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ABSTRACT 

Hierarchical classifiers play a crucial role in addressing complex classification tasks by breaking them down into smaller, more 
manageable sub-tasks. This paper continues a series of works, focused on the technical Ukrainian texts hierarchical classification, 
specifically the classification of repair works and spare parts used in automobile maintenance and servicing. We tackle the challenges 
posed by multilingual data inputs – specifically Ukrainian, Russian, and their hybrid – and the lack of standard data cleaning models 

for the Ukrainian language. We developed a novel classification algorithm, which employs TF-IDF victimization with unigrams and 
bigrams, keyword selection, and cosine similarity for classification. This paper describes a method for training and evaluating a 
hierarchical classification model using parameter tuning for each node in a tree structure. The training process involves ini tializing 
weights for tokens in the class tree nodes and input strings, followed by iterative parameter tuning to optimize classification 
accuracy. Initial weights are assigned based on predefined rules, and the iterative process adjusts these weights to achieve optimal 
performance. The paper also addresses the challenge of interpreting multiple confidence scores from the classification process, 
proposing a machine learning approach using Scikit-learn's GradientBoostingClassifier to calculate a unified confidence score. This 
score helps assess the classification reliability, particularly for unlabeled data, by transforming input values, generating polynomial 
parameters, and using logarithmic transformations and scaling. The classifier is fine-tuned using hyper parameter optimization 

techniques, and the final model provides a robust confidence score for classification tasks, enabling the verification and classification 
results optimization across large datasets. Our experimental results demonstrate significant improvements in classification 
performance. Overall classification accuracy nearly doubled after training, reaching 92.38 %. This research not only advances the 
theoretical framework of hierarchical classifiers but also provides practical solutions for processing large-scale, unlabeled datasets in 
the automotive industry. The developed methodology can enhance various applications, including automated customer support 
systems, predictive maintenance, and decision-making processes for stakeholders like insurance companies and service centers. 
Future work will extend this approach to more complex tasks, such as extracting and classifying information from extensive text 
sources like telephone call transcriptions. 
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1. INTRODUCTION AND LITERATURE 

REVIEW 

In the machine learning domain, hierarchical 

classifiers have become a crucial method for 

addressing complex classification challenges [1]. 
These classifiers organize the classification task 

hierarchically, simplifying a broad, multi-class 

problem into smaller, more digestible sub-tasks. 
This method reflects human cognitive decision-

making processes [2], which are sequential and 

structured, making it particularly apt for areas with 

inherent hierarchical structures, such as taxonomy 
classification [3], image recognition [4] and [5], 

medical diagnosis [6], autonomous systems [7], and 

document categorization [8] and [9]. 

© Mashtalir S., Nikolenko O., 2024 

A perspective area of research in hierarchical 

classifiers focuses on optimization, specifically on 
parameter tuning and confidence estimation. 

Parameter tuning adjusts the model's parameters to 

improve performance, while confidence scoring 

quantifies the classifier's predictions certainty, both 
critical for enhancing the hierarchical classification 

systems accuracy and dependability [10]. 

Parameter tuning in hierarchical classifiers is 
notably more complex than in non-hierarchical (flat) 

classifiers due to the layered decision-making 

process [11]. Each layer may require distinct 

parameters, and the dependencies between these 
layers must be meticulously managed. On the other 

hand, confidence scoring addresses the necessity for 

dependable predictions.  In practical applications, it 
is vital not only to understand the classifier's 
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predictions but also the confidence level in these 

predictions. This is especially crucial in hierarchical 

classifiers, where errors can cascade through the 
hierarchy.  

An intriguing challenge arises when 

hierarchical classification is combined with natural 
language processing (NLP) [12].  

Over the past few years, NLP has undergone 

significant advancements, largely fueled by 
developments in machine learning and deep 

learning. Nevertheless, NLP systems often struggle 

with issues related to incomplete or erroneous 

training data [13], which can lead to skewed model 
predictions and impact the trustworthiness of the 

results. Effective data preparation and validation are 

essential for addressing these concerns and ensuring 
the robustness of NLP models.  

Natural Language Processing encounters 

significant challenges when applied to technical 

texts due to the distinctive characteristics inherent to 
these domains, such as specialized vocabulary, 

complex syntactic structures, and heightened context 

dependency [14]. Technical documents often 
employ domain-specific jargon, abbreviations, and 

terminology not represented in general-purpose 

language models, leading to increased risk of 
semantic misinterpretation. Furthermore, technical 

writing typically exhibits intricate sentence 

structures, with multiple clauses and 

interdependencies, which complicate syntactic 
parsing and semantic analysis.  

