Herald of Advanced Information Technology 2019; Vol.2 No.1:57-70

Distributed Processing Data

UDC 681.3.07

Vitaliy D. Pavlenko', Doctor of Technical Sciences, Professor, Professor of the Department of
Computerized Control Systems, E-mail: pavlenko_vitalij@ukr.net, ORCID ID: 0000-0002-5655-4171
Sergey V. Pavlenko', Candidate of Technical Sciences, Senior Scientist at the Department of Computerized
Control Systems, E-mail: psv85@yandex.ru, ORCID ID: 0000-0002-9721-136X

'Odessa National Polytechnic University, Shevchenko Avenue, 1, Odessa, Ukraine, 65044

ORGANIZATION OF COMPUTATIONS IN CLUSTERS USING TRANSPARENT
PARALLELIZING PRINCIPLES

Abstract. Methods of consructing of the systems identification and recognition requirements significant computational
resources and therefore require usage of parallel systems, such as clusters or computers with multiple processors or processors with
multiple cores. In this paper cluster computing organization principles based on transparent parallelizing are considered. Questions
that arise while implementing this technology as a parallel calculations framework are described. Described technology has been
implemented as a framework on Java programming language. Architecture of such framework is shown and functionality of its parts
is described. The concept of a value ID and the concept of an unready value ID have been proposed to implement the proposed
principles. The ID of a value is an ID that should be assigned to each value that is used as input or output parameter of procedure.
These assignments are cluster-wide and are used to replace sending parameter value with sending its ID. The same values are often
used in different calls in parallel programs, so using IDs allows the framework to save traffic. IDs of unready values are created
each time during a procedure call and are assigned to the output parameters of the procedure. They are used to get the value of
parameter in the moment of the first access. Also they are passed to the server as a part of information about an order. When the
execution of an order is finished, value IDs are obtained for values of output parameters of the order and these IDs are assigned to
the corresponding IDs of unready values. RMI technology has been used to implement communication between server and clients.
Also JDBC has been used to implement storing of final and intermediate computations results to external database. In this paper is
to propose method of execution time characteristics analysis for parallel applications that have been created using the technology of
orders based transparent parallelizing. Its efficiency has been proven by solving the problem of determination of diagnostic value of
formed features diagnostics on a cluster of 2, 3, 5 and 10 computers. The result of multiplication of execution time by number of
processors has grown by not more than 1.13% when using 2, 3 or 5 computers instead of one, and by not more than 3.25% when

using 10 computers instead of one during this experiment. The closest analogue of offered approach is T-system.
Keywords: Parallel computing; Cluster computing; Software development; Frameworks; Transparent parallelizing

Introduction. Parallel computing is the subject
of many researches nowadays because of its
practical importance. The main reason for it is large
volume of problems that cannot be solved in
acceptable time without utilization of parallel
computing [1-9]. For example, these are the problem
of Volterra series based nonlinear dynamic systems
models identification [10-14], problem of full scan
based comparison of features diagnostic value,
modeling problems and so on [15]. Despite the
simplicity of the idea of parallel computing, this
field of science has to solve many problems,
including problems of creating efficient parallel
algorithms, introducing all kinds of parallelism to
hardware, making software and hardware fit each
other [16]. Processors of modern PCs have multiple
cores, so possibility of parallel data processing has
to be taken into consideration by software
developers more and more often.

One of the problems related to parallel
computing is the problem of creating software
development tools that allow developers to create
efficient parallel applications without significant
effort. There are many approaches for creating
parallel software, including manual, automatic and

© V. Pavlenko; S. Pavlenko; 2019

semi-automatic parallelizing. The technology of
orders based transparent parallelizing has been
proposed in [17-26]. It is based on the idea of
introducing large groups of algorithms that can be
parallelized in similar way, creating skeletons of
such algorithms and implementing efficient parallel
implementations of these skeletons. Parallelizing has
to be done only once and can later be used for many
algorithms, so it’s possible to implement complex
logic of parallel execution, including fault tolerance
logic, load balancing logic, logic for adding and
removing nodes during computations and so on. The
current implementation of this technology includes
implementation of only one method of parallelizing
that introduces “call-by-future” semantics to
imperative programming language and was designed
to run on clusters. The clusters were chosen as
destination architecture because of their high
scalability and relatively low cost (for example, 82%
of computers in November 2011 release of Top500
list are clusters [27]).

This paper is devoted to implementation of
technology of orders based transparent parallelizing
[19-23] as a cluster computing framework.
Decisions on architecture of the framework are
described and questions of its usage are being
discussed.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Information technologies in energy systems

ISSN 2663-0176 (Print)

engineering and manufacturing 57

mailto:pavlenko_vitalij@ukr.

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

1. Existing technologies of parallel
applications development. There is one general
tendency about modern technologies and software
for development. An attention is paid not only to
traditional requirements (such as efficiency of
created applications), but also to the requirement
about high speed and low labor intensiveness of
software development. It seems that this tendency is
caused by low cost of computer work time and high
cost of programmer work time. However, this
tendency did not affect parallel computing
technologies much. It seems to be caused by big cost
of parallel computers work time. High cost of
parallel computer work time seems also to be the
reason of popularity of low-level technologies that
give the programmer more control over the
computer and allow programmer to minimize
program execution time while the time and the labor
intensiveness of program development are not so
critical. A similar situation can be observed in area
of distributed computing where mainly low-level
tools are being developed nowadays.

Therefore, the purpose of this approach is
creation of parallel computing technology that
follows the requirements:

— High level of technology. It is a well-known
situation in the history of programming when some
features have been abandoned to get some
advantages. For example, “go to” operator has been
abandoned to make source understanding easier. So
this technology should not provide low-level
operations (such as sending and receiving messages)
to user, but the set of provided high-level operations
should be enough for development of efficient
parallel applications. This requirement should make
parallel applications development much faster and
easier.

— Transparency of parallel architecture. It is
much easier to think about writing a program for one
processor, so the technology should hide parallel
architecture from user where possible.

— Efficiency of the technology. Overhead,
caused by the technology, must be minimal. In
addition, the technology must enable user to create
efficient parallel implementations for wide enough
class of applications.

— High speed and low labor intensiveness of
parallel applications development. It also means
high speed and low labor intensiveness of porting
existing applications.

2. Technology of orders based transparent
parallelizing. Transparent parallelizing technology
is based on splitting of parallel algorithms and the
means of their parallelizing. Its main idea is finding

large groups of algorithms that can be parallelized in
similar way, introducing template of parallel
algorithm and implementing parallel version of the
template. It has to be done only once, so we can
implement some advanced features in such parallel
algorithm, such as handling communication failures,
monitoring tools, tools for adding computers to
cluster while computations are in progress and
removing them and so on. Once such parallel
template is implemented, we can easily run any
algorithm that fits the template.

