
Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

231

DOI: https://doi.org/10.15276/hait.07.2024.15

UDC 004.91

Optimizing hierarchical classifiers with parameter

tuning and confidence scoring

Sergii V. Mashtalir
1)

ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author ID: 36183980100

Oleksandr V. Nikolenko
2)

ORCID: https://orcid.org/0000-0002-6422-7824; oleksandr.nikolenko@uzhnu.edu.ua
1) Kharkiv National University of Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine

2) Uzhhorod National University, 14, University Str. Uzhhorod, 88000, Ukraine

ABSTRACT

Hierarchical classifiers play a crucial role in addressing complex classification tasks by breaking them down into smaller, more
manageable sub-tasks. This paper continues a series of works, focused on the technical Ukrainian texts hierarchical classification,
specifically the classification of repair works and spare parts used in automobile maintenance and servicing. We tackle the challenges
posed by multilingual data inputs – specifically Ukrainian, Russian, and their hybrid – and the lack of standard data cleaning models

for the Ukrainian language. We developed a novel classification algorithm, which employs TF-IDF victimization with unigrams and
bigrams, keyword selection, and cosine similarity for classification. This paper describes a method for training and evaluating a
hierarchical classification model using parameter tuning for each node in a tree structure. The training process involves ini tializing
weights for tokens in the class tree nodes and input strings, followed by iterative parameter tuning to optimize classification
accuracy. Initial weights are assigned based on predefined rules, and the iterative process adjusts these weights to achieve optimal
performance. The paper also addresses the challenge of interpreting multiple confidence scores from the classification process,
proposing a machine learning approach using Scikit-learn's GradientBoostingClassifier to calculate a unified confidence score. This
score helps assess the classification reliability, particularly for unlabeled data, by transforming input values, generating polynomial
parameters, and using logarithmic transformations and scaling. The classifier is fine-tuned using hyper parameter optimization

techniques, and the final model provides a robust confidence score for classification tasks, enabling the verification and classification
results optimization across large datasets. Our experimental results demonstrate significant improvements in classification
performance. Overall classification accuracy nearly doubled after training, reaching 92.38 %. This research not only advances the
theoretical framework of hierarchical classifiers but also provides practical solutions for processing large-scale, unlabeled datasets in
the automotive industry. The developed methodology can enhance various applications, including automated customer support
systems, predictive maintenance, and decision-making processes for stakeholders like insurance companies and service centers.
Future work will extend this approach to more complex tasks, such as extracting and classifying information from extensive text
sources like telephone call transcriptions.

Keywords: Natural language processing; tree-based classification; machine learning; data analysis; applied intelligent systems

For citation: Mashtalir S. V., Nikolenko O. V. “Optimizing hierarchical classifiers with parameter tuning and confidence scoring”. Herald of

Advanced Information Technology. 2024; Vol. 7 No. 3: 231–242. DOI: https://doi.org/10.15276/hait.07.2024.15

1. INTRODUCTION AND LITERATURE

REVIEW

In the machine learning domain, hierarchical

classifiers have become a crucial method for

addressing complex classification challenges [1].
These classifiers organize the classification task

hierarchically, simplifying a broad, multi-class

problem into smaller, more digestible sub-tasks.
This method reflects human cognitive decision-

making processes [2], which are sequential and

structured, making it particularly apt for areas with

inherent hierarchical structures, such as taxonomy
classification [3], image recognition [4] and [5],

medical diagnosis [6], autonomous systems [7], and

document categorization [8] and [9].

© Mashtalir S., Nikolenko O., 2024

A perspective area of research in hierarchical

classifiers focuses on optimization, specifically on
parameter tuning and confidence estimation.

Parameter tuning adjusts the model's parameters to

improve performance, while confidence scoring

quantifies the classifier's predictions certainty, both
critical for enhancing the hierarchical classification

systems accuracy and dependability [10].

Parameter tuning in hierarchical classifiers is
notably more complex than in non-hierarchical (flat)

classifiers due to the layered decision-making

process [11]. Each layer may require distinct

parameters, and the dependencies between these
layers must be meticulously managed. On the other

hand, confidence scoring addresses the necessity for

dependable predictions. In practical applications, it
is vital not only to understand the classifier's

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0 /deed.uk)

https://doi.org/10.15276/hait.07.2024
https://doi.org/

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

232 Theoretical aspects of computer science,

programming and data analysis

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

predictions but also the confidence level in these

predictions. This is especially crucial in hierarchical

classifiers, where errors can cascade through the
hierarchy.

An intriguing challenge arises when

hierarchical classification is combined with natural
language processing (NLP) [12].

Over the past few years, NLP has undergone

significant advancements, largely fueled by
developments in machine learning and deep

learning. Nevertheless, NLP systems often struggle

with issues related to incomplete or erroneous

training data [13], which can lead to skewed model
predictions and impact the trustworthiness of the

results. Effective data preparation and validation are

essential for addressing these concerns and ensuring
the robustness of NLP models.

Natural Language Processing encounters

significant challenges when applied to technical

texts due to the distinctive characteristics inherent to
these domains, such as specialized vocabulary,

complex syntactic structures, and heightened context

dependency [14]. Technical documents often
employ domain-specific jargon, abbreviations, and

terminology not represented in general-purpose

language models, leading to increased risk of
semantic misinterpretation. Furthermore, technical

writing typically exhibits intricate sentence

structures, with multiple clauses and

interdependencies, which complicate syntactic
parsing and semantic analysis.