These difficulties are compounded by the 

scarcity of annotated domain-specific corpora and 
the limited ability of NLP models to generalize 

across different technical fields. Each domain 

possesses unique terminologies and structural 
patterns, necessitating domain-specific adaptation 

and expert-annotated datasets, which are both time-

and resource-intensive to develop. These issues are 

particularly pronounced for less-represented 
languages [15], where the availability of linguistic 

resources is limited, restricting the development of 

multilingual models. 
This work is the third in a series [16] and [17] 

focused on the technical Ukrainian texts hierarchical 

classification. The primary issue addressed in these 

studies is the classification of repair works and spare 
parts used in the automobiles’ maintenance and 

servicing. 

2. THE GOAL OF PAPER 

The goal of this study is to develop a model for 

the hierarchical classification of technical texts in 

Ukrainian and Russian and to identify effective 
optimization approaches through parameter tuning. 

Additionally, the research seeks to evaluate the 

classification quality by calculating key confidence 

metrics, which will enhance the model’s efficiency 
and reliability. 

The paper explores a novel method for 

calculating confidence scores, utilizing probability 
estimation and ensemble techniques, enabling the 

classifier to deliver more detailed outputs crucial for 

decision-making processes in applications such as 
automotive quality assurance. 

The interplay between parameter tuning and 

confidence scoring forms this paper’s central theme. 

Effective parameter tuning improves the classifier 
fundamental performance, while precise confidence 

scoring ensures the predictions reliability. 

Integrating these two elements fosters a more robust 
and dependable hierarchical classification system. 

Through extensive experimentation and case 

studies, this paper demonstrates the proposed 

methods practical advantages. It highlights 
improvements in classification accuracy and 

confidence calibration across various datasets in the 

automotive repairs domain. The results emphasize 
the comprehensive model training significance that 

adequately incorporates both parameter tuning and 

confidence scoring. 

3. PROBLEM DEFINITION 

3.1. Automotive sector issues  

The significance of repair works and spare parts 

classification cannot be overstated. Out of 
approximately 1.5 billion vehicles globally, only 20% 

have detailed, centrally collected, stored, and 

analyzed repair information [18] and [19]. This data 
pertains primarily to new vehicles, up to four years 

old, which are serviced at authorized service centers. 

Automotive manufacturers utilize specialized 
software in the original equipment service centers 

(OES), where all repairs and spare parts are 

accurately classified. This allows for the collection of 

precise statistical data on the individual components 
and assemblies reliability, their operational 

characteristics, warranty cases, and more [20]. 

Unfortunately, once a vehicle leaves the official 
service network, its subsequent repair and 

maintenance history becomes fragmented and often 

lost. Non-authorized service centers lack a unified 

classifier for repairs and spare parts, let alone a 
single information system. Furthermore, there are 

thousands of such systems worldwide, each with 

different languages and data formats. In Ukraine 
alone, dozens of similar programs are used.  

Fig. 1 illustrates the automotive fleet structure 

and highlights the data problem concerning repairs.
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Fig. 1. Global car park structure 
     Source: compiled by authors 

Repair data is valuable not only to automotive 

manufacturers, but also to various other sectors. For 
example, insurance companies can benefit from this 

data to determine repair costs and residual vehicle 

values. Similarly, service centers and even car 
owners would find it beneficial to have information 

not only about the current repair costs but also about 

future expenses related to repair and maintenance. 

3.2. Data collection and data structure 

The input data used for this study comprised 

information on repair works and spare parts from a 

Garage Management System (GMS).  
This data was divided into four sets: 

1) Classes: hierarchical structures for repair 

works (3 levels) and car parts (4 levels). 
2) Training Data: manually labeled data from 

the GMS, consisting of 6,000 entries. 

3) Test Data: also manually labeled data from 
the GMS, consisting of 11,000 entries. 

4) Operational or Input Data: comprising tens 

of millions of entries from the GMS. 

Let us examine these types in greater detail. 

Car repair works are organized in a three-level 

tree structure as shown in the data extract in Table 1. 

Car components are classified within a 

hierarchical four-level tree structure. The 

classification begins with the most general 

component types, such as mechanical and body 

parts, oils and fluids, wheels and tires. These broad 

categories are then divided into their corresponding 

systems, including filters, power transmission, 

braking, suspension, steering, engine, cooling, 

electric and electronic systems.  