Only one algorithm template has been
implemented for now. Let us assume that we have
selected some set of procedures in the program.
Each procedure should not modify any data during
execution except values of parameters and
temporary (and inaccessible outside the procedure)
data structures. Each parameter of each selected
procedure should be passed by value. Execution of
program must mean execution of certain selected
procedure. This assumption imposes some limits on
program. For example, it forbids using global
variables or 1/0 devices. However, it is shown below
that these limits can be loosened. For example, work
with global variables and I/O devices can be allowed
is some specific requirements are met.

The example which will be used to illustrate the
technology is shown on Fig. 1.

]

Fig. 1. Hlustration of a part of program

We show procedure execution time with a
rectangle (time goes from left to right). Called
procedures are shown by nested rectangles. Lengths
of rectangles and their parts are proportional to the
execution time of corresponding program parts. It is
considered that all input parameters are already
known now of program execution start. Lines
connect moments of getting some values and
moments of their first usage.

The first principle of offered technology
introduces the concept of an order as the minimal
unit of work that should be executed on one
computer and cannot be split into smaller parts. Such
a unit of work is defined as execution of one
procedure without execution of procedures it calls.
Each procedure call creates a new order that should
be executed by some computer of cluster (let’s call
such call making of order). One of selected
procedures should be marked as main one to define
program entry point.

Information technologies in energy systems

58 engineering and manufacturing

ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

This principle is illustrated on Fig. 2. It is
considered that different processors execute four
orders and their execution starts immediately after
making corresponding order. Extra lines connect
parts of one procedure.

1]
|
I

Fig. 2. An illustration of the first pfinciple lof
offered technology

|

Many algorithms contain intervals of time
between moments of getting some values computed
and moments of first usage of these values; it is
often possible to make such intervals bigger by some
changes in computations order. If there are no such
intervals in some algorithm that means that each
operation should not be executed before previous
one is over, so we cannot create parallel
implementation of this algorithm at all. If we
perform procedure call in common programming
languages, caller procedure continues its execution
only after called one is over. In other words, we can
say that caller procedure starts waiting for output
parameters of called procedure in the moment of call
and stops waiting in the moment when called
procedure finishes its execution. The second
principle proposes to continue execution of caller
procedure after a call and to start waiting only in the
moment of first request to output parameters of
called procedure. If called procedure execution is
already over in the moment of such request, we
should not start waiting at all.

This principle is illustrated on Fig. 3.

Fig. 3. An illustration of the second principle of
offered technology

This diagram can be built from previous one by
maximal possible left shift of all computations that
keeps the following requirement met: each value is
used only after it is got.

Please refer to [28-37] for more information
about transparent parallelizing technology.

3. Computing simulation method. The main
idea of the proposed method is described as follows:
we can lower the time of test run of parallel
application by skipping some computations that are
going to take much time. Two conditions should be
met for a block to make it possible to skip it. In the
first place, estimation of execution time of such
block should be known. In the second place, it
should be possible to continue the test run without
knowing the values that are normally computed in
the block. We can warrant that by assuming that
values, computed in the block, are not used in any
conditional operators.

For instance, we can skip blocks with
asymptotic execution time known. If we know
asymptotic execution time for a block, it means that
we know a function f (o) so that

3c¢,,¢, >0,Vae A: ¢, f(a)<T(a)<c, f(a),
where: T(a) is time of execution of the block, o is
a value representing input parameters of the block, A

is the set of all possible values of input parameters
of the block. Function f (o) is usually a function of

a few numerical characteristics of parameters of the
block — such as length of an array or number of

vertexes in a graph. After defining c(a):-:g‘x; we
o
can rewrite the definition of asymptotic estimation in
the following form:
dc,,c, >0,Vae A:c, <c(a) <C,.
If we run the block for a few times on one
computer, we will be able to compute values

c,(a)i=LN (N is the number of runs). We can

take C(c)=M {c(c)} as an estimation of c(c) and
use it to compute the estimation of T(a). This

estimation can be used only for the computer where
it has been computed and for the ones with identical
hardware and software. In order to get such
estimations for other computers of the cluster, we
can either repeat test runs of the block on other
computers of the cluster or to use time of execution
of some sample algorithm as the unit of time.

The proposed method consists of four stages.
During the first stage user marks a set of blocks in
the source of the program. Each marked block
should meet the following requirements: estimation
of block execution time should be known and it
should be possible to compute it quickly; values,
computed in blocks, should not be used in any
conditional operators; blocks should not make any
calls or requests for data; blocks should not be
nested; user should implement alternative version of
each block that works as quickly as possible and

Information technologies in energy systems

ISSN 2663-0176 (Print)

engineering and manufacturing 59

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

makes all further computations work properly. Each
marked block should be surrounded with sending
notifications to computing support environment
about block execution time and choosing the
implementation of the block to be executed. For
instance, if a block multiplies two n-by-n matrices
by definition, it should declare execution time n*n*n
and should have alternative implementation that
creates a new n-by-n matrix without its initialization.
In addition, programmer has to create a set of tests
that run every marked block at least once.

During the second stage, the tests are run in

order to compute values c(a) for marked blocks. In
order to minimize the influence of random variations
of execution time, each test has to be repeated for a

few times. A sample of result of execution of the
second stage for a block is shown on Fig. 4:

o 10 20 30 40 50

Fig. 4. Constant in asymptotic estimation
of execution time

During the third stage a test run of the program
is done. Alternative implementations of marked
blocks are used, and execution time of blocks is
considered to be equal to its estimation. If execution
of marked blocks takes almost all the time of a real
run of the program, we can make a test run fast

enough. It has to be done either on every computer
of the cluster, or only once if time of execution of a
sample program is used as the unit of time. After the
third stage we have the following information about
each executed order: duration, moments of data
requests, moments of providing data. A sample
result of third state execution is shown on Fig. 5.

On the fourth stage simulation of parallel

application execution is performed. Only
information about orders, gathered on the third
stage, is used. After the fourth stage we have
information about the load of the cluster and
scheduling-related events that happened during the
simulation. This information can be used to find
program execution time and to find information
about its bottlenecks.
Each stage uses only the results of previous stages
and some specific information about the parallel
application. First two steps use the source of the
application; third one uses program input data and
the fourth one uses information about the cluster and
scheduling algorithm. Splitting the method into a set
of stages makes results re-using in repeated
experiments possible. For instance, user can repeat
only the fourth stage to find the configuration of
cluster if program execution time is limited.

4, Implementation of transparent
parallelizing technology. Transparent parallelizing
technology has been implemented as a cluster
computing framework. This section describes
architecture of the framework and main decisions
made during implementation.

Architecture of the framework is shown on
Fig.6.

