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ABSTRACT

Hierarchical classifiers play a crucial role in addressing complex classification tasks by breaking them down into smaller, more
manageable sub-tasks. This paper continues a series of works, focused on the technical Ukrainian texts hierarchical classification,
specifically the classification of repair works and spare parts used in automobile maintenance and servicing. We tackle the challenges
posed by multilingual data inputs — specifically Ukrainian, Russian, and their hybrid —and the lack of standard data cleaning models
for the Ukrainian language. We developed a novel classification algorithm, which employs TF-IDF victimization with unigrams and
bigrams, keyword selection, and cosine similarity for classification. This paper describes a method for training and evaluating a
hierarchical classification model using parameter tuning for each node in a tree structure. The training process involves initializing
weights for tokens in the class tree nodes and input strings, followed by iterative parameter tuning to optimize classification
accuracy. Initial weights are assigned based on predefined rules, and the iterative process adjusts these weights to achieve optimal
performance. The paper also addresses the challenge of interpreting multiple confidence scores from the classification process,
proposing a machine learning approach using Scikit-learn's GradientBoostingClassifier to calculate a unified confidence score. This
score helps assess the classification reliability, particularly for unlabeled data, by transforming input values, generating polynomial
parameters, and using logarithmic transformations and scaling. The classifier is fine-tuned using hyper parameter optimization
techniques, and the final model provides a robust confidence score for classification tasks, enabling the verification and classification
results optimization across large datasets. Our experimental results demonstrate significant improvements in classification
performance. Overall classification accuracy nearly doubled after training, reaching 92.38 %. This research not only advances the
theoretical framework of hierarchical classifiers but also provides practical solutions for processing large-scale, unlabeled datasets in
the automotive industry. The developed methodology can enhance various applications, including automated customer support
systems, predictive maintenance, and decision-making processes for stakeholders like insurance companies and service centers.
Future work will extend this approach to more complex tasks, such as extracting and classifying information from extensive text
sources like telephone call transcriptions.
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1. INTRODUCTION AND LITERATURE
REVIEW

In the machine learning domain, hierarchical
classifiers have become a crucial method for
addressing complex classification challenges [1].
These classifiers organize the classification task
hierarchically, simplifying a broad, multi-class
problem into smaller, more digestible sub-tasks.

A perspective area of research in hierarchical
classifiers focuses on optimization, specifically on
parameter tuning and confidence estimation.
Parameter tuning adjusts the model's parameters to
improve performance, while confidence scoring
guantifies the classifier's predictions certainty, both
critical for enhancing the hierarchical classification
systems accuracy and dependability [10].

This method reflects human cognitive decision-
making processes [2], which are sequential and
structured, making it particularly apt for areas with
inherent hierarchical structures, such as taxonomy
classification [3], image recognition [4] and [5],
medical diagnosis [6], autonomous systems [7], and
document categorization [8] and [9].

© Mashtalir S., Nikolenko O., 2024

Parameter tuning in hierarchical classifiers is
notably more complex than in non-hierarchical (flat)
classifiers due to the layered decision-making
process [11]. Each layer may require distinct
parameters, and the dependencies between these
layers must be meticulously managed. On the other
hand, confidence scoring addresses the necessity for
dependable predictions. In practical applications, it
is vital not only to understand the classifier's
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predictions but also the confidence level in these
predictions. This is especially crucial in hierarchical
classifiers, where errors can cascade through the
hierarchy.

An intriguing challenge arises when
hierarchical classification is combined with natural
language processing (NLP) [12].

Over the past few years, NLP has undergone
significant advancements, largely fueled by
developments in machine learning and deep
learning. Nevertheless, NLP systems often struggle
with issues related to incomplete or erroneous
training data [13], which can lead to skewed model
predictions and impact the trustworthiness of the
results. Effective data preparation and validation are
essential for addressing these concerns and ensuring
the robustness of NLP models.

Natural Language Processing encounters
significant challenges when applied to technical
texts due to the distinctive characteristics inherent to
these domains, such as specialized vocabulary,
complex syntactic structures, and heightened context
dependency [14]. Technical documents often
employ domain-specific jargon, abbreviations, and
terminology not represented in general-purpose
language models, leading to increased risk of
semantic misinterpretation. Furthermore, technical

writing  typically exhibits intricate  sentence
structures, with multiple clauses and
interdependencies, which complicate syntactic

parsing and semantic analysis.