Within each system, the classification is further 

refined into specific components. For example, the 

suspension is divided into subcategories such as 

damping, arms, wheel hubs, bearings, etc. Finally, 

the lowest classification tier consists of specific 

spare parts detailed lists, such as shock absorbers, 

struts, coil and leaf springs. The car parts data tree 

extract is presented in Table 2. 

Table 1. Repair works classes’ data tree extract 

ID Parent ID UA EN 

1000 0 Діагностичні роботи Diagnostic work 
1100 1000     Діагностика     Diagnostics 

1101 1100         Ручна діагностика         Manual diagnostics 

1102 1100         Комп'ютерна діагностика         Computer diagnostics 
1200 1000         Тестування         Testing 

2000 0 Загальні роботи General works 

2100 2000     Заміна     Replacement 

Source: compiled by authors 
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Table 2. Car parts classes’ data tree extract 

ID Parent ID UA EN 

1000000 0 Механічні деталі Mechanical parts 

1070000 1000000    Амортизація    Suspension damping 

1070100 1070000       Амортизатори і стійки       Shock absorbers & struts 
1070101 1070100          Амортизаторі підвіски          Shock absorbers 

1070102 1070100          Стійки підвіски          Struts 

1070105 1070100          Пневмо-амортизатори          Pneumatic shocks  
1070300 1070000       Опори амортизаторів       Strut mountings 

1070400 1070000       Пружини підвіски       Coil & leaf springs 

Source: compiled by authors 

The training and test datasets comprise 

combined repair works and parts lists. For example, 

an entry might be "Pneumatic damping diagnostics 
on shock-tester". These lists have been manually 

labeled specifically for this study. 

Operational or input data consists of arbitrary 
text, which may include information from garage 

management systems (GMS), phone calls 

transcriptions, messages from messengers, emails, 

etc. The objective is to determine whether the input 
text contains information related to car repairs and to 

correctly assign it to one of the predefined classes 

for works and parts. 
A classification is considered successful if: 

1) At least 90 % of car repair works are 

identified and extracted from the incoming 
unlabeled texts. 

2) Of these, no less than 90% of works and 

parts are correctly assigned to their appropriate 

classes. 
For example, the text “Pneumatic damping 

diagnostics on shock-tester” should be accurately 

classified into class 1102 for works and 1070105 for 
parts  

For this study purposes, we simplify the task by 

assuming that the input text contains information 

about works and components. Therefore, only the 
second criterion of successful classification is 

considered. The task of extracting relevant 

information about repair works and automotive parts 
from arbitrary text will be addressed in future 

studies. 

In summary, this series of works aims to 
address the critical issue of technical texts 

hierarchical classification, focusing on the 

automotive industry. By improving the classification 

and analysis of repair and maintenance data, we can 
enhance this information's reliability and 

accessibility for multiple stakeholders, ultimately 

contributing to better decision-making and resource 
management in the automotive sector. 

4. CLASSIFICATION ALGORITHM 

4.1. Data preprocessing 

Our previous work [16] extensively examined 
the challenges of processing technical texts based on 

Ukrainian and Russian languages, including their 

hybrid form known as “surzhyk”. Here, we briefly 
summarize the key points. 

In datasets composed of manually input texts, 

we frequently encounter numerous errors and 

technical terms, often presented in a mixture of two 
languages. Moreover, standard data cleaning models 

are not always available for the Ukrainian language. 

Therefore, we adapted the classical NLP 
approach as follows: 

1) Language identification based on language-

specific letters and terms. 
2) Data normalization by removing 

unnecessary characters and excluding stopwords. 

The stopwords list was meticulously revised to avoid 

omitting important repair-related abbreviations, e.g., 
TO – технічне обслуговування (technical 

maintenance). 

3) Translation of all texts into Ukrainian, the 
primary language for our research. Simultaneously, 

a Russian-Ukrainian dictionary of terms was 

automatically compiled. 

4) Tokenization and subsequent splitting of 
merged tokens into their constituents. 

5) Automatic correction of grammatical errors 

based on the generated dictionary and existing 
tokens, utilizing the Jaro-Winkler metric for word 

matching. 

6) Lemmatization using comprehensive online 
dictionaries of the Ukrainian language. 

7) Separation of specific prefixes such as auto-

, electro-, pneumatic-, etc. 

8) Deciphering abbreviations and replacing 
synonyms. 