’ |
order B order C request 0 request 2
B I
commit 1 commit O
° | |
t 1
reques commit 2
Fig. 5. Sample result of the third stage of method analysis of time characteristics parallel programs
Information technologies in energy systems

60 engineering and manufacturing ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

Code connector

Framework

User’s code functionality

Entities
management
subsystem

4

[Database

Requests processor

A

implementation

Data cache Server API

Scheduler

Development support tools

Admin tool

Fig. 6. Architecture of the framework

Described technology has been implemented as
a framework on Java programming language. The
framework consists of server part, responsible for
storing intermediate data and providing tasks to
clients and clients that are responsible for
performing computations. Having a server in the
cluster makes recovery after failures and managing
cluster easier: if a client gets down its tasks can be
sent to another computer and if the server gets down
it can be restarted and its state can be recovered
from the database.

Implementation of client and server is based on
manipulations with the following entities:

— Data identifier. It identifies a value of input
or output parameter of a method. The identifier can
obtain actual value of the parameter. If some data
identifier is used in multiple calls, we can avoid
sending actual value of parameter multiple times as
it can be cached on clients.

— Unready data identifier. Procedures can
use it as a “future” value that will be bound with
data identifier or other unready data identifier later.
Each time when a new order is created an unready
data identifier is created for each of its output
parameters. Parent order puts these identifiers in its
local parameters and child order binds these
identifiers after its execution is over.

— Order. It is a formal description of an order
that includes information about method that should
be executed, information about input parameters
(their data identifiers or unready data identifiers) and
information about output parameters (their unready
data identifiers).

Code, written by user, interacts only with the
“code connector” layer. This layer implements
semantics of orders and their parameters. On one
hand, it provides user code with access to small set
of methods of framework (creating an order,
obtaining data by unready data identifier and some
utility methods); on the other hand, it represents user

code to the rest of framework as a “black box™ that
can execute orders. There may be different
implementations of this Dblock that provide
functionality of framework to user code in different
manner or use different agreements on about user
code.

Code connector does not provide functionality
for creating unready data identifiers and getting data
for them to user code directly, but does it by the
means of DataHandler class. Classes, used as
parameters of orders, should meet the following
requirements:

— They should extend DataHandler class.

— They should implement methods for saving
data to stream and restoring data from stream.
Standard mechanism of serialization cannot be used
as it creates new objects during deserialization and
cannot update existing objects in place.

— They should provide access to their content
only by the means of getters and setters that should can
inherited methods: preRead() should be called before
reading data from fields, preWrite() should be called
before changing some fields, preReplace() should be
called before replacing all fields within one call.

In addition, this layer provides methods for
reading data from files located on server and writing
messages to cluster-wide log file.

Framework functionality implements logic of
threads management and provides functionality for
management of data identifiers, unready data
identifiers and orders, remote logging, accessing
remote files and reporting failures to code connector.

Scheduler is a block responsible for choosing
orders to be loaded from server or a ready order to
be woken up. Currently only one scheduler based on
naive planning heuristic that prefers continuation of
execution of ready order to getting a new one from
server.

The diagram of states of an order is shown on
Fig. 7:

Information technologies in energy systems

ISSN 2663-0176 (Print)

engineering and manufacturing 61

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

|
I i
| |
i I
|
| |
| [
| |

0 |

| 4 '
| 2 6
| |
' |
|
|
| |
| |

Fig. 7. Diagram of states of an order

The states mean the following:

— COMMITTED - the order has been made
but it’s execution haven’t started yeta;

— WORKING - order is now being executed;

— BLOCKED - order execution has been
stopped because of a request to not still computed
data;

— READY - order execution has first been
stopped because of a request to not computed data,
but we already have the data we need;

— DONE - order execution has
successfully completed;

— FAILED - order execution has failed.

State changes can happen in the following
situations:

1. Some computer of cluster gets the order.

2. Order tries to get not computed data.

3. Needed data has been computed.

4. Number of concurrently executed orders is
less than number of processors of computer, so we
can continue execution of that order.

5. Order execution has been
completed.

6. Order execution threw an exception.

7. Other method that had to compute data for
current one has thrown an exception.

Data cache stores information about data
identifiers and unready data identifiers to reduce
traffic between client and server.

Communication between server and client is
implemented by the means of RMI technology.
Server exposes two interfaces — one for computations
and one for administrative tool.

Administrative tool provides functionality for
creating orders, viewing their status and accessing
computations result. It is currently implemented as a
Swing application.

Requests processor and entities management
subsystem implement processing of requests from
clients and administrative tool and provide methods
that are used for scheduling. Data can be stored either
in database or in memory.

been

successfully

Support tools developed that generates classes
for sending orders according to description, provided
by user [29, 35]. The description has to contain list of
methods for sending orders and names of classes to
generate. Four classes are generated: library class
containing interfaces of methods for sending orders,
its implementation that sends order, “local”
implementation that just calls corresponding methods
(it can be used for development) and executer class
that is used by framework to call methods of the
user’s program [38, 39].

5. Practical usage of orders based transparent
parallelizing framework. A distribution of the
framework consists of the following files:

— parallel.jar — implementation of the
framework;

— client.bat — sample file for running client part
of the framework;

— server.bat — sample file for running server
part of the framework;

— problem.bat —
computations;

— sourcegen.bat — sample file for generating
sources;

— serverconf.properties — server settings;

— lib\ — directory with libraries used by the
framework;

— work\ — empty directory for input and output
data of users’ programs.

The distribution is used for both development of
parallel applications and their execution. In order to
parallelize an existing algorithm or to create a new
parallel one, a developer has to do the following
steps:

1. Find out whether the technology of order
based transparent parallelizing is suitable for the
specific algorithm. For instance, if a part of algorithm
can be split into many independent parts, it can easily
be parallelized unless the size of the parts is too small
(and thus the overhead added by parallel computing
support routines becomes significant).

2. Choose the methods that will be used for
parallelizing. Such methods should meet the
following requirements: they should have no side
effects, they should only access data they received via
parameters and should return data only by updating
values of their output parameters, there should be
routines in the program that call these methods and
use the data computed by these methods only after
doing some other computations. Refactoring may be
required for such methods to appear. For instance, if
there is a method that meets all requirements except
for being static, then the fields that it uses may be
added to its parameters.

sample file for starting

Information technologies in energy systems

62 engineering and manufacturing

ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

3. Ensure that all chosen methods found above
have return type “void”. If some method does not,
then it should be changed by adding one more
parameter to hold return value. This limitation has
been introduced to avoid problems caused by lack of
knowledge about exact class of an object that is
returned by an order.

4. Ensure that chosen methods don’t use
primitive types or arrays as parameters. If they do,
create wrapper classes and replace usage of
primitive types or arrays with usage of
corresponding wrappers.

5. Make all classes used as types of parameters
of chosen methods to be subclasses of DataHandler.
All fields of these classes should be private; the
classes should implement inherited abstract methods
saveTo and loadFrom that should save values all
fields to a stream and load values of all fields from a
stream respectively; all methods that access their
fields should call inherited method preRead,
preChange or preReplace before performing such
access; there should be a constructor calling
inherited constructor with proper parameters.