These difficulties are compounded by the
scarcity of annotated domain-specific corpora and
the limited ability of NLP models to generalize
across different technical fields. Each domain
possesses unique terminologies and structural
patterns, necessitating domain-specific adaptation
and expert-annotated datasets, which are both time-
and resource-intensive to develop. These issues are
particularly ~ pronounced for  less-represented
languages [15], where the availability of linguistic
resources is limited, restricting the development of
multilingual models.

This work is the third in a series [16] and [17]
focused on the technical Ukrainian texts hierarchical
classification. The primary issue addressed in these
studies is the classification of repair works and spare
parts used in the automobiles’ maintenance and
servicing.

2. THE GOAL OF PAPER

The goal of this study is to develop a model for
the hierarchical classification of technical texts in
Ukrainian and Russian and to identify effective
optimization approaches through parameter tuning.

Additionally, the research seeks to evaluate the
classification quality by calculating key confidence
metrics, which will enhance the model’s efficiency
and reliability.

The paper explores a novel method for
calculating confidence scores, utilizing probability
estimation and ensemble techniques, enabling the
classifier to deliver more detailed outputs crucial for
decision-making processes in applications such as
automotive quality assurance.

The interplay between parameter tuning and
confidence scoring forms this paper’s central theme.
Effective parameter tuning improves the classifier
fundamental performance, while precise confidence
scoring ensures the predictions reliability.
Integrating these two elements fosters a more robust
and dependable hierarchical classification system.

Through extensive experimentation and case
studies, this paper demonstrates the proposed
methods practical advantages. It highlights
improvements in classification accuracy and
confidence calibration across various datasets in the
automotive repairs domain. The results emphasize
the comprehensive model training significance that
adequately incorporates both parameter tuning and
confidence scoring.

3. PROBLEM DEFINITION
3.1. Automotive sector issues

The significance of repair works and spare parts
classification cannot be overstated. Out of
approximately 1.5 billion vehicles globally, only 20%
have detailed, centrally collected, stored, and
analyzed repair information [18] and [19]. This data
pertains primarily to new vehicles, up to four years
old, which are serviced at authorized service centers.
Automotive  manufacturers  utilize  specialized
software in the original equipment service centers
(OES), where all repairs and spare parts are
accurately classified. This allows for the collection of
precise statistical data on the individual components
and assemblies reliability, their  operational
characteristics, warranty cases, and more [20].

Unfortunately, once a vehicle leaves the official
service network, its subsequent repair and
maintenance history becomes fragmented and often
lost. Non-authorized service centers lack a unified
classifier for repairs and spare parts, let alone a
single information system. Furthermore, there are
thousands of such systems worldwide, each with
different languages and data formats. In Ukraine
alone, dozens of similar programs are used.

Fig. 1 illustrates the automotive fleet structure
and highlights the data problem concerning repairs.
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R&M data are
collected
through OES

300 M vehicles 900 M vehicles

Nobody collects Repair & Maintenance data
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one owner few owners several owners many owners Antique, Vintage,
2024 - 2021 2020 — 2006 2005 - 1991 1990 - 1971 Veteran
OES 1AM 1AM 1AM Specialized Services
60k mi / km 180k mi / km 300k mi / km 300k+ mi / km

250 M vehicles

50 M vehicles

Fig. 1. Global car park structure
Source: compiled by authors

Repair data is valuable not only to automotive
manufacturers, but also to various other sectors. For
example, insurance companies can benefit from this
data to determine repair costs and residual vehicle
values. Similarly, service centers and even car
owners would find it beneficial to have information
not only about the current repair costs but also about
future expenses related to repair and maintenance.

3.2. Data collection and data structure

The input data used for this study comprised
information on repair works and spare parts from a
Garage Management System (GMS).

This data was divided into four sets:

1) Classes: hierarchical structures for repair
works (3 levels) and car parts (4 levels).

2) Training Data: manually labeled data from
the GMS, consisting of 6,000 entries.

3) Test Data: also manually labeled data from
the GMS, consisting of 11,000 entries.

4) Operational or Input Data: comprising tens
of millions of entries from the GMS.

Let us examine these types in greater detail.

Car repair works are organized in a three-level
tree structure as shown in the data extract in Table 1.

Car components are classified within a
hierarchical ~ four-level tree  structure. The
classification begins with the most general
component types, such as mechanical and body
parts, oils and fluids, wheels and tires. These broad
categories are then divided into their corresponding
systems, including filters, power transmission,
braking, suspension, steering, engine, cooling,
electric and electronic systems.

Within each system, the classification is further
refined into specific components. For example, the
suspension is divided into subcategories such as
damping, arms, wheel hubs, bearings, etc. Finally,
the lowest classification tier consists of specific
spare parts detailed lists, such as shock absorbers,
struts, coil and leaf springs. The car parts data tree
extract is presented in Table 2.