As a result of these operations, the original 

parts classes’ tree consisting of 10.288 sentences 
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was transformed into 6.062 tokens, which were then 

compressed into 2.484 tokens after applying the 

described sequence of steps. The proposed 
preprocessing methodology resulted in a 59 % 

reduction in dictionary size, thereby significantly 

accelerating data processing in all subsequent stages. 

4.2. Classification 

As described in our previous work [17] initial 

attempts to classify the data using standard 
algorithms like Naive Bayes, k-Nearest Neighbors 

(kNN), and logistic regression yielded unsatisfactory 

results, with the best performance being slightly 

above 80%. 
To achieve the required classification accuracy, 

we developed our own classification algorithm. 

The process involves: 
1) Initialization and Full Name Construction: 

For each node, a full name is created by combining 

the node’s name with its children’s full names. 

2) Vectorization using TF-IDF: Nodes are 
vectorized using the TF-IDF method to represent 

term importance, including both unigrams and 

bigrams.  
The TF-IDF metric is calculated using the 

formula [21]: 

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹 × 𝐼𝐷𝐹   

𝑇𝐹 (𝑡, 𝑑) =  
𝑓𝑡,𝑑

∑ 𝑓𝑡 ′,𝑑𝑡 ′∈ 𝑑

 ,  

where 𝑓𝑡,𝑑 is raw count of a term t in document d; 

∑ 𝑓𝑡′,𝑑𝑡′∈ 𝑑  is number of words in document d. 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}|
 , 

where N is total number of documents in the corpus,

N = |D||{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}| is number of documents, 

where term t appears, i.e.  TF (t, d) ≠ 0. 
3) Node Matrices: Constructing for each node 

unique matrices based on the TF-IDF child nodes 

vectors. 

4) Keyword Selection: Keywords and super 
keywords are selected based on document frequency 

values. Keywords are unique to a class, while super 

keywords are names consisting of two words, 
weighted more heavily to aid classification accuracy. 

5) Training Data Vectorization: Each training 

string is vectorized, creating matrices with TF-IDF 

values. Bigrams and their permutations enrich the 
feature set, accommodating different word orders.  

This step is detailed in the chapter “5. Model 

Training and Evaluation” of this work. 
5) Classification: Using cosine similarity to 

measure the distance between input strings and 

matrix rows and iteratively refining classification 

probabilities through training. 

The cosine similarity metric between vectors A
and B is calculated by the formula [22]: 

𝑆𝐶(𝐴, 𝐵) = cos(𝜃) =
𝐴𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

. 

Cosine similarity was chosen because it is a 
widely used similarity measure for real-valued 

vectors, which is especially important for parts 

classification. Additionally, cosine has the nice 

property that it is 1.0 for identical and 0.0 for 
orthogonal vectors [23]. 

7) Confidence scores calculation: The 

confidence score is the ratio of the probabilities of 
the most and second most likely classes. If no 

matches are found in any child classes, an arbitrarily 

high confidence value is assigned.  
This step is detailed in Chapter “6. Unified 

Confidence Score for Labeled and Unlabeled Data”

of this work. 

5. MODEL TRAINING AND  

EVALUATION 

Our prior research [17] delineated the 

comprehensive process of hierarchical classification 
for automotive works and parts. However, 

constraints on space precluded detailed discussions 

of the training and evaluation processes, despite 
their critical importance in the classification 

algorithm, which significantly enhanced the 

classification accuracy. 

Additionally, the confidence scores 
computation and optimization were not thoroughly 

examined. Given that 99 % of our data was 

unlabeled, the confidence issue was especially 
pivotal in our study. 

This paper addresses these omissions by 

providing a detailed training and scoring processes 

exposition in the subsequent two chapters. 
Following the tree construction and the 

initialization of the vectorizer and classifier for each 

node, a parameter tuning method for the tree is 
initiated, which in turn launches, in several threads, 

the parameter tuning method within each node, 

acting as potential sub-classifiers of our tree. 
Prior to the parameter tuning iterations 

commencement, several preparatory steps are 

undertaken: 

1) A training dataset is initialized, upon which 
each parameter values set will be evaluated at each 

iteration. This set includes input data – vectorized 

names from the sets comprising the full_name of 
child nodes, as well as additional manually 



Mashtalir S.V., Nikolenko O.V.      /       Herald of Advanced Information Technology        

                                                                                2024; Vol.7 No.3: 231–242 

236 Theoretical aspects of computer science, 

programming and data analysis 

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online) 
 

annotated names (which are given greater weight), 

and the output data – the corresponding child nodes 

and annotations classes. 
2) An initial parameter values set at the node is 

evaluated. The evaluation function launches a one-

step training data classification on the node classifier 
and checks the accuracy percentage of the resulting 

classes against the true class values. 

