and Refactoring Recommendations 

Some recent research works are using ML 

classifiers for detecting code smells and suggesting 

remediation change patterns [21]. A bad smell like 

Feature Envy or Long Method in the code can be a 

sign of respect for refactorings (ie moving method, 

extracting method). It also replaced traditional 

detection which was based on metric thresholds or 

rules of heuristics. Recently, researchers in the 

community proposed to instead train ML models on 

labeled examples as smelly vs. clean code to detect 

such patterns. The smell detection accuracy has also 

been enhanced with ensemble learning, for instance, 

some authors combines boosting and bagging 

classifiers (with feature selection and balancing) led 

to 97–99 % accuracies on smell datasets such as 

Blob Class and Long Parameter List [22]. 

The use of ensemble methods is motivated to 

handle class imbalance and overfitting problems 

frequent in smell datasets. In a more refined manner, 

advanced models use the deep learning approach for 

automatic feature extraction code. Some authors 

introduced DL approach for code smell detection. 

Such model obtained higher precision than 

traditional ML models [23]. Similarly, some authors 

proposed DeepSmells, it combines a CNN and an 

LSTM network to detect various types of code 

smells in Java code snippets [24]. The CNN is used 

to learn local structural patterns from the source 

code and the LSTM captures longer-range sematic 

context with a final dense network determining 

whether or not a snippet is “smelly”. DeepSmells 

model achieved better F1-scores for many smells 

with respect to previous techniques according 

empirical results. 

Another promising direction is utilizing graph-

based learning. The code itself has natural graphs 

(ASTs, control-flow, and call graphs), GNNs can 

encodes significant relational information for smell 

detection. Authors of paper [24] used a GNN to 

detect Long Method and Blob classes and found 

that their approach achieved higher accuracy than 

treating source code as flat text. 

A more sophisticated example in terms of 

Feature Envy is paper [25], where authors introduce 

two GNN-based approaches: SCG and SFFL. 

SCG (SMOTE Call Graph) models have the 

envy detection task to frame as a binary edge 

classification on a method-call graph, based on 

predicting the “calling strength” of method 

intersection class relationships; a method “belongs” 

in another class it is recommended to be moved to if 

that edge weight is highest. 

SFFL (Symmetric Feature Fusion Learning) 

model uses heterogeneous graphs to model various 

relations (method–method calls, method–class 

ownership, etc.) and applies link prediction to 

recommend a new class for a greedy method such 

that a refactored ownership graph is directly 

constructed. 

These GNN methods not only identify where 

the smell occurs but also suggest an actual 

refactoring. Experiments on real-world open-source 

projects show that our approach not only achieves 

better detection precision, but also can provide 

developers meaningful refactoring suggestions over 

existing heuristic methods. 

Example of refactoring generated by 

DeepSmells. To make the practical application and 

cleverness of the AI-enabled refactoring more 

concrete and self-explanatory, we consider an 

example of a change proposed by a powerful 

DeepSmells tool, whose behavior is based on a CNN 

+ LSTM deep learning model implementing a code 

smell detection and correction by analyzing an 

existing code that needs to be arranged. 

DeepSmells Suggestion: Extract Method 

public void generateReport(List<Employee> 

employees) { 

    DecimalFormat df = new 

DecimalFormat("#.##"); 

    double totalSalary = 0.0; 

    for (Employee e : employees) { 

        System.out.println("Name: " + 

e.getName()); 

        System.out.println("Position: " + 

e.getPosition()); 

        System.out.println("Salary: $" + 

df.format(e.getSalary())); 

        totalSalary += e.getSalary(); 

    } 

    System.out.println("Total salary: $" + 

df.format(totalSalary)); 

} 
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Upon its learned representation of common 

refactorings, DeepSmells therefore suggests 

extracting the body of the loop into a new method, 

increased read- ability and cohesion and less 

cognitive load for the calling method. 

Code after Refactoring 

public void generateReport(List<Employee> 

employees) { 

    double totalSalary = 

printEmployeeDetails(employees); 

    DecimalFormat df = new 

DecimalFormat("#.##"); 

    System.out.println("Total salary: $" + 

df.format(totalSalary)); 

} 

 

private double 

printEmployeeDetails(List<Employee> employees) { 

    DecimalFormat df = new 

DecimalFormat("#.##"); 

    double total = 0.0; 

    for (Employee e : employees) { 

        System.out.println("Name: " + 

e.getName()); 

        System.out.println("Position: " + 

e.getPosition()); 

        System.out.println("Salary: $" + 

df.format(e.getSalary())); 

        total += e.getSalary(); 

    } 

    return total; 

} 

Satisfying important behavioral invariants for 

such transformation are: 

 output remains unchanged; 

 internal state (salary sum) is preserved and 

returned correctly; 

 the code is now modular: logic for presentation 

and aggregation is encapsulated in a single-purpose 

method. 