6. Prepare an XML file with a list of all classes
created on previous step and the list of chosen
methods. For each method you should state the name
of method for sending an order, name of the chosen
method (including class name and package name),
list of parameters with their names, types and
directions (input / output / both), information on
whether the chosen method accepts the library as a

parameter.
7. Run source code generator. It will generate
four files, including library, local library

implementation, remote library implementation and
executer. Library is an abstract class that includes
methods for sending orders declared in the XML
file. Local library implementation implements these
methods by performing traditional execution of
corresponding chosen methods (this class is useful
for development and debugging) and remote library
implementation implements sending orders.
Executer provides information about methods and
types to the framework.

8. Update the program by adding library
parameter to the signatures of chosen methods where
necessary and replacing calls of these methods with
calls of methods of library. It is allowed not to
change some calls if it will not speedup program
execution.

9. Replace reading input data from console
and/or local file system and writing output to
console and/or local file system with reading and
writing files located on the server respectively.

10. Create at least one static method that
accepts library as a parameter and creates root order
using it. These methods will be used as entry points
of the program.

11. Compile the program and the generated
files and pack the class files into a JAR file.

12. The list of methods of DataHandler class is
given on Fig. 8.

Once a program has been created, a copy of the
framework with the program should be created and
distributed among the nodes of the cluster. The
following changes have to be applied to the files of
the framework:

— Classpath settings should be changed by
adding JAR file of the problem in files problem.bat
and client.bat.

— Fully qualified name of root method of the
problem should be set in problem. bat.

— IP address or hostname of server should be
set in client.bat.

Once framework has been distributed, the
parallel application can be executed as follows:

— First the server has to be started using
server.bat.

— After that the clients have to be started using
client. bat. New clients may be added later at any
time.

— Computations should be started using
problem. bat.

One of advantages of described technology is
high speed and low labor intensiveness of porting of
existing non-parallel applications to that technology.
Let us show that by parallelizing a program that
solves the problem of features diagnostic value
comparison based on full scan.

The initial program has the structure show on
Fig. 9.

This algorithm does not contain significant
intervals of time between computing of some values
and their first usage. Let’s change the order of
calculation in the following way: we will split all
possible sets of features into some groups and find
best set for each group independently. After that we
will compare the results and find the best one. So we
have to change the program as shown in Fig. 10.

Methods analyses Group and main meet the
requirements described above (except for main
reading data from file system and writing output to
file system and can be used for parallelizing. Once
the program is parallelized according to steps above,
it can be run on cluster. Communication between
nodes of three-node cluster during execution of this
program is shown on Fig. 11.

Information technologies in energy systems

ISSN 2663-0176 (Print)

engineering and manufacturing 63

Herald of Advanced Information Technology 2019; Vol.2 No.1:57-70
Distributed Processing Data

public abstract class DataHandler {

/**

* Constructor

*

* @param canChangeSuddenly must be <code>true</code> if it may happen that some data in object is changed without
*{@link #preChange} or {@link #preReplace} method call. Some optimizations are turned off in this case.

*/

protected DataHandler(boolean canChangeSuddenly) {

}

/**

* This method must be called from methods of subclasses that want to get the real data from
* this DataHandler. This method simply gets sure that this class already contains real data
*inside (if it does not, the thread hangs up and waits for real data from server)

*/

protected final void preRead() {

}

/**

* This method has to be called before replacing ALL real data
*/

protected final void preReplace() {

}

/**

* This method has to be called before changing SOME real data
*/

protected final void preChange() {

}

/**

* This abstract method has to de-serialize real data

*

* @param source DatalnputStream to load data from

* @throws IOException if 1/0 exception occured while loading

*/

abstract protected void loadFrom(DatalnputStream source) throws IOException;

/**

* This abstract method has to serialize real data

*

* @param dest DataOutputStream to save data to

* @throws IOException it can't be thrown, but is declared to allow users not to catch 1/0
* exceptions from OutputStream's methods

*/

abstract protected void saveTo(DataOutputStream dest) throws IOException;

Fig. 8. The list of methods of DataHandler class

class Algorithm {

public static void main(String args[]) {
/IRead input data from file
/IFind averages of distributions of features for each class and build
/I covariation matrixes
/IFor each non-empty set of features:
/I Build quadratic decision rule and calculate it's values using provided
1 values of features of objects of both classes
/I Find maximal probability of right recognition for this rule.
/I Save the result as the best one on the first iteration or compare it with
1 current best result on any other iteration
/I\Write result into file

Fig. 9. The structure of initial program

Information technologies in energy systems
64 engineering and manufacturing ISSN 2663-0176 (Print)

Herald of Advanced Information Technology 2019; Vol.2 No.1:57-70

Distributed Processing Data

class Algorithm {

public static void analyseGroup(... /*data about group of sets, etc.*/,

SetWrapper bestSet) {
/IFind best set and put it into bestSet variable

public static void main() {

/IGet input data from the file, placed on server
/IFind averages of distributions of features for each class and build

/I covariation matrixes
/IFor each group of sets:

/I Analyze it using analyseGroup() method which should be executed in a

1 separate order
/IFor each group of sets:

/I Get the result for the group and save it as the best one on the first
1 iteration or compare it with current best result on any other

1 iteration
/I\Write result into the file, placed on the server
}
1
Fig. 10. The structure of initial program
Cepeep KomnbloTepsl knactepa 3ran

Server gets an order for execution of main from user

The root order is passed to one of the clients (let it be the
first one)

The client executes main and sends orders for execution of
analyzeGroup to server.

First computer finishes sending orders while other
computers execute them. Finally, the first computer

4 attempts to access result of analysis of the first group

which hasn’t been computed yet, so it has to suspend
computations and start request a new order from server.

All three computers execute analyzeGroup orders. Time to

time the first computer may proceed with execution of
main but stops again after a request for new data that is

not computed yet.

6 First computer ends execution of main.

A file with computations result is created on server.
Execution of main stops.

191919191919

8 User gets results of computation from server.

Fig. 11. Stages of execution of parallel application on cluster with 3 nodes

ISSN 2663-0176 (Print)

Information technologies in energy systems
engineering and manufacturing 65

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

6. Testing of efficiency of offered technology
The problem has been tested on a computer with
Intel Core i5 CPU M430 running at 2.27GHz in
different configurations (this processor has 2 cores
and supports Hyper-Threading) [36-37]. Ten runs
were done for each configuration for the problem of
dimension 24, their results are given below:

— Serial execution: 288 seconds min, 290
seconds max, 289 seconds in average.

— Parallel execution, 1 core: 292 seconds min,
296 seconds max, 293 seconds in average.

— Parallel execution, 2 cores: 180 seconds
min, 185 seconds max, 182 seconds in average.

— Parallel execution, 3 cores: 142 seconds
min, 145 seconds max, 144 seconds in average.

— Parallel execution, 4 cores: 134 seconds
min, 140 seconds max, 137 seconds in average.

— Parallel execution, 2 cores, Hyper-Threading
disabled: 153 seconds min, 157 seconds max, 154
seconds in average.