The training occurs through the weights 
(parameters) optimization for the node's matrix 

tokens in the class tree, as well as weights 

(parameters) for the input (training) vector.  

Initially, all class node matrix elements are 
assigned preliminary weights according to the 

following rules: 

 super keyword – 5.0, keyword – 2.5; 

 direct child tokens – 2.0 (direct descendants 

tokens are given more attention than those of further 
descendants); 

 bigrams – 1.5; 

 the first token in the name – 1.5; 

 adjectives – 0.5; 

 others – 1.0. 

The exact values for parameters during 

initialization are not critically important. What 
matters is that they are greater than 1 or less than 1, 

and subsequently, the iterative training algorithm 

will determine the optimal weights. 

As with the matrices for class tree nodes, initial 
weights are determined for the input strings 

matrices. However, different rules apply here: 

 bigrams – 1.5; 

 the first token in the name – 1.5; 

 tokens created from words in parentheses – 

0.5; 

 bigrams created from words on the edge of 
parentheses from both sides – 0.0. 

Parameter tuning iterative cycle then 

commences. If it does not conclude within 20 

iterations, it halts at the last result.  
At each iteration, a parameter tuning step is 

performed: 

1) for each parameter, its values are iterated 
from a possible values predefined set (for example, 

for most weights >1, parameters from 1 to 10 are 

iterated in steps of +0.5, and for weights < 1, 
parameters from 1 to 0 in steps of -0.05); 

2) as we are changing parameter values, for 

each of the training rows, a re-initialization of the 

weighting parameters is pre-launched, as well as a 
re-vectorization of the input names (if the value of a 

parameter related to input vectorization was 

changed) or a re-initialization of the classifier (if 

parameters based on which the classifier vectors are 

built were changed); 

3) these values are then evaluated on the 
training data – through classification and calculating 

Accuracy – the matches percentage between found 

and real classes; 
4) the parameter and its value that achieve the 

maximum classification accuracy rating are selected; 

5) a check for value update is performed: 

 if a change in parameter value led to an 
increase in accuracy compared to the previous 

iteration, or accuracy remained the same but the 

parameter value became closer to 1 – update the 

node parameter values and proceed to the next 
iteration; 

 if the parameter values iteration did not find a 

better value for any of the parameters – stop the 

cycle. 
After completing the parameter tuning method 

on all nodes, the tree can be considered “trained”

and used for further classification. 

6. UNIFIED CONFIDENCE SCORE FOR 

LABELED AND UNLABELED DATA 

Following classification, a pertinent question 

remains: how confident are we in its correctness? 
This is particularly relevant for unlabeled data, as 

well as for automated decision-making systems. 

As noted, the classification result provides us 
with classes set along with their probabilities, and 

confidence scores for each node of the tree. The 

challenge arises in how to accurately interpret 

multiple confidence scores. Simple dimensionality 
reduction methods, such as arithmetic mean or root 

mean square, which might intuitively be considered, 

lose crucial information from the tree structure. 
In other words, is it better to have confidence 

closer to the tree's roots or its leaves? Which set 

provides greater overall confidence, (1000, 0.1, 0.1) 
or (0.1, 0.1, 1000)? If we were classifying city 

names, moving through the tree from country to 

state/region to city, then the set (1000, 0.1, 0.1) 

would imply high confidence in the country but not 
in the specific city, whereas (0.1, 0.1, 1000) 

indicates that we correctly identified Odesa, but it's 

unclear where exactly – in Ukraine or Texas. 
To address this issue, labeled data from the 

training set are used, on which traditional machine 

learning is conducted based on three confidence 

parameters using standard algorithms from the 
powerful Python library Scikit [24]. 