Although DeepSmells does not provide human-

readable justifications for what suggestion is being 

made by the models, the motivation for suggesting 

that lies within the range of established thresholds 

for method length and fan-in complexity, which the 

neural model implicitly learns during training data. 

3.3. Deep Learning and Refactoring 

Recommendation Systems 

In addition to finding the smell of dead code, 

researchers have now also built recommendation 

systems that are able to suggest directly where to 

refactor old code and specifically which refactorings 

to apply. 

For example, in object-oriented (OO) programs, 

it is a common requirement to move methods from 

class to another. This refactoring is even provided as 

an automated suggestion by JDeodorant when it 

finds «envy» in one class. 

There are already a number of works trying to 
automate MMR recommendation using deep-
learning methods. 

For example, MoveRec is an approach that 
combines deep neural networks with knowledge 
derived from LLM. MoveRec uses a hybrid model 
that combines CNN, RNN and GRU to judge when 
and where to move methods. 

To cope with the unique shape of this NLP 
output, MoveRec augments input features with 
textual summaries generated by an LLM (GPT-
based, in this case) so that the method’s meaning 
and surrounding context are recorded. Static code 
metrics are taken into account, such as the similarity 
of domains between source and target files. Early 
trained on 12,475 examples out of 58 Java projects, 
MoveRec achieved an average F1score of 74 %, far 
surpassing earlier heuristics like JDeodorant and 
previous machine-learning tools (which typically 
improved F1 by 9-53 %). This shows that combining 
deep learning with LLM insights can significantly 
improve refactoring proposals' accuracy. 

RMove and Other Moving Methods (2021-
2023) – former attempts to recommend Move 
Method were mainly represented by simple ML or 
program analysis. For instance, authors of papers 
[26] used a random forest to analyze code 
dependency graphs, and authors of work [27] 
employed path-based embeddings (Code2Vec) to 
rank candidate moves. 

These projects showed their feasibility but not 
their quality. With the advent of deep models such 
as MoveRec, which take semantic understanding 
into consideration, however, this situation has been 
drastically changed and is producing a much more 
efficient way for MMR recommendation. 

Refactoring in Multi-Objective Context – some 
research groups have integrated refactoring with 
other purposes, such as performance. These were the 
kind of issue authors addressed in their paper 
“MovePerf: efficient detection of refactoring 
performance faults using deep learning” [28]. They 
constructed a specialized deep learning model with 
historical data to predict a program’s execution time 
after refactoring move to method level. For 
MovePerf, the architecture consists of a deep 
feedforward neural network and a factorization 
machine (FM), able to detect both low-level and 
high-order feature interactions among code metrics. 
Training data was obtained by refactoring Java 
microbenchmark projects and benchmarking their 
performance using JMH (Java Microbenchmark 
Harness). With a feature set of 32, the model had a 
mean error (MRE) rate around 7.7 %, and it 
outperformed baseline predictors such as CNN or 
DeepFM. 
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Other Refactoring Types – there are less AI-
based systems for refactorings such as Extract Class 
or Extract Method, but researchers have been 
studying them. The 2022 article [29] proposes an 
automatic Extract Method refactoring technique 
handling a long method. Their method searches for 
what blocks of code to pull out using program 
slicing (not ML), in order to avoid introducing new 
smells. Turning to the field of machine learning, 
some scholars have created models to predict 
refactoring sequences – that is, which series of 
refactorings should be applied. 

For instance, in a 2025 review paper [30], a 
number of researchers optimized refactoring 
schedules by genetic algorithms or even deep 
reinforcement learning for multiple smells. 

Such meta-heuristic methods search over 
refactoring as a problem of selection (balancing 
various quality metrics), and if combined with 
learning-based models or heuristics they can indicate 
a sequence of haven-introduced rather than just 
giving you one. 

3.4. Large language model and automatic 
refactoring 

Large language models trained on code have 
opened up new space for automated refactoring. 
Two main approaches have emerged: LLMs (based 
on ChatGPT, for example) code modifications in 
some ways that make specially refactored code 
prompt and general LLMs become refactoring 
engines. 

Fine-Tuning and RL for Refactoring: Authors 
of [31] recently introduced a model to generate 
refactored code using sequence-to-sequence and 
reinforcement learning. They made paired examples 
of pre- and post-refactored code using actual 
refactoring edits mined from Git (e.g., before and 
after an Extract Method refactoring), of which there 
are thousands. 

Based on these examples, they fine-tuned code 
generation models like CodeT5 and CodeGPT and 
then reinforced them to learn transformations. 

The model learns to output the refactored 
version of a given code fragment. Preliminary 
results indicate that Refactoring Engines can 
correctly apply numerous Extract Method 
refactorings. However, this approach must guarantee 
the behavior remains the same, something traditional 
refactoring engines generally do with robust 
precondition checks. 