These difficulties are compounded by the

scarcity of annotated domain-specific corpora and
the limited ability of NLP models to generalize

across different technical fields. Each domain

possesses unique terminologies and structural
patterns, necessitating domain-specific adaptation

and expert-annotated datasets, which are both time-

and resource-intensive to develop. These issues are

particularly pronounced for less-represented
languages [15], where the availability of linguistic

resources is limited, restricting the development of

multilingual models.
This work is the third in a series [16] and [17]

focused on the technical Ukrainian texts hierarchical

classification. The primary issue addressed in these

studies is the classification of repair works and spare
parts used in the automobiles’ maintenance and

servicing.

2. THE GOAL OF PAPER

The goal of this study is to develop a model for

the hierarchical classification of technical texts in

Ukrainian and Russian and to identify effective
optimization approaches through parameter tuning.

Additionally, the research seeks to evaluate the

classification quality by calculating key confidence

metrics, which will enhance the model’s efficiency
and reliability.

The paper explores a novel method for

calculating confidence scores, utilizing probability
estimation and ensemble techniques, enabling the

classifier to deliver more detailed outputs crucial for

decision-making processes in applications such as
automotive quality assurance.

The interplay between parameter tuning and

confidence scoring forms this paper’s central theme.

Effective parameter tuning improves the classifier
fundamental performance, while precise confidence

scoring ensures the predictions reliability.

Integrating these two elements fosters a more robust
and dependable hierarchical classification system.

Through extensive experimentation and case

studies, this paper demonstrates the proposed

methods practical advantages. It highlights
improvements in classification accuracy and

confidence calibration across various datasets in the

automotive repairs domain. The results emphasize
the comprehensive model training significance that

adequately incorporates both parameter tuning and

confidence scoring.

3. PROBLEM DEFINITION

3.1. Automotive sector issues

The significance of repair works and spare parts

classification cannot be overstated. Out of
approximately 1.5 billion vehicles globally, only 20%

have detailed, centrally collected, stored, and

analyzed repair information [18] and [19]. This data
pertains primarily to new vehicles, up to four years

old, which are serviced at authorized service centers.

Automotive manufacturers utilize specialized
software in the original equipment service centers

(OES), where all repairs and spare parts are

accurately classified. This allows for the collection of

precise statistical data on the individual components
and assemblies reliability, their operational

characteristics, warranty cases, and more [20].

Unfortunately, once a vehicle leaves the official
service network, its subsequent repair and

maintenance history becomes fragmented and often

lost. Non-authorized service centers lack a unified

classifier for repairs and spare parts, let alone a
single information system. Furthermore, there are

thousands of such systems worldwide, each with

different languages and data formats. In Ukraine
alone, dozens of similar programs are used.

Fig. 1 illustrates the automotive fleet structure

and highlights the data problem concerning repairs.

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

233

Fig. 1. Global car park structure
 Source: compiled by authors

Repair data is valuable not only to automotive

manufacturers, but also to various other sectors. For
example, insurance companies can benefit from this

data to determine repair costs and residual vehicle

values. Similarly, service centers and even car
owners would find it beneficial to have information

not only about the current repair costs but also about

future expenses related to repair and maintenance.

3.2. Data collection and data structure

The input data used for this study comprised

information on repair works and spare parts from a

Garage Management System (GMS).
This data was divided into four sets:

1) Classes: hierarchical structures for repair

works (3 levels) and car parts (4 levels).
2) Training Data: manually labeled data from

the GMS, consisting of 6,000 entries.

3) Test Data: also manually labeled data from
the GMS, consisting of 11,000 entries.

4) Operational or Input Data: comprising tens

of millions of entries from the GMS.

Let us examine these types in greater detail.

Car repair works are organized in a three-level

tree structure as shown in the data extract in Table 1.

Car components are classified within a

hierarchical four-level tree structure. The

classification begins with the most general

component types, such as mechanical and body

parts, oils and fluids, wheels and tires. These broad

categories are then divided into their corresponding

systems, including filters, power transmission,

braking, suspension, steering, engine, cooling,

electric and electronic systems.

Within each system, the classification is further

refined into specific components. For example, the

suspension is divided into subcategories such as

damping, arms, wheel hubs, bearings, etc. Finally,

the lowest classification tier consists of specific

spare parts detailed lists, such as shock absorbers,

struts, coil and leaf springs. The car parts data tree

extract is presented in Table 2.

Table 1. Repair works classes’ data tree extract

ID Parent ID UA EN

1000 0 Діагностичні роботи Diagnostic work
1100 1000 Діагностика Diagnostics

1101 1100 Ручна діагностика Manual diagnostics

1102 1100 Комп'ютерна діагностика Computer diagnostics
1200 1000 Тестування Testing

2000 0 Загальні роботи General works

2100 2000 Заміна Replacement

Source: compiled by authors

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

234 Theoretical aspects of computer science,

programming and data analysis

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Table 2. Car parts classes’ data tree extract

ID Parent ID UA EN

1000000 0 Механічні деталі Mechanical parts

1070000 1000000 Амортизація Suspension damping

1070100 1070000 Амортизатори і стійки Shock absorbers & struts
1070101 1070100 Амортизаторі підвіски Shock absorbers

1070102 1070100 Стійки підвіски Struts

1070105 1070100 Пневмо-амортизатори Pneumatic shocks
1070300 1070000 Опори амортизаторів Strut mountings

1070400 1070000 Пружини підвіски Coil & leaf springs

Source: compiled by authors

The training and test datasets comprise

combined repair works and parts lists. For example,

an entry might be "Pneumatic damping diagnostics
on shock-tester". These lists have been manually

labeled specifically for this study.