Another experiment has been conducted with a
network of 1; 2; 3; 5 and 10 computers with Intel
Pentium 4 1.7 GHz processors, connected with Fast
Ethernet for problems with dimensions 23; 24 and
25. The dependence of execution time from the
problem dimension and the number of computers is
shown on Fig. 12.

0:36:00

0:28:48

0:00:00

Fig. 12. Results of experimental testing of
efficiency of framework

Result of multiplication of execution time by
number of processors grows by not more than 1.13%
when using 2; 3 or 5 computers instead of one, and
by not more than 3,25 % when using 10 computers
instead of one.

Conclusion. This paper describes implementing
transparent parallelizing technology as a cluster
computing framework on Java. The technology has
been implemented as a framework that consists of
server part, a client part, administrative tool and
tools for development support. The efficiency of
framework has been shown by solving the problem
of determination of diagnostic value of formed

features diagnostics on a cluster of 2; 3; 5 and 10
computers.

Conclusion. This paper describes implementing
transparent parallelizing technology as a cluster
computing framework on Java. The technology has
been implemented as a framework that consists of
server part, a client part, administrative tool and
tools for development support. The efficiency of
framework has been shown by solving the problem
of determination of diagnostic value of formed
features on a cluster of 2; 3; 5 and 10 computers.

The closest analogue of the offered technology
is the T-system that is being developed in Program
Systems Institute of the Russian Academy of
Sciences [40, 41]. Although the offered technology
has been developed independently, its main
principles are close to the main principles of the T-
system [8]. The base concepts of the T-system are T-
functions and unready values. A T-function is
defined as some clean function. Any call of T-
function is transparently replaced with a network
call that means execution of method on another
computer of cluster. An unready value is a variable
which value is not currently known. Such values
appear because of T-functions calls, and any attempt
to get value of such variable causes getting its value
from another computer with (possibly) waiting.

Main principles of these two technologies are
close, so their problems should be close, too. Their
main problems are caused by using of existing
program splitting into procedures to find parts of
code that should be executed in parallel. That may
cause either get a lot of small orders (and big
overhead for their management) or small number of
big orders that cannot utilize whole cluster. The
problem of small orders is partially solved in the
offered technology by allowing user to call selected
procedures locally. In addition, other methods of
method calls optimization have been proposed to
prevent getting big overhead.

References

1. Antonov, A. S. (2004). Parallelnoe
programmirovanie s ispolzovaniem tehnologii MPI.
[Parallel programming using MPI technology].
Moscow, Russian Federation, Publishing House of
Moscow State University, 71p. (in Russian)

2. (2012). Osnovnyie klassyi sovremennyih
parallelnyih kompyuterov. [The main classes of
modern parallel computers]. [Electronic resource] —
Available at :
http://parallel.ru/computers/classes.html,
Information analytical center on parallel computing.
http://parallel.ru admin— 07.01.2012 — 15:53 (in
Russian).

Information technologies in energy systems

66 engineering and manufacturing

ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

3. Roganov, V., Moskovsky, A., & Abramov,
S. (2006). “The Open TS parallel programming
system”. The Twelfth International Conference on
Parallel and Distributed Systems, Minneapolis, USA
(ICPADS, July 12-15, 2006). -
http://skif.pereslavl.ru/skif/index.cgi?module=chap&
action=getpage&data=publications\pub2006\opents_
ext.doc.

4. Abramov, S. M., Moskovskiy, A. A,
Roganov, V. A., Shevchuk, Yu. V., Shevchuk, E. V.,
Paramonov, N. N., & Chizh, O. P. (September 19-
24, 2005). Open TS: arhitektura i realizatsiya sredyi

dlya dinamicheskogo rasparallelivaniya
vyichisleniy. [Open TS: Architecture and
Implementation ~ environments for dynamic

parallelization of computations], Scientific service
on the Internet: distributed computing technologies:
Proceedings of the All-Russian Scientific
Conference, Novo-rossiysk, Moscow, Russian
Federation, Publishing House of Moscow State
University, pp. 79-81 (in Russian).

5. Afanasyev, A. P., Voloshinov, V. V.
Posypkin, M. A., Sukhoroslov, O. V. & Khutornoy,
D. A. (2006). Grid-tehnologii i vyichisleniya v
raspredelennoy srede. [Grid-technology and
computing in a distributed environment],
Proceedings I Int. Conf. “Parallel computations
and control problems”, PACQO’2006, Moscow,
Russian Federation, October 2-4, 2006. V. A.
Trapeznikov Institute of Management Problems, pp.
19-40. CD ISBN 5-201-14990-1 (in Russian).

6. Khoroshevsky, V. G., Mamoilenko, S. N.,
Maidanov, Y. S., & Sedelnikov, M. S. (2006).
“Space-distributed multicluster computer system for
parallel multiprogramme regimes modeling”,
Proceedings of the conference “MODELING-2006",
May 16-18, 2006. Kiev, Ukraine, IPME them. G. E.
Pukhov NANU, pp. 67-69.

7. Feldman, L. P. & Nazarova, I. A. (2006).
Parallelnyie algoritmyi chislennogo resheniya
zadachi Koshi dlya multiprotsessorov s
raspredelennoy pamyatyu. [Parallel algorithms for
the numerical solution of the Cauchy problem for
distributed memory multiprocessors], Proceedings
of the Il International Conference “Parallel
Computing and Control Problems” PACO 2006 in
memory of LV. Prangishvili. Moscow, Russian

Federation, October 2-4, 2006. Institute of
Management Problems. V.A. Trapeznikova RAS.
Moscow, Russian Federation, Institute of

Management Problems. V. A. Trapeznikova, 2006,
pp. 19-40. CD ISBN 55-201-14990-1 (in Russian).
8. Thanh Phuong Nguyen, & Shelestov A. Yu.

kosmicheskih izobrazheniy. [Parallel
implementation of space image filtering algorithms],
Problems of control and informatics, No. 5, pp. 121-
132 (in Russian).

9. Giang Le Truong, & Nghiem Trinh Huu
(2018), “Multidimensional Laplace approximation
via trotter operator”. Applied Aspects of Information
Technology, Vol.1 No.l, pp. 59-65.
DOI://10.15276/aait.01.2018.4.

10. Pavlenko, Vitaliy, & Pavlenko, Sergey.
(2018), “Deterministic Identification Methods for
Nonlinear Dynamical Systems based on the Volterra
Model”. Applied Aspects of Information Technology,
Vol.1 No.l, pp. 11-32. DOI: 10.15276/aait
01.2018.1.

11. Pavlenko, V., Pavlenko S., & Speranskyy,
V. (2014). “Chapter 10: Identification of systems
using Volterra model in time and frequency
domaino”, In book: “Advanced Data Acquisition
and Intelligent Data Processing”. Chapter 10. V.
Haasz & K. Madani (Eds.). River Publishers, pp.
233-270. ISBN 978-87-93102-73-6.