ChatGPT and Interactive Refactoring: Another 

line of research views refactoring as an interactive 

AI-assisted task. Authors of the paper [32] 

conducted an empirical study on ChatGPT’s 

capability to refactor code using 40 Java code 

segments and prompts that pinpoint particular 

quality characteristics. 

They requested that ChatGPT would code 

refactor in order to raise different quality aspects 

(readability, efficiency). Afterward they assessed the 

results. The study found that is 39 out of 40 cases, 

ChatGPT produced improved code. Improvements 

might be substantial – say clearer naming, removing 

redundancies, or even sometimes changing data 

structures to make the design better. 

Even more impressively, ChatGPT was able to 

maintain the same general behavior as the original 

code did in 311 of 320 cases. 90% percent of the 

changes it made, the system produced accurate self-

explanatory commit messages. But the authors 

comment that there are some caveats: ChatGPT’s 

output is not consistent; indeed, from one prompt 

several possible refactoring solutions result, with 

only a few optimal. It made various modifications 

that were not just incomplete or incorrect (due to 

lack of the full context) but also had no counterpart 

in the original input. Given this, their results stress 

how powerful LLMs might be as refactoring 

assistants but, especially because of the occasional 

anomalous solution they suggest, you still need 

some human review [33]. 

ChatGPT as a collaborator is given some 

attention in subsequent studies: prompting it, for 

example, to produce the test cases that cause 

refactoring engine bugs or to perform specific code 

smell refactoring, such as Data Clumps. 

For the Data Clumps refactoring, authors of 

paper [34] designed an AI-driven pipeline which 

employed ChatGPT to locate groups of variables 

that should be encapsulated into new objects. Their 

pipeline locates such code smells automatically and 

suggests the introduction of a new data structure (a 

kind of “Extract Class” refactoring) by code changes 

that are provided by the LLM. 

In the end, LLMs bring a level of understanding 

and creative power, complementing traditional 

refactoring techniques. They are particularly good at 

making global improvements and justifying their 

changes (in commit messages or comments), but 

expecting uniformity, safety, and adherence is still 

an open question. 

3.5. Cross-Language Challenges and 

Dynamic Typing Constraints in Refactoring 

Automation 

While most existing solutions for automated 

refactoring have been conceived and tested in the 

realm of statically typed object-oriented languages, 

predominantly Java, the extension of these 
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techniques to dynamically typed or multi-language 

settings opens unexplored territories in software 

product lines research. 

In languages like Python and JavaScript, which 

have dynamic typing, many of the assumptions that 

classical refactoring holds don’t stand? No explicit 

type, late binding, reflection, not to mention 

metaprogramming all made static analysis process, 

code smell detection, and transformation 

precondition construction complicated. For example, 

identifying feature envy and method movement 

opportunities may be unreliable, because of the 

instability of the call graph and the ambiguity of 

dynamic dispatch. 

In addition, refactorings like Rename Method, 

Extract Class, and Move Function need more 

context in their runtime environments to work 

correctly. Dynamic analysis, test-based inference 

and runtime instrumentation are techniques that are 

being used more and more in such environments as 

complementary strategies. However, they tend to 

suffer from performance overheads and low 

coverage that impede the applicability to large-scale 

codes. 

Recent work tries to alleviate these problems by 

using probabilistic reasoning and learned type 

inference. For instance, code-corpora-trained neural 

models (e.g., CodeT5+, GraphCodeBERT) may 

estimate type information or data flow relations in 

untyped scripts that are not exactly the same as in 

typed scripts, facilitating partial transfer of 

refactoring techniques from typed to dynamic 

languages. 

In the context of software development, modern 

software projects tend to combine libraries written in 

many different languages (e.g., Java + Kotlin + 

Javascript). In this regard, language-independent 

materializations, such as a sequence of tokens, an 

abstract syntax tree or a graph-based intermediate 

form (e.g., universal abstract syntax graph) have 

been proposed as candidate representations for 

cross-language refactoring tool support. 

Multiple models (e.g., CodeBERT, PLBART, 

and RefT5) have been pre-trained on multilingual 

data covering Python, JavaScript, C++, etc. These 

models can be used to recognize refactoring patterns 

for multiple languages and even suggest consistent 

changes across modules written in different 

languages. Yet, idiomatic refactorings need to be 

reconciled across language boundaries and coherent 

behavior must be guaranteed across various runtime 

systems. 

To conclude, the scope of automated 

refactoring techniques beyond the Java-centric 

ecosystems must continue to develop methodologies 

to work at the levels of dynamic semantics, 

multilingual representation, and hybrid static–

dynamic analysis pipelines. We argue that 

addressing these limitations is essential for creating 

refactoring systems that are really general-purpose 

and not biased towards any language or language 

set. 