In our case, the machine learning process 

consisted of the following stages. 
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6.1. Parameters engineering 

In many machine learning algorithms, 

transforming input values is a necessary condition 
without which the algorithm won't converge to an 

optimal result due to excessively extreme input 

values or too significant difference between feature 
magnitudes. Moreover, most machine learning 

models train better and faster on as standardized data 

as possible: 

 clipping is performed (values less than a set 
minimum become the minimum, and those greater 

than a set maximum become the maximum) within a 

range from min=0.000001 to max=1000, to 

eliminate zero values and the most significant 
outliers over 1000; 

 to capture not only linear dependencies 

between input parameters and the predicted value 

but also potential nonlinear input data behaviors, as 
well as to account for interactions between different 

input parameters, polynomial parameters up to 

degree 3 are generated. For example, from input 

parameters x1, x2, x3, polynomial parameters x1, x1
2, 

x1
3, x1x2, x1x3, x1

2x2, x1
2x3, x1x2x3, x2, x2

2, x2
2x1, etc., 

are formed; 

 logarithmic transformation of polynomial 

parameters is conducted to reduce the distribution 
positive skewness, where most values are relatively 

close to 0, but some highest values reach up to 109, 

thereby having a long “tail” to the right, and to bring 
them to values closer to each other and closer to 0; 

 values are standardized using a scaler. 

Typically, values are scaled relative to the mean and 

variance. In our case, RobustScaler from Scikit was 

chosen as the scaler, which is more resistant to 
outliers and uses the median and interquartile range 

instead of the usual mean and variance. 

6.2. Training 

GradientBoostingClassifier [25] was chosen as 

the classifier, which conducts classification based on 

boosted trees [26]. 
In practical applications, effectively deploying 

the GradientBoostingClassifier necessitates the 

careful adjustment of its hyperparameters, which 

play a critical role in shaping the model's accuracy 
and efficiency. This adjustment process typically 

involves empirical optimization, where methods 

such as grid search or random search are frequently 
employed to identify the most suitable 

hyperparameter settings. 

The hyperparameters selected were: 

 n_estimators – the simple models number 
(decision trees) that make up the ensemble 

 learning_rate – the value that indicates how 

significant the contribution of each model in the 

ensemble is to the overall result 

 max_depth – the maximum depth of the 

decision trees in the model 

 max_features – the maximum number of 
features considered during the tree nodes splits 

 min_samples_split – the minimum number of 

data points in a node (node samples) required to split 

a node 

 subsample – the fraction of data (among all 
training data) taken for training each of the simple 

trees 

Hyperparameter tuning was performed using 
GridSearch, i.e., trying all possible parameters 

combinations among given values sets with cross-

validation. 

The hyperparameters quality was assessed using 
BrierScoreLoss, which shows the average squared 

difference between the predicted class probability 

(value pred_proba of the model 
GradientBoostingClassifier, from 0 to 1, 

corresponding to how confident the model is that the 

outcome to which the obtained uncertainty scores 
correspond is correct) and the true accuracy (0 or 1, 

depending on the correctness of the classification on 

training data). 

6.3. Classification 

The GradientBoostingClassifier from the Scikit  

library is a robust classification algorithm for 

machine learning tasks, based on the boosting 
technique. Boosting is an ensemble method that 

constructs a series of models sequentially, with each 

subsequent model aiming to correct its predecessors’ 

errors. 
Initially, a decision tree model is created, 

typically a simple one. This model is imperfect, with 

accuracy slightly better than a random choice. The 
first step is not crucial; the iterative process is 

expected to significantly enhance it. 

Next, a loss function is determined to evaluate 
the model's effectiveness. In this case, the function 

measures the discrepancy between predicted 

probabilities and actual class labels, specifically the 

deviation loss between them. 
Gradient boosting methodically enhances the 

model. At each new step, new models are created to 

rectify the existing ensemble deficiencies: 

 the loss function gradient based on the current 
model predictions is calculated. This gradient 

indicates the direction in which predictions should 

be altered to reduce loss; 
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 a new decision tree is trained to forecast these 

gradients for each item in the training set. This tree 

aims to predict the previous model errors; 

 this new decision tree is added to the 

ensemble with a coefficient known as the learning 
rate. This coefficient controls the speed at which the 

model learns. The learning rate is a critically 

important hyperparameter in gradient boosting. It 
assesses and scales each tree contribution. If it is too 

high, the model may overfit; if too low, the model 

may require too many trees to converge to a 
satisfactory solution; 

 the algorithm continues to add trees until the 

specified number of trees (n_estimators) is reached 

or until no further improvement can be made on the 

training set. 
Boosted trees are prone to overfitting. Therefore, 

several regularization techniques are integrated into 

the GradientBoostingClassifier: 

 limiting the depth of trees with max_depth; 

 a fraction of the training data (subsample) is 
randomly selected to train each tree. This 

randomness enhances the model robustness; 

 learning rate reduction – the learning_rate 

parameter scales the contribution of each tree, 
lowering the overfitting risk by diminishing the 

updates. 