12. Lomovoy, V., & Pavlenko, V. (2019).
“Methods and Tools for Identification of Nonlinear
Dynamical Systems based on Volterra Models in
Frequency Domain”, Scientific notes of the
Tavrichesky National University named after V. I.
Vernadsky, Series: Engineering. Vol. 30 (69). Part.
1, No. 1, pp. 78-96.

13. Kolding, T. E., & Larsen, T. “High Order

Volterra”, Series Analysis Using Parallel
Computting - http://citeseer.ist.psu.
edu/242948.html.

14. Pavlenko, V. D., Cherevaty, V. V., &
Burdeyny, V. V. (2006). Postroenie modeley
nelineynyih sistem v vide vyader Volterra s
ispolzovaniem tehnologii klasternyih vyichisleniy.
[Building models of nonlinear systems in the form
of Volterra kernels wusing cluster computing
technology]. The Second International Scientific
Conference “Intellectual Decision Making Systems
and Applied Aspects of Information Technologies”
(ISDMIT'2006), Eupatorium (Crimea, Ukraine),
May 15-18, 2006 Collection of scientific papers in 4
Volumes. V. 1, pp. 159-162 (in Russian).

15. Pavlenko, V. D., Fomin, O. O. (2015).
“Intelligent Information Technology Building
Systems Diagnostics Using Nuclear Moments
Volterra”. Herald of the National Technical
University “KhPI”. Subject issue: Information
Science and Modelling. Kharkov, Ukraine, NTU
“KhPI”. No. 33 (1142), pp. 106-119.

16. Voevodin, V. V., & Voevodin, V. B.

(2005). Parallelnaya realizatsiya algoritmov filtratsii ~ (2002). Parallelnyie vyichisleniya. [Parallel
Information technologies in energy systems
ISSN 2663-0176 (print) engineering and manufacturing 67

https://aait.opu.ua/?fetch=authors&with=info&id=44&lang=en
https://aait.opu.ua/?fetch=articles&with=info&id=8
https://aait.opu.ua/?fetch=articles&with=info&id=8
https://aait.opu.ua/?fetch=news&with=the&id=1
https://aait.opu.ua/?fetch=news&with=the&id=1
https://aait.opu.ua/?fetch=articles&with=book&id=1
https://aait.opu.ua/?fetch=articles&with=book&id=1
https://aait.opu.ua/?fetch=articles&with=book&id=1

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

computing]. SPb,m., Russian Federation, BHV-
Petersburg, 608 p. (in Russian).
17. Burdeyniy, V. V. (2006). Printsip

organizatsii klasternyih vyichisleniy s pomoschyu
neyavnogo rasparallelivaniya, osnovannogo na
zakazah. [The principle of organizing cluster
computing using implicit parallelization based on
orders]. Proceedings of the XIIl International
Conference of Students, Postgraduates and Young
Scientists “Lomonosov — 2006, section
“Computational Mathematics and Cybernetics”.
Moscow, Russian Federation, Publishing
Department of MSU Faculty of “Computational
Mathematics and Cybernetics”, 2006. pp. 11-12 (in
Russian).

18. Pavlenko, V. D., & Burdeyny, V. V. (2006).
Printsipyi organizatsii klasternyih vyichisleniy s
pomoschyu neyavnogo rasparallelivaniya,
osnovannogo na zakazah. [Principles of the
organization of cluster computing using implicit
paralleling based on orders], Proceedings of the Ill
International Conference “Parallel Computing and
Control Problems’" PACO ‘2006 in memory of LV.
Prangishvili. Moscow, October 2-4, 2006, Institute
of Management Problems V.A. Trapeznikova RAS.
Moscow, Russian Federation, V. A. Trapeznikov
Institute of Management Problems, 2006, pp. 670-
690, CD ISBN 5-201-14990-1 (in Russian).

19. Pavlenko, V. D., & Burdeyny, V. V. (2007).

Tehnologiya klasternyih vyichisleniy S
ispolzovaniem transparentnogo rasparallelivaniya,
osnovannogo na zakazah. [Cluster computing
technology using transparent order-based
parallelization]. Bulletin of the National Technical
University ~ “Kharkiv ~ Polytechnic Institute:
Collection of scientific papers. Topical Issue

"System Analysis, Management and Information
Technology". Kharkiv, Ukraine, NTU “KhPI”, No.
6, pp. 84-107 (in Russian).

20. Burdeyny, V. V., & Pavlenko, V. D.
(2007). Organizatsiya Kklasternyih vyichisleniy s
pomoschyu neyavnogo rasparallelivaniya,
osnovannogo na zakazah. [Cluster computing using
implicit parallelization based on orders], Bulletin of
Young Scientists “Lomonosov”: a collection of the
best reports of the XIII International Scientific
Conference of Students, Postgraduates and Young

Scientists ~ “Lomonosov”, Moscow, Russian
Federation, MAKS Press, Vol. I, pp. 47-53 (in
Russian).

21. Pavlenko, V. D., & Burdeyny, V. V.
(2007). Organizatsiya Kklasternyih vyichisleniy na
osnove printsipov transparentnogo
rasparallelivaniya. [Organization of cluster

computing based on the principles of transparent
parallelization]. Second International Conference
“Systems Analysis and Information Technologies”
SAIT-2007 (September 10-14, 2007, Obninsk :
Russia), Conference proceedings. In 2 vol. Vol. 2.
Moscow, Russian Federation, LKI Publ., 2007, pp.
225-226 (in Russian).

22. Pavlenko, V. D., & Burdeyny, V. V.
(2007). Tehnologiya transparentnogo
rasparallelivaniya s klasternyih sistemah,
osnovannogo na zakazah. [Technology of
transparent parallelization in cluster systems based
on orders], Works of 12-th International Scientific
Conference “System Analysis, Control and
Navigation”, July 1-8, 2007, Evpatoria, Crimea, pp.
134-136 (in Russian).

23. Pavlenko, V. D., & Burdeyny, V. V.
(2008). Klasternyie vyichisleniya s ispolzovaniem
tehnologii transparentnogo rasparallelivaniya na
osnove zakazov. [Cluster computations using the
technology of transparent parallelization based on
orders]. Modeling and controlling the state of the
ecological-economic systems of the region.
Collection of works. Kyiv, Ukraine, MNNTSITS,
No. 4, pp. 170-179 (in Russian).

24. Pavlenko, V. D., Burdeinyi, V.V., &
Pavlenko, S. V. (2011). “Organization of intelligent
computations in clusters using transparent
parallelizing principles”. Computational intelligence
(results, problems, prospects): Materials of the 1-st
International Scientific and Technical Conference
(May 10-13 2011, Cherkasy), Cherkasy, Ukraine,
Maklaut, 2011, pp.71-72.

25. Burdeinyi, V. V. & Pavlenko, V. D.
(2012). “Orderly = method of parallelizing
technology”. Works Odessa National Polytechnic
University, one Odessa : Vol. 1 (37), pp. 227-233.