3.6. Challenges and open issues 

Though it has made strides, AI-driven 

refactoring faces several challenges and unsolved 

research questions. 

Training data quality and bias. Supervised 

approaches require good datasets of existing smelly 

code or refactorings. Mining git histories could bring 

bias (e.g., different types of refactoring only 

happened to be recorded in commits). Class 

imbalances remained an insurmountable problem–

compared with non-refactoring changes, examples 

of refactoring are few – until tens of thousands had 

been artificially created using methods like data 

augmentation, SMOTE and transfer learning. 

Semantic Preservation and Validation. 

ML/LLM approaches don’t deliver a priori 

guarantee about behavior-preserving changes as 

traditional tooling does. ChatGPT’s ability to 

preserve behavior (97 %+ in tests) reassures people, 

but there are costs when things go wrong. A small, 

seemingly innocuous change could bring in subtle 

bugs. Integrating verification steps (such as running 

test suites & otherwise using formal checks) into the 

AI refactoring pipeline is an open research direction. 

Some works propose keeping a “human-in-the-loop” 

– the human decision maker, for example, might 

ensure that LLM-suggested changes comply with 

safety and regulatory requirements [35]. 

Tellability and Developer Confidence. 

Developers are more likely to trust AI 

recommendations if the tool can explain why a 

refactoring is necessary or how this will help. While 

some ML models are black boxes, others try to 

produce explanations (e.g., by outputting a rationale 

or by generating commit messages in the way that 

ChatGPT does. More work is under way on making 

refactoring recommenders more interpretable; 

perhaps by highlighting the code smell symptoms 

they detected, the expected improvement in metrics. 

Here is a general problem that learning-based 

refactoring tools have so far overlooked: most of 

them merely focus on one particular bad smell or 

refactoring operation (moving methods around, 

making functions longer etc.). How do we construct 

a unified framework that is capable of suggesting all 
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sorts of adjustments to any given codebase, or 

deciding between different proposed fixes for a 

particular smell? Some optimization-based 

approaches solve this by evaluating multiple options 

(e.g., a GA might choose to either extract a class or 

move methods when dealing with big God Class 

smells). Combining multi-step reasoning (which 

LLMs can do a bit already) with fine-grained low-

level transformations points to important future 

directions for our research efforts [36]. 

Cross cultural and multilingual support. Most 

early studies focused on Java (the «canonical» 

object-oriented language in refactoring research). 

Later work, such as RefT5, explicitly targeted 

multilingual projects (Java and Python). This model 

demonstrates that you can train a network to 

recognize refactoring activity in one language, and it 

will then automatically generalize to others. This 

finding is hopeful, in that real systems often 

combine different languages. Nevertheless, more 

work is needed for languages with greatly different 

paradigms and fewer refactoring datasets (e.g., C++ 

or dynamic languages). 

Integrating these AI-based tools into a 

development environment and continuous 

integration and development process is another 

practical problem to be solved. Some research 

prototypes like Stack-IDE have IDE plugins that 

suggest refactorings as you code. How smoothly 

such tools run, and the extent to which they can 

provide nonintrusive, helpful suggestions at 

appropriate times, will determine their acceptance 

into industry. 

In summary 2020-2025 has been a pivotal 

period for this kind of refactoring of object-oriented 

code, ever more so as AI makes it happen. The shift 

from simple «data clubbing» experiments pure and 

simple logistic models of software input/output, to 

the development of high-abstraction event-oriented 

systems which are largely automatic is soon well 

under way. 

3.7. Models, Invariants and Refactoring in 

Automation of Refactoring 

One of the most important criteria to look for in 

both automated and manual approaches to 

refactoring is maintenance of program behavior. The 

meaning of the program must be preserved under 

transformation. This principle, first articulated by 

Fowler, and in the ascendancy with AI-backed 

refactoring tools and IDEs, holds rule that there shall 

be no regression from a structural improvement. 

Formal representation of refactoring 

transformations. Refactorings can be described by 

formal graph transformation systems or rewrite rules 

on/from abstract syntax trees. 

A software system 𝑆 can be defined as a tuple: 
  

         𝑆 = (𝐶, 𝐷, 𝐹),  (1) 

where 𝐶 denotes the set of code components (e.g., 

classes, methods); 𝐷 is collection of data 

dependencies; 

𝐹 is the collection of control flows. 

A refactoring is a transformation function: 
  

𝑇: 𝑆 → 𝑆′, (2) 

such that the semantic preservation constraint is 

satisfied: 
 

∀𝑥 ∈ 𝐼: ⟦𝑆⟧(𝑥) = ⟦𝑆′⟧(𝑥), (3) 

where 𝐼 is the input space; ⟦𝑆⟧(𝑥) represents the 

observable behavior (output trace, or side effects) of 

the system 𝑆 on input 𝑥; 

𝑆′ is the refactored system. 