Operational or input data consists of arbitrary
text, which may include information from garage

management systems (GMS), phone calls

transcriptions, messages from messengers, emails,

etc. The objective is to determine whether the input
text contains information related to car repairs and to

correctly assign it to one of the predefined classes

for works and parts.
A classification is considered successful if:

1) At least 90 % of car repair works are

identified and extracted from the incoming
unlabeled texts.

2) Of these, no less than 90% of works and

parts are correctly assigned to their appropriate

classes.
For example, the text “Pneumatic damping

diagnostics on shock-tester” should be accurately

classified into class 1102 for works and 1070105 for
parts

For this study purposes, we simplify the task by

assuming that the input text contains information

about works and components. Therefore, only the
second criterion of successful classification is

considered. The task of extracting relevant

information about repair works and automotive parts
from arbitrary text will be addressed in future

studies.

In summary, this series of works aims to
address the critical issue of technical texts

hierarchical classification, focusing on the

automotive industry. By improving the classification

and analysis of repair and maintenance data, we can
enhance this information's reliability and

accessibility for multiple stakeholders, ultimately

contributing to better decision-making and resource
management in the automotive sector.

4. CLASSIFICATION ALGORITHM

4.1. Data preprocessing

Our previous work [16] extensively examined
the challenges of processing technical texts based on

Ukrainian and Russian languages, including their

hybrid form known as “surzhyk”. Here, we briefly
summarize the key points.

In datasets composed of manually input texts,

we frequently encounter numerous errors and

technical terms, often presented in a mixture of two
languages. Moreover, standard data cleaning models

are not always available for the Ukrainian language.

Therefore, we adapted the classical NLP
approach as follows:

1) Language identification based on language-

specific letters and terms.
2) Data normalization by removing

unnecessary characters and excluding stopwords.

The stopwords list was meticulously revised to avoid

omitting important repair-related abbreviations, e.g.,
TO – технічне обслуговування (technical

maintenance).

3) Translation of all texts into Ukrainian, the
primary language for our research. Simultaneously,

a Russian-Ukrainian dictionary of terms was

automatically compiled.

4) Tokenization and subsequent splitting of
merged tokens into their constituents.

5) Automatic correction of grammatical errors

based on the generated dictionary and existing
tokens, utilizing the Jaro-Winkler metric for word

matching.

6) Lemmatization using comprehensive online
dictionaries of the Ukrainian language.

7) Separation of specific prefixes such as auto-

, electro-, pneumatic-, etc.

8) Deciphering abbreviations and replacing
synonyms.

As a result of these operations, the original

parts classes’ tree consisting of 10.288 sentences

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

235

was transformed into 6.062 tokens, which were then

compressed into 2.484 tokens after applying the

described sequence of steps. The proposed
preprocessing methodology resulted in a 59 %

reduction in dictionary size, thereby significantly

accelerating data processing in all subsequent stages.

4.2. Classification

As described in our previous work [17] initial

attempts to classify the data using standard
algorithms like Naive Bayes, k-Nearest Neighbors

(kNN), and logistic regression yielded unsatisfactory

results, with the best performance being slightly

above 80%.
To achieve the required classification accuracy,

we developed our own classification algorithm.

The process involves:
1) Initialization and Full Name Construction:

For each node, a full name is created by combining

the node’s name with its children’s full names.

2) Vectorization using TF-IDF: Nodes are
vectorized using the TF-IDF method to represent

term importance, including both unigrams and

bigrams.
The TF-IDF metric is calculated using the

formula [21]:

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹 × 𝐼𝐷𝐹

𝑇𝐹 (𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡 ′,𝑑𝑡 ′∈ 𝑑

 ,

where 𝑓𝑡,𝑑 is raw count of a term t in document d;

∑ 𝑓𝑡′,𝑑𝑡′∈ 𝑑 is number of words in document d.

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}|
 ,

where N is total number of documents in the corpus,

N = |D||{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}| is number of documents,

where term t appears, i.e. TF (t, d) ≠ 0.
3) Node Matrices: Constructing for each node

unique matrices based on the TF-IDF child nodes

vectors.

4) Keyword Selection: Keywords and super
keywords are selected based on document frequency

values. Keywords are unique to a class, while super

keywords are names consisting of two words,
weighted more heavily to aid classification accuracy.

5) Training Data Vectorization: Each training

string is vectorized, creating matrices with TF-IDF

values. Bigrams and their permutations enrich the
feature set, accommodating different word orders.

This step is detailed in the chapter “5. Model

Training and Evaluation” of this work.
5) Classification: Using cosine similarity to

measure the distance between input strings and

matrix rows and iteratively refining classification

probabilities through training.

The cosine similarity metric between vectors A
and B is calculated by the formula [22]:

𝑆𝐶(𝐴, 𝐵) = cos(𝜃) =
𝐴𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

.