26. Pavlenko, V. D. (2014). Tehnologiya
programmirovaniya parallelnyih vyichisleniy na
klasterah. [The technology of programming parallel
computing on clusters]. Informatics and
mathematical methods in modeling, Vol. 4, No. 2,
pp. 105-110 (in Russian).

27. TOP500 List, (June
http://www.top500.0rg/lists/2010/06.

28. Burdeyny, V. V., & Pavlenko, V. D.
(2006). Instrumentalnyie programmnyie sredstva
podderzhki metoda neyavnogo rasparallelivaniya
klasternyih vyichisleniy, osnovannogo na zakazah.
[Instrumental software support for the method of
implicit parallelization of cluster computing, based
on orders]. Systematic analysis and information
technology technologies: Materials of the VIII
International Scientific Practical Conference of

2010).

Information technologies in energy systems

68 engineering and manufacturing

ISSN 2663-0176 (Print)

http://www.top500.org/lists/2010/06

Herald of Advanced Information Technology

2019; Vol.2 No.1:57-70

Distributed Processing Data

Students, Students and Young People (13-16
February 2006, Kyiv). Kyiv, Ukraine, NTUU “KPI”,
2006, pp. 161-165 (in Russian).

29. Pavlenko, V. D., & Burdeyny, V. V.
(2007). Method i instrumentalnyie sredstva
transparentnogo rasparallelivaniya v klasternyih
sistemah. [Method and tools for transparent
paralleling in cluster systems]. In the collection of
theses of Il International Scientific Conference
“Intelligent Decision-Making Systems and Applied
Aspects of Information Technologies”
(ISDMIT'2007), May 15-18, 2007, Evpatoria :
Crimea, pp. 206-208 (in Russian).

30. Pavlenko, V. D., & Burdeyny, V. V.
(2007). Sredstva otsenki parametrov parallelnyih
vyichisleniy v klasternyih sistemah pri ispolzovanii
printsipov transparentnogo rasparallelivaniya.
[Means for estimating parameters of parallel
computing in cluster systems using the principles of
transparent paralleling]. XV International
Conference on Computational Mechanics and
Modern Applied Software Systems, VMSPPS'2007,
May 25-31 2007, Alushta : Crimea. Moscow,
Russian Federation, MAI, 2007, pp. 402-404 (in
Russian).

31. Pavlenko, V. & Burdeinyi, V. (2008).
Computing Simulation in Orders Based Transparent
Parallelizing, ICIM’ 2008: Proceedings 2-nd
International Conference on Inductive Modelling,
September 15-19, 2008, Kyiv, Ukraine, pp.168-171.

32. Pavlenko, V. D., & Burdeyny, V. V.

(2008). Otsenka vremennyih harakteristik
vyichislitelnogo protsessa v Kklasterah pri
ispolzovanii tehnologii transparentnogo

rasparallelivaniya. [Evaluation of the temporal
characteristics of the computational process in
clusters using transparent paralleling technology]. In
the collection of the International Scientific
Conference “Introductive Systems and Resolving the
Problems of the Comparable Intertect”,
(ISDMCT°2008), April 19-23, 2008, city of Europe,
Ukraine, in 3 Volumes, V. 3. Part 2 - “Theoretical
and applied aspects and systems of solution”.
Evpatoria : Crimea. KNTU, 2008, pp. 46-49 (in
Russian).

33. Pavlenko, V. D., & Burdeyny, V. V.
(2008). Opredelenie vremennyih harakteristik
vyichislitelnogo protsessa v klasternyih sistemah pri
ispolzovanii printsipov transparentnogo
rasparallelivaniya. [Determination of the temporal
characteristics of the computational process in
cluster systems using the principles of transparent
parallelization]. Avtomatika — 2008: reports of the
XV International Conference with automatic control,

23-26 February 2008, Odesa. In 3 t., Vol. 2. Odesa,
Ukraine, ONMA, 2008, pp. 7-10 (in Russian).

34. Pavlenko, V. D., & Burdeyny, V. V.
(2008). Identifikatsiya vremennyih harakteristik
vyichislitelnogo protsessa v tehnologii
transparentnogo rasparallelivaniya, osnovannogo na
zakazah. [ldentification of the temporal
characteristics of the computational process in the
technology of transparent paralleling based on
orders]. Proceedings of the IV International
Conference “Parallel Computing and Control
Problems”, PACO’2008. Moscow : October 27-29,
V. A. Trapeznikov Institute of Management
Problems, pp.719-748. CD ISBN 978-5-91450-016-
7 (in Russian).

35. Pavlenko, V. D., & Burdeyny, V. V.
(2009). Instrumentalnyie sredstva parallelnyih
vyichisleniy na osnove tehnologii transparentnogo
rasparallelivaniya. [Tools for parallel computing
based on transparent paralleling technology],
Proceedings of the XVI International Conference on
Computational Mechanics and Modern Application
Software Systems (VMSPPS'2009), May 25-31,
2009, Alushta: Moscow: Publishing house MAI-
PRINT, 2009, pp. 560-563 (in Russian).

36. Pavlenko,, V. D., & Pavlenko, S. V. (2011).
Vyichislitelnyiy intellekt i informatsionnaya
optimizatsiya sistem diagnostirovaniya sostoyaniy
nepreryivnyih ob'ektov [Computational intelligence
and informational optimization of systems for
diagnosing states of continuous objects]. Materials
of the 1-st International Scientific and Technical
conferences (May 10-13, 2011, Cherkasy).
Cherkasy : Maklaut, 2011. pp. 113-114 (in Russian).

37. Pavlenko, V. D, Burdejnyj, V. V, &
Pavlenko, S.. (2012). Application of parallel
computing with using of orders based transparent
parallelizing technology for the modeling and
simulation, VI International Conference ‘“Parallel
Computing and Control Problems”, 24-26 October
2012, Russia, Moscow : Institute of Management
Problems V. A. Trapeznikova RAS, pp. 224-230.

38.Cormen T., Leiserson C., & Rivest R.
(2002). Algoritmyi: postroenie i analiz [Algorithms:
construction and analysis], Trans. from English by
ed. A. Shen. Moscow, Russian Federation,
MTSNMO, 2002, 960 p. (1999). T-system is a
programming environment with support for
automatic dynamic program parallelization. Institute
of Software Systems RAS, Pereslavl-Zalessky :
October, 20, 199910 http://www.botik.ru/~t-system/
(in Russian).