Thus, a refactoring is good if it induces 

semantically equivalent behavior on any legal input. 

Graph-Based Refactoring Model. Let  

𝐺 = (𝑉, 𝐸) denote a graph representation of the 

program where: 

𝑉 is the number of program entities, such as 

functions or variables; 

𝐸 ⊆ 𝑉 × 𝑉 denotes control or data flow edges. 

A refactoring can be formulated as a graph 

transformation operation: 
 

𝑇 = (𝐿, 𝑅, 𝜙), (4) 

where 𝐿 is the pattern to match (left hand side); 𝑅 is 

the replacement graph on the right; 𝜙 is a set of 

preconditions (e.g., type constraints, visibility, or 

usage bounds). 

The refactoring is possible if there is a 

substructure 𝐺𝐿 ⊆ 𝐺 such that: 
 

𝐺𝐿 ⊨ 𝐿, 𝜙(𝐺𝐿) = 𝑡𝑟𝑢𝑒, (5) 

So, an updated graph is created: 
 

𝐺′ = (𝐺 ∖ 𝐺𝐿)⋃𝑅, (6) 

Semantic correctness implies: 

 ⟦𝐺⟧ = ⟦𝐺′⟧. (7) 

Invariants and safety conditions. In order to 

maintain behavioral safety, there is a set of 

invariants 𝐼𝑏 that must always be respected by a 

code refactoring. 

Input-output invariant: 
 

∀𝑥 ∈ 𝐷: 𝑓𝑆(𝑥) = 𝑓𝑆′(𝑥). (8) 

State space invariant (for systems with state): 
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∀𝑥 ∈ 𝐷, 𝑠0 ∈ Σ: δS(𝑥, 𝑠0) = 𝛿𝑆′(𝑥, 𝑠0). (9) 

Pre-/post-condition preservation: 
 

𝑃𝑟𝑒𝑆(𝑥) ⇒ 𝑃𝑜𝑠𝑡𝑆(𝑥) ⟺ 𝑃𝑜𝑠𝑡𝑆′(𝑥), (10) 

where 𝛿 is the transition function and 𝛴 the set of 

internal program states. 

Probabilistic guarantees with respect to test 

suite coverage. In the lack of correctness proofs, 

practitioners employ the test suite adequacy to 

approximate correctness.  

Given a finite test set 𝑇 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, we 

say a transformation is empirically correct if: 
 

∀𝑥𝑖 ∈ 𝑇: ⟦𝑆⟧(𝑥𝑖) = ⟦𝑆′⟧(𝑥𝑖).  (11) 

Another option is to learn confidence by 

approximating a probabilistic correctness bound: 
 

𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) ≥ 1 − 𝜖,  (12) 

 
𝜖 =

1

|𝑇|
∑ 𝑃𝑟[⟦𝑆(𝑥)⟧ ≠ ⟦𝑆′(𝑥)⟧]

𝑥∈𝐼\𝑇

. 
(13) 

This enables integration with CI/CD pipelines 

and works with reinforcement learning–based 

refactoring agents. 

Semantic Distance Metrics. A different 

formalism to characterise the impact of a refactoring 

operation is semantic distance: 
 

𝑑𝑠𝑒𝑚(𝑆, 𝑆′) = ∫ 𝐷(⟦𝑆⟧(𝑥), ⟦𝑆′⟧(𝑥))𝑑𝑥
𝐼

,  (14) 

where 𝐷 is a divergence measure (e.g., Hamming 

distance, output hash mismatch).  

A valid refactoring should satisfy: 
 

𝑑𝑠𝑒𝑚(𝑆, 𝑆′) = 0.  (15) 

As for approximate or lossy refactoring (eg. 

performance optimization), we can force an upper 

bound: 
 

𝑑𝑠𝑒𝑚(𝑆, 𝑆′) ≤ 𝛿.  (16) 

4. RECOMMENDATIONS FOR PRACTICAL 

ADOPTION OF AUTOMATED 

REFACTORING TECHNIQUES 

The scope of the surveyed methodologies is 

very broad in terms of complexity and automation 

degree, as their applicability in real projects is 

significantly determined by the matching between 

refactoring solutions and the constraints imposed by 

the development context. We make the following 

practical recommendations from the analysis. 

1. Old-school, rule-based and IDE-integrated 

tools (such as IntelliJ IDEA, Eclipse, ReSharper), 

which are good for small-to-medium object-oriented 

systems with the testing coverage already in place 

continue to work well here. NameSteal/KP tools 

provide high explainability, instant developer 

control, and apply well-known transformations like 

Rename Method, Extract Method or Move Class. 

2. For a big system in design erosion or with 

legacy code base, graph-based algorithms and the 

tool related to smell like design like detectors 

(Designite, RefactoringMiner) are preferable. They 

offer a structural view and may flag refactoring 

opportunities that span entire hierarchies or 

packages. 