Table 1. Repair works classes’ data tree extract

1D Parent ID UA EN
1000 0 Jiaraoctu4Hi podoTH Diagnostic work
1100 1000 Iiarmocruka Diagnostics
1101 1100 Pyuna miarHocTika Manual diagnostics
1102 1100 Komm'torepHa JiarHocTrka Computer diagnostics
1200 1000 TectyBanHs Testing
2000 0 3arayibHi podoTH General works
2100 2000 3amina Replacement

Source: compiled by authors
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Table 2. Car parts classes’ data tree extract

1D Parent ID UA EN
1000000 0 MexaniuHi gerani Mechanical parts
1070000 1000000 AmopTu3artist Suspension damping
1070100 1070000 AMOpPTH3aTOPH 1 CTIlKH Shock absorbers & struts
1070101 1070100 AMOpTH3ATOPI MiABICKH Shock absorbers
1070102 1070100 Criliku miaBiCKU Struts
1070105 1070100 [THEeBMO-aMOPTH3ATOPH Pneumatic shocks
1070300 1070000 Omnopu amMopTH3aTOpiB Strut mountings
1070400 1070000 [TpyxuHM MiABiCKH Coil & leaf springs

Source: compiled by authors

The training and test datasets comprise
combined repair works and parts lists. For example,
an entry might be "Pneumatic damping diagnostics
on shock-tester". These lists have been manually
labeled specifically for this study.

Operational or input data consists of arbitrary
text, which may include information from garage
management  systems  (GMS), phone calls
transcriptions, messages from messengers, emails,
etc. The objective is to determine whether the input
text contains information related to car repairs and to
correctly assign it to one of the predefined classes
for works and parts.

A classification is considered successful if:

1) At least 90 % of car repair works are
identified and extracted from the incoming
unlabeled texts.

2) Of these, no less than 90% of works and
parts are correctly assigned to their appropriate
classes.

For example, the text “Pneumatic damping
diagnostics on shock-tester” should be accurately
classified into class 1102 for works and 1070105 for
parts

For this study purposes, we simplify the task by
assuming that the input text contains information
about works and components. Therefore, only the
second criterion of successful classification is
considered. The task of extracting relevant
information about repair works and automotive parts
from arbitrary text will be addressed in future
studies.

In summary, this series of works aims to
address the critical issue of technical texts
hierarchical classification, focusing on the
automotive industry. By improving the classification
and analysis of repair and maintenance data, we can
enhance this information's reliability —and
accessibility for multiple stakeholders, ultimately
contributing to better decision-making and resource
management in the automotive sector.

4. CLASSIFICATION ALGORITHM
4.1. Data preprocessing

Our previous work [16] extensively examined
the challenges of processing technical texts based on
Ukrainian and Russian languages, including their
hybrid form known as “surzhyk”. Here, we briefly
summarize the key points.

In datasets composed of manually input texts,
we frequently encounter numerous errors and
technical terms, often presented in a mixture of two
languages. Moreover, standard data cleaning models
are not always available for the Ukrainian language.

Therefore, we adapted the classical NLP
approach as follows:

1) Language identification based on language-
specific letters and terms.

2) Data normalization by removing
unnecessary characters and excluding stopwords.
The stopwords list was meticulously revised to avoid
omitting important repair-related abbreviations, e.g.,
TO — TexuiuHe oOcnyroByBanHs (technical
maintenance).

3) Translation of all texts into Ukrainian, the
primary language for our research. Simultaneously,
a Russian-Ukrainian dictionary of terms was
automatically compiled.

4) Tokenization and subsequent splitting of
merged tokens into their constituents.

5) Automatic correction of grammatical errors
based on the generated dictionary and existing
tokens, utilizing the Jaro-Winkler metric for word
matching.

6) Lemmatization using comprehensive online
dictionaries of the Ukrainian language.

7) Separation of specific prefixes such as auto-
, electro-, pneumatic-, etc.

8) Deciphering abbreviations and replacing
synonyms.

As a result of these operations, the original
parts classes’ tree consisting of 10.288 sentences

234

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)



Mashtalir S.V., Nikolenko O.V. [/

Herald of Advanced Information Technology

2024; Vol.7 No.3: 231-242

was transformed into 6.062 tokens, which were then
compressed into 2.484 tokens after applying the
described sequence of steps. The proposed
preprocessing methodology resulted in a 59 %
reduction in dictionary size, thereby significantly
accelerating data processing in all subsequent stages.