Cosine similarity was chosen because it is a
widely used similarity measure for real-valued

vectors, which is especially important for parts

classification. Additionally, cosine has the nice

property that it is 1.0 for identical and 0.0 for
orthogonal vectors [23].

7) Confidence scores calculation: The

confidence score is the ratio of the probabilities of
the most and second most likely classes. If no

matches are found in any child classes, an arbitrarily

high confidence value is assigned.
This step is detailed in Chapter “6. Unified

Confidence Score for Labeled and Unlabeled Data”

of this work.

5. MODEL TRAINING AND

EVALUATION

Our prior research [17] delineated the

comprehensive process of hierarchical classification
for automotive works and parts. However,

constraints on space precluded detailed discussions

of the training and evaluation processes, despite
their critical importance in the classification

algorithm, which significantly enhanced the

classification accuracy.

Additionally, the confidence scores
computation and optimization were not thoroughly

examined. Given that 99 % of our data was

unlabeled, the confidence issue was especially
pivotal in our study.

This paper addresses these omissions by

providing a detailed training and scoring processes

exposition in the subsequent two chapters.
Following the tree construction and the

initialization of the vectorizer and classifier for each

node, a parameter tuning method for the tree is
initiated, which in turn launches, in several threads,

the parameter tuning method within each node,

acting as potential sub-classifiers of our tree.
Prior to the parameter tuning iterations

commencement, several preparatory steps are

undertaken:

1) A training dataset is initialized, upon which
each parameter values set will be evaluated at each

iteration. This set includes input data – vectorized

names from the sets comprising the full_name of
child nodes, as well as additional manually

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

236 Theoretical aspects of computer science,

programming and data analysis

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

annotated names (which are given greater weight),

and the output data – the corresponding child nodes

and annotations classes.
2) An initial parameter values set at the node is

evaluated. The evaluation function launches a one-

step training data classification on the node classifier
and checks the accuracy percentage of the resulting

classes against the true class values.

The training occurs through the weights
(parameters) optimization for the node's matrix

tokens in the class tree, as well as weights

(parameters) for the input (training) vector.

Initially, all class node matrix elements are
assigned preliminary weights according to the

following rules:

 super keyword – 5.0, keyword – 2.5;

 direct child tokens – 2.0 (direct descendants

tokens are given more attention than those of further
descendants);

 bigrams – 1.5;

 the first token in the name – 1.5;

 adjectives – 0.5;

 others – 1.0.

The exact values for parameters during

initialization are not critically important. What
matters is that they are greater than 1 or less than 1,

and subsequently, the iterative training algorithm

will determine the optimal weights.

As with the matrices for class tree nodes, initial
weights are determined for the input strings

matrices. However, different rules apply here:

 bigrams – 1.5;

 the first token in the name – 1.5;

 tokens created from words in parentheses –

0.5;

 bigrams created from words on the edge of
parentheses from both sides – 0.0.

Parameter tuning iterative cycle then

commences. If it does not conclude within 20

iterations, it halts at the last result.
At each iteration, a parameter tuning step is

performed:

1) for each parameter, its values are iterated
from a possible values predefined set (for example,

for most weights >1, parameters from 1 to 10 are

iterated in steps of +0.5, and for weights < 1,
parameters from 1 to 0 in steps of -0.05);

2) as we are changing parameter values, for

each of the training rows, a re-initialization of the

weighting parameters is pre-launched, as well as a
re-vectorization of the input names (if the value of a

parameter related to input vectorization was

changed) or a re-initialization of the classifier (if

parameters based on which the classifier vectors are

built were changed);

3) these values are then evaluated on the
training data – through classification and calculating

Accuracy – the matches percentage between found

and real classes;
4) the parameter and its value that achieve the

maximum classification accuracy rating are selected;

5) a check for value update is performed:

 if a change in parameter value led to an
increase in accuracy compared to the previous

iteration, or accuracy remained the same but the

parameter value became closer to 1 – update the

node parameter values and proceed to the next
iteration;

 if the parameter values iteration did not find a

better value for any of the parameters – stop the

cycle.
After completing the parameter tuning method

on all nodes, the tree can be considered “trained”

and used for further classification.

6. UNIFIED CONFIDENCE SCORE FOR

LABELED AND UNLABELED DATA

Following classification, a pertinent question

remains: how confident are we in its correctness?
This is particularly relevant for unlabeled data, as

well as for automated decision-making systems.

As noted, the classification result provides us
with classes set along with their probabilities, and

confidence scores for each node of the tree. The

challenge arises in how to accurately interpret

multiple confidence scores. Simple dimensionality
reduction methods, such as arithmetic mean or root

mean square, which might intuitively be considered,

lose crucial information from the tree structure.
In other words, is it better to have confidence

closer to the tree's roots or its leaves? Which set

provides greater overall confidence, (1000, 0.1, 0.1)
or (0.1, 0.1, 1000)? If we were classifying city

names, moving through the tree from country to

state/region to city, then the set (1000, 0.1, 0.1)

would imply high confidence in the country but not
in the specific city, whereas (0.1, 0.1, 1000)

indicates that we correctly identified Odesa, but it's

unclear where exactly – in Ukraine or Texas.
To address this issue, labeled data from the

training set are used, on which traditional machine

learning is conducted based on three confidence

parameters using standard algorithms from the
powerful Python library Scikit [24].