3. For new, data-rich projects that follow 

modern development stacks, AI-powered tools (e.g., 

DeepSmells, MoveRec, CodeBERT-based systems) 

can help in identifying complex smells and offering 

refactoring suggestions when conventional rules are 

insufficient. These systems can be especially handy 

when refactoring in uncertain circumstances or when 

taking on cross-cutting concerns. 

4. In multilingual or dynamic typed (eg: python, 

javascript) settings, a good combination of dynamic 

analysis, runtime instrumentation and pretrained 

multilingual models (eg: PLBART, CodeT5+) is 

pursued. These are, however, cures for the symptom, 

they do not solve the problem of the missing static 

typing and support only limited generalisation of 

refactoring methods. 

5. For projects with stringent reliability or 

regulatory requirements, other than only 

semantically validated transformations using formal 

verification tools or test-suite equivalence checks 

should be considered. In such cases, hybrid pipelines 

which mix AI-based advice and symbolic analysis 

(such as, SMT solvers, test case generation) are best 

suitable. 

In the case of the continuous delivery 

environments, instruments that favor integration of 

CI/CD, non-blocking execution and refactoring-

aware quality gates (OpenRewrite, RefactoringBot, 

SonarQube extensions and the like). These enable 

teams to make safe, incremental adjustments with 

minimal interference to deployment pipelines. 

Hence, the choice of an appropriate refactoring 

should take into account: 

 system size and complexity; 

 language and typing model; 

 availability of testing or specifications; 

 organizational maturity in CI/CD; 

 tolerance for automation vs human oversight. 

By aligning tool features with project attributes, 

one to balance the automation efficiency, the 

improvement of the software quality and the 

operational safety of the online applications. 
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5. FUTURE DIRECTIONS 

Although much effort has been devoted to 

automated refactoring, existing techniques suffer 

from several limitations, which undermine their 

effectiveness in large-scale real-world software 

systems. 

These challenges include [37]: 

 the poor quality of semantic understanding 

of code; 

 lack of context awareness; 

 the poor generalizability of machine learning 

models to different domains;  

 the lack of trust, due to opaque decision 

making; 

 the poor scalability in continuous integration 

environments. 

Recently, researchers have proposed several 

promising research directions that may lead to the 

next generation of intelligent refactoring systems. 

Welding of Deep Learning Models for 

Refactoring Prediction. One such promising line of 

work is applying deep learning methods like CNNs, 

RNNs, and transformers, to predict refactoring 

opportunities from raw code representations. Such 

models can be trained on large-scale datasets that are 

extracted from version control systems and thus 

capture patterns from common refactoring 

operations (e.g., Extract Method, Move Class). 

Furthermore, pre-trained code models such as 

CodeBERT and GraphCodeBERT have proved to 

capture the syntactic and semantic aspects of source 

code, which makes them suitable for learning deep 

refactoring strategies. 

Semantic Analysis and Graph-based Code 

Representation. Another important line of research 

is the adoption of graph-based representations (e.g., 

ASTs, PDGs, heterogeneous code graphs). Such 

structures enable refactoring tool support for 

reasoning about semantic (or abstract) relationships 

and structural dependencies throughout the code. 

Using GNNs in combination with symbolic program 

analysis can greatly increase the precision of 

automated transformations and minimize the chance 

of affecting program behavior. 

Knowledge-based Recommendation Systems. 

For enhancing the explainability and the confidence 

of developers, other works are pushing for creating  

knowledge-based refactoring systems. Such systems 

are based on encoded best practices, design patterns 

and domain ontologies, and suggest context-relevant 

transformations. Unlike pure data-driven systems, 

knowledge-based systems are capable of justifying 

recommendations based on traceable rules or 

conceptual models, which help in human-in-the-loop 

workflows and also suit regulatory needs in safety-

critical domains. 

Human-in-the-Loop and Developer Feedback 

Incorporation. Due to the complexity and context 

dependency of software refactoring, it is more and 

more clear super-organic level not always desirable 

or applicable. Hence, including developer input in 

the refactoring pipeline via interactive interfaces, 

ranking algorithms, or adaptive  learning can aid in 

achieving a symbiosis of automation and human 

supervision. Human-in-the-loop approaches keep the 

system in line with project‐specific style guidelines, 

coding conventions and shifting team preferences. 

Scalable and CI/CD-Ready Architectures. A 

second important direction is to develop more 

scalable and modular refactoring architectures, 

which can be easily embedded into contemporary 

CI/CD pipelines. This involves the need for an 

efficient incremental analysis, distributed 

processing, and support for diverse programming 

languages and frameworks. These kinds of 

architectural solutions could even serve to underpin 

refactoring advice while committing/pulling code or 

testing, essentially integrating quality enhancements 

straight into the code lifecycle itself. 