4.2. Classification

As described in our previous work [17] initial
attempts to classify the data using standard
algorithms like Naive Bayes, k-Nearest Neighbors
(kNN), and logistic regression yielded unsatisfactory
results, with the best performance being slightly
above 80%.

To achieve the required classification accuracy,
we developed our own classification algorithm.

The process involves:

1) Initialization and Full Name Construction:
For each node, a full name is created by combining
the node’s name with its children’s full names.

2) Vectorization using TF-IDF: Nodes are
vectorized using the TF-IDF method to represent
term importance, including both unigrams and
bigrams.

The TF-IDF metric is calculated using the
formula [21]:

TF —IDF =TF X IDF

fta
TF (t,d) = =——,
( ) Zt’edft’,d

where f; 4 israw count of a term t in document d;
Ytreafer 4 18 number of words in document d.

IDF(t,D)

=g enteay

where N is total number of documents in the corpus,
N = |D||{d € D :t € d}| is number of documents,
where term t appears, i.e. TF (¢, d) # 0.

3) Node Matrices: Constructing for each node
unique matrices based on the TF-IDF child nodes
vectors.

4) Keyword Selection: Keywords and super
keywords are selected based on document frequency
values. Keywords are unique to a class, while super
keywords are names consisting of two words,
weighted more heavily to aid classification accuracy.

5) Training Data Vectorization: Each training
string is vectorized, creating matrices with TF-IDF
values. Bigrams and their permutations enrich the
feature set, accommaodating different word orders.

This step is detailed in the chapter “5. Model
Training and Evaluation” of this work.

5) Classification: Using cosine similarity to
measure the distance between input strings and

matrix rows and iteratively refining classification
probabilities through training.

The cosine similarity metric between vectors A
and B is calculated by the formula [22]:

AB S, AB;

AT 2 :
2?:1Ai Z?:1Bi2

Cosine similarity was chosen because it is a
widely used similarity measure for real-valued
vectors, which is especially important for parts
classification. Additionally, cosine has the nice
property that it is 1.0 for identical and 0.0 for
orthogonal vectors [23].

7) Confidence  scores calculation: The
confidence score is the ratio of the probabilities of
the most and second most likely classes. If no
matches are found in any child classes, an arbitrarily
high confidence value is assigned.

This step is detailed in Chapter “6. Unified
Confidence Score for Labeled and Unlabeled Data”
of this work.

5. MODEL TRAINING AND
EVALUATION

Our prior research [17] delineated the
comprehensive process of hierarchical classification
for automotive works and parts. However,
constraints on space precluded detailed discussions
of the training and evaluation processes, despite
their critical importance in the classification
algorithm, which significantly enhanced the
classification accuracy.

Additionally, the confidence scores
computation and optimization were not thoroughly
examined. Given that 99 % of our data was
unlabeled, the confidence issue was especially
pivotal in our study.

This paper addresses these omissions by
providing a detailed training and scoring processes
exposition in the subsequent two chapters.

Following the tree construction and the
initialization of the vectorizer and classifier for each
node, a parameter tuning method for the tree is
initiated, which in turn launches, in several threads,
the parameter tuning method within each node,
acting as potential sub-classifiers of our tree.

Sc(4,B) =cos(0) =

Prior to the parameter tuning iterations
commencement, several preparatory steps are
undertaken:

1) A training dataset is initialized, upon which
each parameter values set will be evaluated at each
iteration. This set includes input data — vectorized
names from the sets comprising the full_name of
child nodes, as well as additional manually
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annotated names (which are given greater weight),
and the output data — the corresponding child nodes
and annotations classes.

2) An initial parameter values set at the node is
evaluated. The evaluation function launches a one-
step training data classification on the node classifier
and checks the accuracy percentage of the resulting
classes against the true class values.

The training occurs through the weights
(parameters) optimization for the node's matrix
tokens in the class tree, as well as weights
(parameters) for the input (training) vector.

Initially, all class node matrix elements are
assigned preliminary weights according to the
following rules:

o super keyword — 5.0, keyword — 2.5;

o direct child tokens — 2.0 (direct descendants
tokens are given more attention than those of further
descendants);

e bigrams — 1.5;

o the first token in the name — 1.5;

o adjectives — 0.5;

e others —1.0.

The exact values for parameters during
initialization are not critically important. What
matters is that they are greater than 1 or less than 1,
and subsequently, the iterative training algorithm
will determine the optimal weights.