In our case, the machine learning process

consisted of the following stages.

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

237

6.1. Parameters engineering

In many machine learning algorithms,

transforming input values is a necessary condition
without which the algorithm won't converge to an

optimal result due to excessively extreme input

values or too significant difference between feature
magnitudes. Moreover, most machine learning

models train better and faster on as standardized data

as possible:

 clipping is performed (values less than a set
minimum become the minimum, and those greater

than a set maximum become the maximum) within a

range from min=0.000001 to max=1000, to

eliminate zero values and the most significant
outliers over 1000;

 to capture not only linear dependencies

between input parameters and the predicted value

but also potential nonlinear input data behaviors, as
well as to account for interactions between different

input parameters, polynomial parameters up to

degree 3 are generated. For example, from input

parameters x1, x2, x3, polynomial parameters x1, x1
2,

x1
3, x1x2, x1x3, x1

2x2, x1
2x3, x1x2x3, x2, x2

2, x2
2x1, etc.,

are formed;

 logarithmic transformation of polynomial

parameters is conducted to reduce the distribution
positive skewness, where most values are relatively

close to 0, but some highest values reach up to 109,

thereby having a long “tail” to the right, and to bring
them to values closer to each other and closer to 0;

 values are standardized using a scaler.

Typically, values are scaled relative to the mean and

variance. In our case, RobustScaler from Scikit was

chosen as the scaler, which is more resistant to
outliers and uses the median and interquartile range

instead of the usual mean and variance.

6.2. Training

GradientBoostingClassifier [25] was chosen as

the classifier, which conducts classification based on

boosted trees [26].
In practical applications, effectively deploying

the GradientBoostingClassifier necessitates the

careful adjustment of its hyperparameters, which

play a critical role in shaping the model's accuracy
and efficiency. This adjustment process typically

involves empirical optimization, where methods

such as grid search or random search are frequently
employed to identify the most suitable

hyperparameter settings.

The hyperparameters selected were:

 n_estimators – the simple models number
(decision trees) that make up the ensemble

 learning_rate – the value that indicates how

significant the contribution of each model in the

ensemble is to the overall result

 max_depth – the maximum depth of the

decision trees in the model

 max_features – the maximum number of
features considered during the tree nodes splits

 min_samples_split – the minimum number of

data points in a node (node samples) required to split

a node

 subsample – the fraction of data (among all
training data) taken for training each of the simple

trees

Hyperparameter tuning was performed using
GridSearch, i.e., trying all possible parameters

combinations among given values sets with cross-

validation.

The hyperparameters quality was assessed using
BrierScoreLoss, which shows the average squared

difference between the predicted class probability

(value pred_proba of the model
GradientBoostingClassifier, from 0 to 1,

corresponding to how confident the model is that the

outcome to which the obtained uncertainty scores
correspond is correct) and the true accuracy (0 or 1,

depending on the correctness of the classification on

training data).

6.3. Classification

The GradientBoostingClassifier from the Scikit

library is a robust classification algorithm for

machine learning tasks, based on the boosting
technique. Boosting is an ensemble method that

constructs a series of models sequentially, with each

subsequent model aiming to correct its predecessors’

errors.
Initially, a decision tree model is created,

typically a simple one. This model is imperfect, with

accuracy slightly better than a random choice. The
first step is not crucial; the iterative process is

expected to significantly enhance it.

Next, a loss function is determined to evaluate
the model's effectiveness. In this case, the function

measures the discrepancy between predicted

probabilities and actual class labels, specifically the

deviation loss between them.
Gradient boosting methodically enhances the

model. At each new step, new models are created to

rectify the existing ensemble deficiencies:

 the loss function gradient based on the current
model predictions is calculated. This gradient

indicates the direction in which predictions should

be altered to reduce loss;

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

238 Theoretical aspects of computer science,

programming and data analysis

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 a new decision tree is trained to forecast these

gradients for each item in the training set. This tree

aims to predict the previous model errors;

 this new decision tree is added to the

ensemble with a coefficient known as the learning
rate. This coefficient controls the speed at which the

model learns. The learning rate is a critically

important hyperparameter in gradient boosting. It
assesses and scales each tree contribution. If it is too

high, the model may overfit; if too low, the model

may require too many trees to converge to a
satisfactory solution;

 the algorithm continues to add trees until the

specified number of trees (n_estimators) is reached

or until no further improvement can be made on the

training set.
Boosted trees are prone to overfitting. Therefore,

several regularization techniques are integrated into

the GradientBoostingClassifier:

 limiting the depth of trees with max_depth;

 a fraction of the training data (subsample) is
randomly selected to train each tree. This

randomness enhances the model robustness;

 learning rate reduction – the learning_rate

parameter scales the contribution of each tree,
lowering the overfitting risk by diminishing the

updates.

The data obtained after training allow for

calculating a single confidence score for unlabeled
data. The obtained confidence scores can be sorted

from top to bottom. In doing so, homogenous names

will have the same score and be located nearby,

which is convenient for verifying the classification

correctness. If the result is correct/incorrect for one

name, it will be the same for all similar names. This
allows for creating new classes or optimizing the

algorithm immediately for a large number of input

data.
Table 3 shows the top and bottom five results of

the parts classification, confidence scores by tree

levels, and the final unified confidence.