Explainable AI and Trust on Refactoring 

Decisions. Finally, the use of explainable AI (XAI) 

methods is crucial to narrow the gap between 

developers and AI-based refactoring tools. Justifying 

recommendations, pointing affected code regions 

and suggesting an alternative refactoring plan can 

increase the trust of developers working in the 

target software and accelerate the adoption of these 

tools in production. On the level of modeling and 

validating the different levels of uncertainty, future 

systems should include a way to estimate and 

validate the accuracy to avoid unpredictable ICHT 

behavior. 

Improving explanation and semantic assurance 

of automated refactoring. Despite the improving 

precision of the AI-based refactoring tools, their 

actual use is still limited by two main problems: (i) 

explainability and (ii) semantic drift cost. Solving 

these challenges implies combining interpretable 

mechanisms which interpret the decisions of the 

model and offer formal guarantees on behavioral 

correctness. 

One promising avenue is the usage of SHAP 

(SHapley Additive exPlanations), a model-agnostic 

framework for explaining feature attributions (e.g., 

cyclomatic complexity, method length, fan-in) on 
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the output of a given model. SHAP values make 

clear why in the recommendation engine particular 

structural properties are used for classifying a source 

code fragment as potential refactoring target. 

Attention maps act as a built-in interpretability 

tool in transformer-based models (e.g., CodeBERT 

and CodeT5). By visualizing attention weights over 

tokens or AST nodes, one can track how the model 

gives attention to semantically cb meaning tokens in 

the code while making a decision. This level of self 

reflection is both helpful in solving model 

misbehavior and in making it easier for developers 

to make changes. 

To avoid semantic drift – undesired behavioral 

changes introduced by the transformations – more 

recent work suggests the use of formal verification 

methods within the refactoring tooling. Symbolic 

execution engines or SMT solvers (e.g., z3) can be 

used to verify that post-refactoring code is 

functionally equivalent to its original. Instead, one 

may use automatic test generation frameworks for 

empirical evaluation of behavior-preserving 

transformations. 

This convergence of explainability and 

verification techniques opens the door to the next 

generation of intelligent refactoring assistants – 

systems that do not just present high-quality 

transformations, but can justify them, and ensure 

them to be correct. We believe that hybrid 

architectures of this kind are necessary for the 

integration of refactoring tools into industrial, 

regulated, and safety-critical software development 

environments. 

Integration of Automated Refactoring into 

CI/CD Pipelines. The value of CI/CDs integration 

support is often recognized in literature of automatic 

refactoring, however, little detail on how the 

integration can be done was documented. Yet now 

recent research, and also new commercial and open-

source guidelines, show that integrating refactoring 

in the development process even further, into 

continuous workflows, results in more maintainable 

code that requires less work to create, and more time 

for developing new features. 

In today’s era of software development, 

automatic refactoring is becoming part of the daily 

quality assurance in the continuous integration 

pipeline. The common way of running lightweight 

refactoring tools (like OpenRewrite, Designite, or 

ReSharper CLI) is to call them as standalone build 

steps or as part of the static code analysis stages. 

These tools analyze the code that has been 

committed and propose or deliver structural change, 

often based on pre-configured rules or learned 

patterns (e.g., method extraction, code deduplication 

or class decomposition). 

A very powerful model is that of refactoring 

agents or bots that work with version control 

automate refactoring concurrently. These agents 

keep an eye on code changes and make pull request 

with proposed refactorings automatically. The 

changes tend to be rationalized with metric-based 

reasoning, and face the typical resistance validation 

(unit tests, linters, manual reviews). This 

asynchronous environment for interaction ensures 

minimal impact on developer workflow, while 

relentless increase in quality of code. 

More sophisticated pipelines integrate 

refactoring-aware quality gates, which measure the 

structural quality of the code base and impose 

improvement thresholds. For example, SonarQube, 

can have alerts set or deployment blocked if 

technical debt/code smells exceed certain limits. The 

refactoring prescription coming from such AI-

supported tools can then automatically fix the 

violations, fully closing the loop from detection to 

transformation. 

Furthermore, the introduction of semantic 

checks (for example, by regression test suites or 

light-weight behavioral checks) leads to a high 

confidence that transformations do not change 

program behavior (i.e., they are preserving). For 

safety critical systems, this process of preservation 

of semantic invariants can potentially also be studied 

using formal verification modules or property-based 

test generators post-refactoring. 

From a procedural context, three fundamental 

principles must be observed for such integrations to 

be successful: 

 non-destructiveness – refactoring must not 

disrupt the deliverable or undo the developer's work; 

 configurability – a project-specific rules, 

naming conventions and, architectural guidelines 

should be supported; 

 traceable and explainable – automated 

transformations need to be visible, reviewable, and 

adhere to team coding conventions. 