As with the matrices for class tree nodes, initial
weights are determined for the input strings
matrices. However, different rules apply here:

e bigrams — 1.5;

e the first token in the name — 1.5;

o tokens created from words in parentheses —
0.5;

e bigrams created from words on the edge of
parentheses from both sides — 0.0.

Parameter tuning iterative cycle then
commences. If it does not conclude within 20
iterations, it halts at the last result.

At each iteration, a parameter tuning step is
performed:

1) for each parameter, its values are iterated
from a possible values predefined set (for example,
for most weights >1, parameters from 1 to 10 are
iterated in steps of +0.5, and for weights < 1,
parameters from 1 to 0 in steps of -0.05);

2) as we are changing parameter values, for
each of the training rows, a re-initialization of the
weighting parameters is pre-launched, as well as a
re-vectorization of the input names (if the value of a
parameter related to input vectorization was
changed) or a re-initialization of the classifier (if

parameters based on which the classifier vectors are
built were changed);

3) these values are then evaluated on the
training data — through classification and calculating
Accuracy — the matches percentage between found
and real classes;

4) the parameter and its value that achieve the
maximum classification accuracy rating are selected,;

5) a check for value update is performed:

oif a change in parameter value led to an
increase in accuracy compared to the previous
iteration, or accuracy remained the same but the
parameter value became closer to 1 — update the
node parameter values and proceed to the next
iteration;

o if the parameter values iteration did not find a
better value for any of the parameters — stop the
cycle.

After completing the parameter tuning method
on all nodes, the tree can be considered “trained”
and used for further classification.

6. UNIFIED CONFIDENCE SCORE FOR
LABELED AND UNLABELED DATA

Following classification, a pertinent question
remains: how confident are we in its correctness?
This is particularly relevant for unlabeled data, as
well as for automated decision-making systems.

As noted, the classification result provides us
with classes set along with their probabilities, and
confidence scores for each node of the tree. The
challenge arises in how to accurately interpret
multiple confidence scores. Simple dimensionality
reduction methods, such as arithmetic mean or root
mean square, which might intuitively be considered,
lose crucial information from the tree structure.

In other words, is it better to have confidence
closer to the tree's roots or its leaves? Which set
provides greater overall confidence, (1000, 0.1, 0.1)
or (0.1, 0.1, 1000)? If we were classifying city
names, moving through the tree from country to
state/region to city, then the set (1000, 0.1, 0.1)
would imply high confidence in the country but not
in the specific city, whereas (0.1, 0.1, 1000)
indicates that we correctly identified Odesa, but it's
unclear where exactly — in Ukraine or Texas.

To address this issue, labeled data from the
training set are used, on which traditional machine
learning is conducted based on three confidence
parameters using standard algorithms from the
powerful Python library Scikit [24].

In our case, the machine learning process
consisted of the following stages.
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6.1. Parameters engineering

In many machine learning algorithms,
transforming input values is a necessary condition
without which the algorithm won't converge to an
optimal result due to excessively extreme input
values or too significant difference between feature
magnitudes. Moreover, most machine learning
models train better and faster on as standardized data
as possible:

o clipping is performed (values less than a set
minimum become the minimum, and those greater
than a set maximum become the maximum) within a
range from min=0.000001 to max=1000, to
eliminate zero values and the most significant
outliers over 1000;

e to capture not only linear dependencies
between input parameters and the predicted value
but also potential nonlinear input data behaviors, as
well as to account for interactions between different
input parameters, polynomial parameters up to
degree 3 are generated. For example, from input
parameters X1, X2, X3, polynomial parameters X, x12,
X13, X1X2, X1X3, X12X2, X12X3, X1X2X3, X2, X2%, X2°X1, €tc.,
are formed;

o logarithmic transformation of polynomial
parameters is conducted to reduce the distribution
positive skewness, where most values are relatively
close to 0, but some highest values reach up to 109,
thereby having a long “tail” to the right, and to bring
them to values closer to each other and closer to 0;

e values are standardized using a scaler.
Typically, values are scaled relative to the mean and
variance. In our case, RobustScaler from Scikit was
chosen as the scaler, which is more resistant to
outliers and uses the median and interquartile range
instead of the usual mean and variance.

6.2. Training

GradientBoostingClassifier [25] was chosen as
the classifier, which conducts classification based on
boosted trees [26].

In practical applications, effectively deploying
the GradientBoostingClassifier necessitates the
careful adjustment of its hyperparameters, which
play a critical role in shaping the model's accuracy
and efficiency. This adjustment process typically
involves empirical optimization, where methods
such as grid search or random search are frequently
employed to identify the most suitable
hyperparameter settings.