7. RESULTS ACHIEVED AND

CONCLUSIONS

Based on the proposed approach, a function

library in Python was developed. The brief
classification times – up to 125 ms for a single row

and up to 56 seconds for eleven thousand rows –

permit the use of the algorithm in an online mode for
wide variety of problems.

Accelerations by more than an order of

magnitude are achieved for data comprising

thousands of rows, thanks to powerful Python
algorithms optimized for working with large

matrices. The library we developed is also optimized

for rapid computation of large data arrays and
utilizes all built-in Python optimization techniques.

The classification accuracy varied across

different datasets from 85% to 98% for works and
from 87% to 96 % for parts names.

As shown in Table 4, the overall classification

accuracy of the proposed algorithm nearly doubled

after training, reaching 92.38%.

Table 3. Top and bottom five results of the parts classification

Testing data sample Labeled Predict. Result Confidence by levels

L-1 L-2 L-3 Unified

Заміна зовн. ручки і приводу замка чи

двері

2011300 2011300 True 36 119 97 99.9 %

Зняття і установка консолі склоочисника 1200500 1200500 True 66 146 73 99.8 %
Замена сцепного шкворня 1050900 1050900 True 31 670 100 99.8 %

Установка обігрівального елементу

сидіння

2030200 2030200 True 21 1.16

9

100 99.8 %

Зняття та встановлення маховика
інерційн.

1080300 1080300 True 100 198 100 99.8 %

… … … … … … … …

Заміна газонаповнених амортизат.
капота

2010300 2011100 False 2 18 3 7.5 %

Ремонт клапана привода передней двери 2011300 1140400 False 6 5 15 5.5 %

Ремонт ПЖД 1160900 1120000 False 156 1 1 5.3 %
Замена клапана моторного тормоза 1031600 1140400 False 376 4 17 4.4 %

Проверка клапана моторного тормоза 1031600 1140400 False 376 4 17 4.4 %

Source: compiled by authors

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

239

Table 4. Parts names classification results

Model type Vectorization Accuracy,

training data

Accuracy, test data

Custom model without weighting

and training

count vectors — 0.5174

tf-idf vectors — 0.6684

Main model with weighted

parameters after training

count vectors 0.9365 0.9184

tf-idf vectors 0.9552 0.9238

Source: compiled by authors

The classification of works related to

mechanical parts was most effective, while the
classification of specialized tasks, such as

transmission repair or truck repair works, was less

accurate. The partial attribution of this variability to

the incomplete directories for certain tasks points
towards an potential enhancement area through the

expansion and refinement of class directories.

One of the significant ancillary benefits
observed from our algorithm implementation is the

missing terms identification that necessitate

inclusion in the directories, thereby improving the

comprehensiveness and the classification system
accuracy. This outcome also contributes valuable

insights for domain-specific knowledge bases.

The research presented in this paper has
successfully demonstrated the application of tree-

based classification methodologies to the domain of

Ukrainian technical text analysis, specifically
focusing on the automotive industry. Through the

development of a Python function library; we have

showcased our proposed approach capability to

efficiently classify technical texts related to
automotive repairs and parts, achieving

classification times that support real-time application

scenarios. This efficiency opens the algorithm up for

a wide array of practical uses, from enhancing the
call centers operational quality to the creation of

automated chatbots and digital assistants for service

advisors in automotive service stations.
In conclusion, the research underscores the

profound potential of tree-based classification in

navigating the complexities of technical text analysis

within the automotive sector. By bridging the gap
between structured data classification and the

nuanced realm of natural language processing, we

pave the way for advanced applications that could
significantly impact various stakeholders, including

insurance companies, automobile manufacturers,

and vehicle owners as shown on Fig. 2.

Fig. 2. Practical implementation of automotive works and parts accurate classification
Source: compiled by authors

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

240 Theoretical aspects of computer science,

programming and data analysis

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

The ability to accurately predict maintenance

costs and reliability of vehicle components from

aggregated, labeled big data represents a substantial
stride towards demystifying the vehicle ownership

total cost, thereby empowering consumers and

industry players alike with valuable, actionable
insights.

From the perspective of automotive

manufacturers, this approach could substantially
impact vehicle design, component reliability and

safety, production processes, and warranty policies.

Insurance companies may benefit from precise

repair cost calculations and accurate assessments of

residual vehicle value, leading to reduced expenses.

Automotive repair shops can enhance their services

by implementing automated chatbots and digital
assistants for service managers. Additionally, car

owners will be able to determine not only the

purchase price of a vehicle but also the total cost of
ownership for specific models.

Looking forward, we aim to extend our research

to encompass more complex tasks, such as the
extraction, identification, and classification of

automotive-related works from extensive text

bodies, including transcriptions of telephone calls.

REFERENCES

1. Silla, C. & Freitas, A. “A survey of hierarchical classification across different application domains”.

Data Mining and Knowledge Discovery. 2011; 22 (1): 31–72. DOI: https://doi.org/10.1007/s10618-010-

0175-9.

2. Homenda, W., Jastrzebska, A. & Pedrycz, W. “Multicriteria decision making inspired by human
cognitive processes”. Applied Mathematics and Computation. 2016; 290 (1): 392–411.