In this way, by effectively integrating 

automated refactoring into CI/CD pipelines, these 

tools cease to be an optional utility and instead 

become a proactive and context-aware part of the 

software lifecycle. In this way they enforce 

sustainable code quality management and by that aid 

in the long-term evolution of complex systems with 

low overhead. 
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CONCLUSIONS 

This paper has presented an overview of the 

extant work on the topic of automatic refactorings in 

OO systems. Refactoring, an important activity 

aiming at enhancing internal code quality while 

preserving the external behavior of software, is one of 

the key practices in software evolution and 

maintenance. As contemporary applications become 

larger and more complex, it has become difficult for 

developers to apply such manual refactoring, opening 

the path to the development of automated tools. 

We have surveyed a large range of refactoring 

approaches, such as tool-based, rule-based, graph-

based, pattern-based, machine learning based, and 

history-aware. Each class employs a different 

approach that has its own advantages (e.g., speed, 

consistency, scalability) and weaknesses (lack of 

semantic understanding, difficulty of generalization, 

integration into industrial development pipelines), 

which provide the inspiration for techniques with 

complementary advantages and fewer weaknesses. 

We also found certain benefits of automation 

like productivity, consistency of the mappings and 

ability to realize hidden defects in the legacy code. 

On the other hand, we stressed the main drawbacks, 

such as the risk of semantic drift, a low context 

awareness and an absent developer interpretability 

of the choices that can be made by AI. 

A thorough exploration of open issues, 

including model limitation on generalization and 

lack of scalability, has been provided for paving the 

way of future research. These involve among others 

the fusion of deep learning for refactoring 

prediction, the exploit of graph-based code 

representation for semantic reasoning, and the 

creation of knowledge-based and explainable 

systems while considering human-in-the-loop model 

to balance between automation and control. 

Although progress on automated refactoring has 

been made, there are tremendous opportunities for 

the improvement of its precision, flexibility, 

visibility, and usability. Through the exploration of 

hybrid and context aware approaches, the field can 

progress towards the realization of intelligent 

refactoring systems that can enable sustainable 

software engineering, both within academia and 

industry. 
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АНОТАЦІЯ 

Автоматизований рефакторинг відіграє ключову роль у супроводі й еволюції об’єктно-орієнтованих програмних 

систем, де покращення внутрішньої структури коду є визначальним чинником підтримуваності, масштабованості та 

зменшення технічного боргу. У цій роботі представлено розширений огляд сучасних підходів до автоматизованого 

рефакторингу з акцентом на методологічні засади, рівень автоматизації, застосування штучного інтелекту та практичну 
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інтеграцію в CI/CD-процеси. Розглянуто традиційні rule-based та graph-based методи, моделі глибокого навчання (CNN, 

GNN, LLM), історично обґрунтовані техніки (MSR), а також гібридні підходи із залученням людського контролю (human-in-

the-loop). Особливу увагу приділено класифікації трансформацій згідно з авторитетною термінологією (Fowler): 

структурним, архітектурним (semantic) та поведінковим перетворенням з фокусом на збереження інваріантів поведінки. 

Окремо розглянуто формалізовані моделі рефакторингу як графові перетворення з чітко визначеними передумовами та 

постумовами, що дозволяє гарантувати семантичну еквівалентність між версіями програми. У роботі представлено приклад 

реального застосування інструмента DeepSmells, що демонструє змістовну трансформацію «до/після» та коментує 

обґрунтованість запропонованих змін. Досліджено виклики explainability та semantic drift, а також запропоновано способи їх 

усунення через SHAP-аналіз, attention-візуалізацію в трансформерах, інтеграцію з формальними верифікаторами (SMT, 

symbolic execution) та пояснювані AI-рекомендації. Окремий акцент зроблено на обмеженнях у динамічно типізованих 

мовах (Python, JavaScript), де типова статична перевірка втрачає ефективність. Узагальнення на мультимовні проєкти 

підтримується завдяки застосуванню моделей CodeBERT, CodeT5, PLBART, які працюють із графами, токенами та 

кросмовними узагальненнями. Показано практичну інтеграцію автоматизованого рефакторингу у CI/CD-середовище – через 

боти, refactoring-aware quality gates, періодичне застосування трансформацій у pre-commit/merge-циклах, а також перевірку 

інваріантів за допомогою тестів або формальних засобів. Стаття орієнтована на інженерів, дослідників і розробників 

інструментів, які працюють у галузі інтелектуального супроводу ПЗ та автоматизації процесів підтримки якості коду. 

Представлені класифікації, практичні сценарії та критерії вибору інструментів забезпечують прикладну цінність огляду для 

розробки власних рішень або впровадження існуючих технологій у проєкти з різними вимогами до стабільності, 

масштабування та рівня автоматизації. 
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