The hyperparameters selected were:

e n_estimators — the simple models number
(decision trees) that make up the ensemble

e learning_rate — the value that indicates how
significant the contribution of each model in the
ensemble is to the overall result

e max_depth — the maximum depth of the
decision trees in the model

e max_features — the maximum number of
features considered during the tree nodes splits

e min_samples_split — the minimum number of
data points in a node (node samples) required to split
a node

e subsample — the fraction of data (among all
training data) taken for training each of the simple
trees

Hyperparameter tuning was performed using
GridSearch, i.e.,, trying all possible parameters
combinations among given values sets with cross-
validation.

The hyperparameters quality was assessed using
BrierScoreLoss, which shows the average squared
difference between the predicted class probability
(value pred_proba of the model
GradientBoostingClassifier, from 0 to 1,
corresponding to how confident the model is that the
outcome to which the obtained uncertainty scores
correspond is correct) and the true accuracy (0 or 1,
depending on the correctness of the classification on
training data).

6.3. Classification

The GradientBoostingClassifier from the Scikit
library is a robust classification algorithm for
machine learning tasks, based on the boosting
technique. Boosting is an ensemble method that
constructs a series of models sequentially, with each
subsequent model aiming to correct its predecessors’
errors.

Initially, a decision tree model is created,
typically a simple one. This model is imperfect, with
accuracy slightly better than a random choice. The
first step is not crucial;, the iterative process is
expected to significantly enhance it.

Next, a loss function is determined to evaluate
the model's effectiveness. In this case, the function
measures the discrepancy between predicted
probabilities and actual class labels, specifically the
deviation loss between them.

Gradient boosting methodically enhances the
model. At each new step, new models are created to
rectify the existing ensemble deficiencies:

o the loss function gradient based on the current
model predictions is calculated. This gradient
indicates the direction in which predictions should
be altered to reduce loss;
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e a new decision tree is trained to forecast these
gradients for each item in the training set. This tree
aims to predict the previous model errors;

e this new decision tree is added to the
ensemble with a coefficient known as the learning
rate. This coefficient controls the speed at which the
model learns. The learning rate is a critically
important hyperparameter in gradient boosting. It
assesses and scales each tree contribution. If it is too
high, the model may overfit; if too low, the model
may require too many trees to converge to a
satisfactory solution;

o the algorithm continues to add trees until the
specified number of trees (n_estimators) is reached
or until no further improvement can be made on the
training set.

Boosted trees are prone to overfitting. Therefore,
several regularization techniques are integrated into
the GradientBoostingClassifier:

¢ limiting the depth of trees with max_depth;

¢ a fraction of the training data (subsample) is
randomly selected to train each tree. This
randomness enhances the model robustness;

e learning rate reduction — the learning_rate
parameter scales the contribution of each tree,
lowering the overfitting risk by diminishing the
updates.

The data obtained after training allow for
calculating a single confidence score for unlabeled
data. The obtained confidence scores can be sorted
from top to bottom. In doing so, homogenous names
will have the same score and be located nearby,

which is convenient for verifying the classification
correctness. If the result is correct/incorrect for one
name, it will be the same for all similar names. This
allows for creating new classes or optimizing the
algorithm immediately for a large number of input
data.

Table 3 shows the top and bottom five results of
the parts classification, confidence scores by tree
levels, and the final unified confidence.

7. RESULTS ACHIEVED AND
CONCLUSIONS

Based on the proposed approach, a function
library in Python was developed. The brief
classification times — up to 125 ms for a single row
and up to 56 seconds for eleven thousand rows —
permit the use of the algorithm in an online mode for
wide variety of problems.

Accelerations by more than an order of
magnitude are achieved for data comprising
thousands of rows, thanks to powerful Python
algorithms optimized for working with large
matrices. The library we developed is also optimized
for rapid computation of large data arrays and
utilizes all built-in Python optimization techniques.

The classification accuracy varied across
different datasets from 85% to 98% for works and
from 87% to 96 % for parts names.

As shown in Table 4, the overall classification
accuracy of the proposed algorithm nearly doubled
after training, reaching 92.38%.

Table 3. Top and bottom five results of the parts classification

Testing data sample Labeled Predict. Result Confidence by levels

L-1 L-2 L-3 Unified

3amiHa 30BH. py4YKH i IPUBOIY 3aMKa 91 2011300 2011300 True 36 119 97 99.9%

nBepi

3HATTA 1 ycTaHOBKA KoHCoMi ckimooyricanka 1200500 1200500 True 66 146 73 99.8%

3aMeHa CIEIMHOr0 MKBOPHS 1050900 1050900 True 31 670 100 99.8 %

YcraHoBka 00irpiBabHOTO EMEMEHTY 2030200 2030200 True 21 116 100 99.8%

CUIIHHA 9

3HATTS Ta BCTAHOBJIEHHS MaXxOBHUKa 1080300 1080300 True 100 198 100 99.8%

IHepITiiH.