DOI: https://doi.org/10.1016/j.amc.2016.05.041.

3. Shen, J. & Han, J. “Taxonomy-guided classification, automated taxonomy discovery and
exploration”. Synthesis Lectures on Data Mining and Knowledge Discovery. Springer, Cham. 2022. p. 83–

100. DOI: https://doi.org/10.1007/978-3-031-11405-2_5.

4. Sun, Y., Wang, X., Peng, D., Zhenwen, R. & Shen, X. “Hierarchical hashing learning for image set
classification”. IEEE Transactions on Image Processing, 2023; 32: 1732–1744.

DOI: https://doi.org/10.1109/TIP.2023.3251025.

5. Chen, J., Stouffs, R. & Biljecki, F. “Hierarchical (multi-label) architectural image recognition and

classification”. Proceedings of the 26th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA). 2021; 1: 161–170.

DOI: https://doi.org/10.52842/conf.caadria.2021.1.161.

6. Yang, C., Harjoseputro, Y. & Chen, Y. “A hybrid approach of simultaneous segmentation and
classification for medical image analysis”. Multimed Tools Appl. 2024. DOI: https://doi.org/10.1007/s11042-

024-19310-9.

7. Yang, F, Li, X., Liu, Q., Li, X. & Li, Z. “Learning-based hierarchical decision-making framework

for automatic driving in incompletely connected traffic scenarios”. Sensors. 2024; 24 (8): 2592.
DOI: https://doi.org/10.3390/s24082592.

8. Schopf, T., Braun, D. & Matthes, F. “Semantic label representations with Lbl2Vec: A similarity-

based approach for unsupervised text classification”. Web Information Systems and Technologies. 2023; 469:
p. 59–73. DOI: https://doi.org/10.1007/978-3-031-24197-0_4.

9. Zhang, L., Ding, J., Xu, Y., Liu, Y. & Zhou, S. “Weakly-supervised text classification based on

keyword graph”. The 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
p. 2803–2813. DOI: https://doi.org/10.18653/v1/2021.emnlp-main.222.

10. Esmaeili, A., Ghorrati, Z. & Matson, E. T. “Hierarchical Collaborative Hyper-Parameter Tuning”.

Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The

PAAMS Collection. PAAMS 2022. Lecture Notes in Computer Science. 2022; 13616; p. 127–139.
DOI: https://doi.org/10.1007/978-3-031-18192-4_11.

11.Williams, L., Anthi, E. & Burnap, P. “Comparing hierarchical approaches to enhance supervised

emotive text classification”. Big Data and Cognitive Computing. 2024; 8 (4): 38.
DOI: https://doi.org/10.3390/bdcc8040038.

12.Zangari, A., Marcuzzo, M., Rizzo, M., Giudice, L., Albarelli, A. & Gasparetto, A. “Hierarchical text

classification and its foundations: A review of current research”. Electronics. 2024; 13 (7): 1199.

DOI: https://doi.org/10.3390/electronics13071199.

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

241

13.Arenas, M., Botoeva, E., Kostylev, E. & Ryzhikov, V. “A note on computing certain answers to

queries over incomplete databases”. In: CEUR Workshop Proceedings. Proceedings of the 11th Alberto

Mendelzon International Workshop on Foundations of Data Management and the Web. Montevideo:
Uruguay. 2017.

14. Li, Y., Currim, F. & Ram, S. “Data completeness and complex semantics in conceptual modeling:

The Need for a Disaggregation Construct”. Journal of Data and Information Quality. 2022; 14 (4): 1–21,
https://www.scopus.com/authid/detail.uri?authorId=15122156300. DOI: https://doi.org/

https://doi.org/10.1145/3532784.

15.Blasi, D., Anastasopoulos, A. & Neubig, G. “Systematic inequalities in language technology
performance across the world’s languages”. In Proceedings of the 60th Annual Meeting of the Association

for Computational Linguistics. 2022; 1: 5486–5505. DOI: https://doi.org/10.18653/v1/2022.acl-long.376.

16.Mashtalir, S. & Nikolenko, O. “Data preprocessing and tokenization techniques for technical

Ukrainian texts”. Applied Aspects of Information Technology. 2023; 6 (3): 318–326.
DOI: https://doi.org/10.15276/aait.06.2023.22.

17. Mashtalir, S. & Nikolenko, O. “Advancing automotive technical text analysis: A Tree-based

classification approach for Ukrainian texts”. The 7th International Conference on Computer Science,
Engineering and Education Applications. 2024.

18.Mohammad, A. “Using blockchain for data collection in the automotive industry sector: A literature

review”. Journal of Cybersecurity and Privacy. 2022; 2 (2). DOI: https://doi.org/10.3390/jcp2020014.

19.Danielkiewicz, R. & Dzieńkowski, M. “Analysis of user experience during interaction with
automotive repair workshop websites”. Journal of Computer Sciences Institute. 2024; 30: 39-46.

DOI: https://doi.org/10.35784/jcsi.5416.

20.Hemphill, T., Longstreet, P. & Banerjee, S. “Automotive repairs, data accessibility, and privacy and
security challenges: A stakeholder analysis and proposed policy solutions”. Technology in Society. 2022;

71(3): 102090. DOI: https://doi.org/10.1016/j.techsoc.2022.102090.