The data obtained after training allow for 

calculating a single confidence score for unlabeled 
data. The obtained confidence scores can be sorted 

from top to bottom. In doing so, homogenous names 

will have the same score and be located nearby, 

which is convenient for verifying the classification 

correctness. If the result is correct/incorrect for one 

name, it will be the same for all similar names. This 
allows for creating new classes or optimizing the 

algorithm immediately for a large number of input 

data. 
Table 3 shows the top and bottom five results of 

the parts classification, confidence scores by tree 

levels, and the final unified confidence. 

7. RESULTS ACHIEVED AND  

CONCLUSIONS 

Based on the proposed approach, a function 

library in Python was developed. The brief 
classification times – up to 125 ms for a single row 

and up to 56 seconds for eleven thousand rows –

permit the use of the algorithm in an online mode for 
wide variety of problems.  

Accelerations by more than an order of 

magnitude are achieved for data comprising 

thousands of rows, thanks to powerful Python 
algorithms optimized for working with large 

matrices. The library we developed is also optimized 

for rapid computation of large data arrays and 
utilizes all built-in Python optimization techniques. 

The classification accuracy varied across 

different datasets from 85% to 98% for works and 
from 87% to 96 % for parts names.  

As shown in Table 4, the overall classification 

accuracy of the proposed algorithm nearly doubled 

after training, reaching 92.38%. 

Table 3. Top and bottom five results of the parts classification 

Testing data sample Labeled Predict. Result Confidence by levels 

L-1 L-2 L-3 Unified 

Заміна зовн. ручки і приводу замка чи 

двері 

2011300 2011300 True 36 119 97 99.9 % 

Зняття і установка консолі склоочисника 1200500 1200500 True 66 146 73 99.8 % 
Замена сцепного шкворня 1050900 1050900 True 31 670 100 99.8 % 

Установка обігрівального елементу 

сидіння 

2030200 2030200 True 21 1.16

9 

100 99.8 % 

Зняття та встановлення маховика 
інерційн. 

1080300 1080300 True 100 198 100 99.8 % 

… … … … … … … … 

Заміна газонаповнених амортизат. 
капота 

2010300 2011100 False 2 18 3 7.5 % 

Ремонт клапана привода передней двери 2011300 1140400 False 6 5 15 5.5 % 

Ремонт ПЖД 1160900 1120000 False 156 1 1 5.3 % 
Замена клапана моторного тормоза 1031600 1140400 False 376 4 17 4.4 % 

Проверка клапана моторного тормоза 1031600 1140400 False 376 4 17 4.4 % 

Source: compiled by authors 
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Table 4. Parts names classification results 

Model type Vectorization Accuracy, 

training data 

Accuracy, test data 

Custom model without weighting 

and training 

count vectors — 0.5174 

tf-idf vectors — 0.6684 

Main model with weighted 

parameters after training 

count vectors 0.9365 0.9184 

tf-idf vectors 0.9552 0.9238 

Source: compiled by authors 

The classification of works related to 

mechanical parts was most effective, while the 
classification of specialized tasks, such as 

transmission repair or truck repair works, was less 

accurate. The partial attribution of this variability to 

the incomplete directories for certain tasks points 
towards an potential enhancement area through the 

expansion and refinement of class directories. 

One of the significant ancillary benefits 
observed from our algorithm implementation is the 

missing terms identification that necessitate 

inclusion in the directories, thereby improving the 

comprehensiveness and the classification system 
accuracy. This outcome also contributes valuable 

insights for domain-specific knowledge bases. 

The research presented in this paper has 
successfully demonstrated the application of tree-

based classification methodologies to the domain of 

Ukrainian technical text analysis, specifically 
focusing on the automotive industry. Through the 

development of a Python function library; we have 

showcased our proposed approach capability to 

efficiently classify technical texts related to 
automotive repairs and parts, achieving 

classification times that support real-time application 

scenarios. This efficiency opens the algorithm up for 

a wide array of practical uses, from enhancing the 
call centers operational quality to the creation of 

automated chatbots and digital assistants for service 

advisors in automotive service stations. 
In conclusion, the research underscores the 

profound potential of tree-based classification in 

navigating the complexities of technical text analysis 

within the automotive sector. By bridging the gap 
between structured data classification and the 

nuanced realm of natural language processing, we 

pave the way for advanced applications that could 
significantly impact various stakeholders, including 

insurance companies, automobile manufacturers, 

and vehicle owners as shown on Fig. 2. 