3aMiHa ra30HAIOBHEHUX aMOPTH3aT. 2010300 2011100 False 2 18 3 7.5%

KaroTa

PemoHT Kianana npuBoja nepeaneii asepu 2011300 1140400 False 6 5 15 55%

Pemont ITK/] 1160900 1120000 False 156 1 1 5.3%

3aMeHa KilallaHa MOTOPHOT'O TOpMO3a 1031600 1140400 False 376 4 17 4.4 %

IIpoBepka knamaHa MOTOPHOTO TOPMO3a 1031600 1140400 False 376 4 17 4.4%

Source: compiled by authors
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Table 4. Parts names classification results

Model type

Vectorization

Accuracy,
training data

Accuracy, test data

Custom model without weighting
and training

Main model with weighted
parameters after training

count vectors
tf-idf vectors
count vectors
tf-idf vectors

— 0.5174
— 0.6684
0.9365 0.9184
0.9552 0.9238

Source: compiled by authors

The classification of works related to
mechanical parts was most effective, while the
classification of specialized tasks, such as
transmission repair or truck repair works, was less
accurate. The partial attribution of this variability to
the incomplete directories for certain tasks points
towards an potential enhancement area through the
expansion and refinement of class directories.

One of the significant ancillary benefits
observed from our algorithm implementation is the
missing terms identification that necessitate
inclusion in the directories, thereby improving the
comprehensiveness and the classification system
accuracy. This outcome also contributes valuable
insights for domain-specific knowledge bases.

The research presented in this paper has
successfully demonstrated the application of tree-
based classification methodologies to the domain of
Ukrainian technical text analysis, specifically
focusing on the automotive industry. Through the
development of a Python function library; we have

Automotive
manufacturers

* vehicles construction

* components reliability
& safety

* production processes

* warranty conditions

Insurance
companies

* fair repairs costs
calculations

* fair residual car value
* insurance costs

showcased our proposed approach capability to
efficiently classify technical texts related to
automotive  repairs and  parts, achieving
classification times that support real-time application
scenarios. This efficiency opens the algorithm up for
a wide array of practical uses, from enhancing the
call centers operational quality to the creation of
automated chatbots and digital assistants for service
advisors in automotive service stations.

In conclusion, the research underscores the
profound potential of tree-based classification in
navigating the complexities of technical text analysis
within the automotive sector. By bridging the gap
between structured data classification and the
nuanced realm of natural language processing, we
pave the way for advanced applications that could
significantly impact various stakeholders, including
insurance companies, automobile manufacturers,
and vehicle owners as shown on Fig. 2.

Car repair
shops

* automated chat-bots
* exact repair estimates

« digital assistants for
service manager

« call centers efficiency

Fig. 2. Practical implementation of automotive works and parts accurate classification
Source: compiled by authors
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The ability to accurately predict maintenance
costs and reliability of vehicle components from
aggregated, labeled big data represents a substantial
stride towards demystifying the vehicle ownership
total cost, thereby empowering consumers and
industry players alike with valuable, actionable
insights.

From the perspective of  automotive
manufacturers, this approach could substantially

residual vehicle value, leading to reduced expenses.
Automotive repair shops can enhance their services
by implementing automated chatbots and digital
assistants for service managers. Additionally, car
owners will be able to determine not only the
purchase price of a vehicle but also the total cost of
ownership for specific models.

Looking forward, we aim to extend our research
to encompass more complex tasks, such as the

impact vehicle design, component reliability and
safety, production processes, and warranty policies.
Insurance companies may benefit from precise
repair cost calculations and accurate assessments of

extraction, identification, and classification of
automotive-related works from extensive text
bodies, including transcriptions of telephone calls.
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AHOTALISA