21.Vajjala, S., Majumder, B., Gupta, A. & Surana, H. “Practical natural language processing: A
comprehensive guide to building real-world NLP systems”. Published by O’Reilly Media, Inc. 2020.

22.Tan, P.-N., Steinbach, M. & Kumar, V. “Introduction to data mining”. 2nd ed. Published by Pearson

Education Limited, Harlow. 2019.

23.Singhal, A. “Modern information retrieval: A brief overview”. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering. 2001; 24 (4): 35–43.

24.Müller, A. & Guido, S. “Introduction to machine learning with python: A guide for data scientists”.

1st ed. Published by O'Reilly Media. 2016.
25.Géron, A. “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,

Tools, and Techniques to build intelligent systems”. 3rd ed. Published by O'Reilly Media. 2022.

26.Bastos, J. “Predicting credit scores with boosted decision trees”. Forecasting, 2022; 4 (4): 925–935.
DOI: https://doi.org/10.3390/forecast4040050.

Conflicts of Interest: The author declares that there is no conflict of interest

Received: 26.07.2024

Received after revision: 11.09.2024

Accepted: 20.09.2024

DOI: https://doi.org/10.15276/hait.07.2024.15

УДК 004.91

Оптимізація ієрархічних класифікаторів шляхом

налаштування параметрів та

оцінки впевненості

Машталір Сергій Володимирович
1)

ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author ID: 36183980100

https://doi.org/10.15276/hait.07.2024

Mashtalir S.V., Nikolenko O.V. / Herald of Advanced Information Technology

 2024; Vol.7 No.3: 231–242

242 Theoretical aspects of computer science,

programming and data analysis

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Ніколенко Олександр Володимирович
2)

ORCID: https://orcid.org/0000-0002-6422-7824; oleksandr.nikolenko@uzhnu.edu.com
1) Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

2) Ужгородській національний університет, вул. Університетська, 14. Ужгород, 88000, Україна

АНОТАЦІЯ

Ієрархічні класифікатори відіграють вирішальну роль у вирішенні складних задач класифікації, розбиваючи їх на
менші, більш керовані підзадачі. Ця стаття продовжує серію робіт, зосереджених на ієрархічній класифікації технічних

українських текстів, зокрема класифікації ремонтних робіт та запасних частин, що використовуються в обслуговуванні та
ремонті автомобілів. Ми вирішуємо питання, пов'язані з багатомовними вхідними даними – зокрема українською,
російською та їх міксом – і відсутністю стандартних моделей попередньої обробки даних для української мови. У цій статті
описується метод навчання та оцінювання моделі ієрархічної класифікації за допомогою налаштування параметрів для
кожного вузла в деревоподібній структурі. Процес навчання включає ініціалізацію ваг для токенів у вузлах дерева класів та
вхідних рядках, після чого проводиться ітеративне налаштування параметрів для оптимізації точності класифікації.
Початкові ваги призначаються на основі наперед визначених правил, а ітеративний процес коригує ці ваги для досягнення
оптимальної продуктивності. Стаття також розглядає проблему інтерпретації множинних показників впевненості,

отриманих з процесу класифікації, пропонуючи підхід машинного навчання з використанням GradientBoostingClassifier з
бібліотеки Scikit-learn для розрахунку уніфікованого показника впевненості. Цей показник допомагає оцінити надійність
класифікації, особливо для нерозмічених даних, шляхом трансформації вхідних значень, генерації поліноміальних
параметрів та використання логарифмічних перетворень і масштабування. Класифікатор точно налаштовується за
допомогою технік оптимізації гіперпараметрів, а фінальна модель забезпечує надійний показник впевненості для задач
класифікації, дозволяючи перевіряти та оптимізувати результатів класифікації на великих наборах даних. Загальна точність
класифікації майже подвоїлася після навчання, досягнувши 92.38 %. Це дослідження не тільки просуває теоретичну основу
ієрархічних класифікаторів, але й надає практичні рішення для обробки великомасштабних, нерозмічених наборів даних в

автомобільній індустрії. Майбутні роботи будуть спрямовані на розширення цього підходу на більш складні задачі, такі як
знаходження та класифікація інформації з великих текстів, наприклад, транскрипцій телефонних дзвінків.

Ключові слова: обробка природної мови (NLP); деревоподібна класифікація; машинне навчання; аналіз даних;
прикладні інтелектуальні системи

ABOUT THE AUTHORS

Sergii V. Mashtalir - Doctor of Engineering Science. Professor, Informatics Department. Kharkiv National University of

Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-0917-6622; sergii.mashtalir@nure.ua. Scopus Author ID: 36183980100

Research field: Image and video processing; data analysis

Машталір Сергій Володимирович - д-р техніч. наук, професор. Професор кафедри Інформатики Харківського

національного університету радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

Oleksandr V. Nikolenko - PhD student. Uzhhorod National University, 14, University Str. Uzhhorod, 88000, Ukraine

ORCID: https://orcid.org/0000-0002-6422-7824: oleksandr.nikolenko@uzhnu.edu.com

Research field: Natural language processing; Big Data; machine learning

Ніколенко Олександр Володимирович – здобувач ступеня доктора філософії у Державному вищому навчальному

закладі «Ужгородський національний університет», вул. Університетська, 14. Ужгород, 88000, Україна