Fig. 2. Practical implementation of automotive works and parts accurate classification 
Source: compiled by authors 
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The ability to accurately predict maintenance 

costs and reliability of vehicle components from 

aggregated, labeled big data represents a substantial 
stride towards demystifying the vehicle ownership 

total cost, thereby empowering consumers and 

industry players alike with valuable, actionable 
insights.  

From the perspective of automotive 

manufacturers, this approach could substantially 
impact vehicle design, component reliability and 

safety, production processes, and warranty policies. 

Insurance companies may benefit from precise 

repair cost calculations and accurate assessments of 

residual vehicle value, leading to reduced expenses. 

Automotive repair shops can enhance their services 

by implementing automated chatbots and digital 
assistants for service managers. Additionally, car 

owners will be able to determine not only the 

purchase price of a vehicle but also the total cost of 
ownership for specific models. 

Looking forward, we aim to extend our research 

to encompass more complex tasks, such as the 
extraction, identification, and classification of 

automotive-related works from extensive text 

bodies, including transcriptions of telephone calls. 
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АНОТАЦІЯ 

Ієрархічні класифікатори відіграють вирішальну роль у вирішенні складних задач класифікації, розбиваючи їх на 
менші, більш керовані підзадачі. Ця стаття продовжує серію робіт, зосереджених на ієрархічній класифікації технічних 

українських текстів, зокрема класифікації ремонтних робіт та запасних частин, що використовуються в обслуговуванні та 
ремонті автомобілів. Ми вирішуємо питання, пов'язані з багатомовними вхідними даними – зокрема українською, 
російською та їх міксом – і відсутністю стандартних моделей попередньої обробки даних для української мови. У цій статті 
описується метод навчання та оцінювання моделі ієрархічної класифікації за допомогою налаштування параметрів для 
кожного вузла в деревоподібній структурі. Процес навчання включає ініціалізацію ваг для токенів у вузлах дерева класів та 
вхідних рядках, після чого проводиться ітеративне налаштування параметрів для оптимізації точності класифікації. 
Початкові ваги призначаються на основі наперед визначених правил, а ітеративний процес коригує ці ваги для досягнення 
оптимальної продуктивності. Стаття також розглядає проблему інтерпретації множинних показників впевненості, 

отриманих з процесу класифікації, пропонуючи підхід машинного навчання з використанням GradientBoostingClassifier з 
бібліотеки Scikit-learn для розрахунку уніфікованого показника впевненості. Цей показник допомагає оцінити надійність 
класифікації, особливо для нерозмічених даних, шляхом трансформації вхідних значень, генерації поліноміальних 
параметрів та використання логарифмічних перетворень і масштабування. Класифікатор точно налаштовується за 
допомогою технік оптимізації гіперпараметрів, а фінальна модель забезпечує надійний показник впевненості для задач 
класифікації, дозволяючи перевіряти та оптимізувати результатів класифікації на великих наборах даних. Загальна точність 
класифікації майже подвоїлася після навчання, досягнувши 92.38 %. Це дослідження не тільки просуває теоретичну основу 
ієрархічних класифікаторів, але й надає практичні рішення для обробки великомасштабних, нерозмічених наборів даних в 

автомобільній індустрії. Майбутні роботи будуть спрямовані на розширення цього підходу на більш складні задачі, такі як 
знаходження та класифікація інформації з великих текстів, наприклад, транскрипцій телефонних дзвінків. 

Ключові слова: обробка природної мови (NLP); деревоподібна класифікація; машинне навчання; аналіз даних; 
прикладні інтелектуальні системи 

ABOUT THE AUTHORS 

Sergii V. Mashtalir - Doctor of Engineering Science. Professor, Informatics Department. Kharkiv National University of 

Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine  

ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author ID: 36183980100  

Research field: Image and video processing; data analysis  

Машталір Сергій Володимирович - д-р техніч. наук, професор. Професор кафедри Інформатики Харківського 

національного університету радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна  

Oleksandr V. Nikolenko - PhD student. Uzhhorod National University, 14, University Str. Uzhhorod, 88000, Ukraine 

ORCID: https://orcid.org/0000-0002-6422-7824: oleksandr.nikolenko@uzhnu.edu.com 

Research field: Natural language processing; Big Data; machine learning 

Ніколенко Олександр Володимирович – здобувач ступеня доктора філософії у Державному вищому навчальному 

закладі «Ужгородський національний університет», вул. Університетська, 14. Ужгород, 88000, Україна  