Iepapxiuni kmacudikaTopy BifirparoTh BHPINIAIBHY PONb Y BHpINIEHHI CKIAJHHUX 3agad Kiacudikamii, po3ouBaroun ix Ha
MeHI, OUThII KepoBaHi mimzazadi. Lls crarTs mpomoBxkye cepito poliT, 30cepeKeHHX Ha iepapXivHii Kimacudikamii TEeXHIYHUX
YKpalHCBKHX TEKCTiB, 30KkpeMa Kiacuikalii peMOHTHUX pOOIT Ta 3aacHUX YacTHH, IO BUKOPHCTOBYIOTHCS B OOCIYrOBYBaHHI Ta
pPEeMOHTI aBTOMOOLTIB. MU BHpIlIyeMO ITUTAHHS, IOB'I3aHI 3 0araTOMOBHUMH BXIJHUMH [aHUMH — 30KpeMa YKpaiHCBKOIO,
POCIHCBKOIO Ta TX MiKCOM — 1 BiJICYTHICTIO CTaHIAPTHHX MOJENEH ronepeHb0i 00poOKH TaHWX ISl YKpaiHChKOi MOBH. Y il CTaTTi
OITHCYETHCSI METOJ HAaBYAHHS Ta OI[IHIOBAHHS MOJENi iepapXiyHOi Kiachdikamii 3a JOIOMOTO0 HaJAIITYBAaHHS IapaMeTpiB s
KOXKHOTO BY3J1a B JIepeBOMNOAIOHIH cTpykTypi. IIpomec HaBuaHHS BKIIIOYAE iHiMiasi3amiio Bar Ui TOKEHIB y By3Jlax JepeBa KiaciB Ta
BXIHUX psAKaxX, MICIsS 9YOro IPOBOJWTHCS ITEpaTHMBHE HAJANITYBaHHS ITapaMeTpiB JUIl ONTHMi3amii TOYHOCTI KiIachgikamil.
IMouaTkoBi Baru NMPU3HAYAIOTHCA HA OCHOBI Halepe] BU3HAYEHMX MPABUII, a ITEPaTUBHUN MPOLIEC KOPHUTYE Il Baru Ui JOCATHEHHS
ONTUMaJIBHOI TNpOAyKTUBHOCTI. CrarTd TakoX po3risigae mnpobieMy iHTeprperanii MHOXKMHHUX IIOKa3HUKIB BIEBHEHOCTI,
OTpPHUMaHUX 3 Ipolecy Kiacudikamii, MPOMOHYIOYH IMiIXiJ MAalIMHHOTO HaBYaHHS 3 BHKopucTaHHsM GradientBoostingClassifier 3
6i6miorexn Scikit-learn s po3paxyHKy yHi(iKOBaHOro MOKa3HHKa BHEBHEHOCTI. Llelf moka3sHMK JormoMarae OIiHUTH HaJiliHICTh
Kinacudikargii, ocoOaMBO AT HEPO3MIYEHMX JIaHMX, LUIAXOM TpaHchopMalii BXiJHMX 3HauYeHb, TeHepalii MoNiHOMiaJbHHUX
rapamMeTpiB Ta BHKOPUCTAaHHS JOrapu(MiuHMX meperBopeHb i MacmraOyBaHHsA. Kiacugikatop TOYHO HalalITOBYETHCA 32
JIOTIOMOTOF0 TEXHIK ONTHMi3alii rinepnapaMerpis, a (iHaibHa Mojenb 3abe3nedye HaJIiHWI MOKAa3HMK BIIEBHEHOCTI JUIL 3a/1a4
Ki1acudikarii, 103BOJISIOYN MEPEBIPATH Ta ONTUMI3YBAaTH Pe3ybTaTiB Kiacudikalil Ha BEMKNX HaOOpax JaHUX. 3arajibHa TOYHICTb
kiacuikarii Maibke moaBoinacs micist HaB4YaHHs, gocsrHyBIIH 92.38 %. Lle mociikeHHsT He TUTBKH ITPOCYBA€ TEOPETUIHY OCHOBY
iepapxidHuX KiacudikaTopis, ane i Hajae MPaKTUYHI PIlIEHHs U1 00pOOKH BEIMKOMACIITaOHUX, HEpPO3MiueHHX HaOOpiB JaHUX B
aBTOMOOUTBHIH iHmycTpii. MaiOyTHI poOoTH OyayTh CHpsIMOBaHI Ha PO3MIMPEHHS [BOTO ITiAXOMy Ha OIIBII CKIIAIHI 33/a4i, Taki K
3HAXOJUKEHHS Ta Kiacudikaris iHpopmManii 3 BEIMKUX TEKCTIiB, HAIPUKIIA[], TPAHCKPHIILiH TeneOHHMX I3BIHKIB.

Kuarouosi cioBa: 06pobka mpupoxHoi moBu (NLP); nepesomonibHa knacugikalliss; MallMHHE HAaBYAHHS, aHAN3 JAHUX;
MIPUKJIA/IHI IHTEIeKTYalbHI CHCTEMU
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