Received 15.01.2019

Information technologies in energy systems

ISSN 2663-0176 (Print)

engineering and manufacturing 69

Herald of Advanced Information Technology 2019; Vol.2 No.1:57-70
Distributed Processing Data

Mapaenko, Biraniii JanmioBuy, 1-p TexHiy. Hayk, mpodecop, mpodecop Kad. KOMIT IOTEpPH30BAHHUX
cucrem ynparminas, pavlenko_vitalij@ukr.net, ORCID ID: 0000-0002-5655-4171

Mapnenko, Cepriii BiranilioBuy, KaHi. TexHiu. HAYK, CTapIMii HAYKOBMH CIiBPOGITHHK Kad.
KOMIT IOTEpH30BaHUX cucTeM yrpasiinas, E-mail: psv85@yandex.ru, ORCID ID: 0000-0002-9721-136X
'OJIECBKUI HAIIIOHAJIbHUI TTOJITEXHIYHUM VHIBEPCUTET, npocn. Illepuenka, 1, Vkpaiua,
Oneca, 65044

OPI'AHIBALIA OBYUCJIEHDB B KJNIACTEPAX 3 BUKOPUCTAHHSM
INPUHIUIIIB TPAHCIHAPEHTHOI'O PO3ITAPAJIEJIIOBAHHSA

Anomauia. Pozensoaromvcs npunyunu opeaHizayii KiacmepHux o0OYUCIeHb HA OCHOBL MEXHONO02I MPAHCNAPEHMHO20
PO3NAPanentosants, aKa 0036015€ Ol ANOPUMMIB, Peani3o8anux 3 GUKOPUCMAHHAM NAPALENI3MY 3a60aHb, OOCMAMHbLO 1e2KO
nepexooumu 8i0 iCHyIOUUX NOCTIOOBHUX NPOSPAM 00 NAPANIENbHUX Peani3ayill, GHOCAYU He3HAYHI 3MIHU 8 KOO, MAK i 8 102iKy pobomu
aneopummy npukiaonoi 3adaui. 3anponoHo8aHa MeXHON02Isl peanizoeana y Guaiadi @peimeopka Ha Mogi npozcpamysanhs Java.
Haseoeno apximexmypy ¢ppetimeopky i onucana @ynkyionansricme 1020 yacmutr Po32nsanymo oCHO8HI NUMAHHA, WO SUHUKAIOMb
npu pospobyi incmpymenmapilo, max i npu U020 NPAKMUYHOMY GUKOpucmanui. IIponomyemvcs memoo ananizy yYacoeux
Xapakmepucmux GUKOHAHHA OO0BINbHOI NPUKAAOHOI 3a0aui HA OOHOPIOHOMY OOCUMb BEIUKOMY KIACMEPI NpU BUKOPUCTHAHHI
MEXHON0I MPAHCNAPEHMHO20 PO3NAPANENIO8AHHT HA OHO8I 3amosnieHb. Egexmusnicms mexnonoeiii. niomeepoicyemucs
supiuenHaM 3a0adi eusHavents diacHocmuunol yinHocmi popmosanux oznax na xkiacmepi 3 2; 3; 5 i 10 xomn tomepis. Haseoeno
NOPIBHSAHHS NPONOHOBAHOT MEXHON02IT 3 HatlOIUdICUUM ananocom —T-cucmemoro.

Kniouosi cnosa: neninitini ounamiuni cucmemu, idenmugbixayis; mooenv Bonvmeppa;, sadpa Bonvmeppa, eetigiem-
nepemeopenHs

Magrenxo, Butammii JanuioBuy, JI-p TEXHHY. HayK, mpodeccop, mpodeccop Kad. KOMIBIOTEPU3UPOBAHHBIX
cucreMm yrpasienns, E-mail: pavlenko_vitalij@ukr.net, ORCID ID: 0000-0002-5655-4171

Mas.renxo, Cepreii BurtaibeBU4Y, KaH7. TEXHUY. HAyK, CTaplIMid HAyYHBIH COTPYIHHMK Kad.
KOMIIBIOTEPH3UPOBAHHBIX CHCTEM yIipaBienus, E-mail: psv85@yandex.ru, ORCID ID: 0000-0002-9721-136X
'Onecckuii HaIMOHATBHBIH ONMUTEXHUYECKHH yHIBepCHTeT, mpoctl. 11leBuenko, 1, Yipauna, 65044, Onecca,

OPTAHU3AIIAA BIYMCJIEHAN B KJIACTEPAX C HCIIOJIb30BAHUEM
INPUHLIHUIIOB TPAHIIAPEHTHOI'O PACITAPAJIJIEJIMBAHUS

Annomayun. Paccmampusaromcs NpUHYunbl OpeaHU3AyuU KIACMEPHLIX — BbIYUCTIEHUIl HA OCHOBE MeXHONo2ul
MPAHCNAPENMHO20 PACNAPANIENUBAHUS, KOMOPAS NO360Jsem OISl aN2OPUMMOS, Dealu308aHHbIX C UCNONb308AHUEM NAPALIENUSMA
3a0anuil, O0OCMAMOYHO 1e2KO NEPEXooUmy Om CYuecmsyIouux NOC1e008AMENbHBIX NPOSPAMM K NAPATLENbHBIM Pearu3ayusam, 6HOCs
He3HauumenbHvle USMEHEHUs: KaK 8 KOO, MaK U 8 JIO2UKY pabomvl aneopumma npukiaonou 3adayu. Ilpeonoscennas mexHonocus
peanuzosana 6 eude @peimeopka Ha AviKe npocpammuposanus Java. Ilpusedenvl apxumexkmypa @peiumeopka u Onucana
@yHKYUOHATBHOCIb €20 Yacmeil. Paccmompensl OCHO8HbIE 60NPOChL, 603HUKAIOWUE NPU PA3PAOOMKE UHCMPYMEHMAPUs, MAK U npu
€20 npakmuyeckom ucnoavsosaruu. IIpednazaemcs memoo aHANU3A 6PEMEHHbIX XAPAKMEPUCIMUK BbINOJIHEHUS NPOU3BONLHOU
NPUKIAOHOU 3a0auy HA OOHOPOOHOM OOCMAMOYHO OONBUIOM KIdCmepe Npu UCNONb308AHUU MEXHONOUU MPAHCHAPEHMHO20
PACNApanienu8anus Co30ana Ha OCHOBe 3aKa308. DPHEKMUsHOCHL MEXHON02UU NOOMBEPHCOAEMCS PelleHIueM 3a0a4u onpeoeieHus
ouaznocmu4eckoll yeHHocmu gopmupyemvix npuznaxkos Ha wiacmepe uz 2; 3; 5 u 10 xomnwsiomepos. [lpusooumcs cpashenue
npeonazaemotl mexHono2uu ¢ OaudIcCaiuum ananozom — I-cucmemotl.

Knrouesvie cnoea: napannenvhvie GbIMUCTEHUA, KIACMEPHbIE 6bIYUCIEHUS; PA3PAOOMKA NPOSPAMMHOZO ObechedeHus;
pelimeopKu, mpanchapeHmnoe pacnapaieiusanue

Information technologies in energy systems
70 engineering and manufacturing ISSN 2663-0176 (Print)

	2. Technology of orders based transparent parallelizing. Transparent parallelizing technology is based on splitting of parallel algorithms and the means of their parallelizing. Its main idea is finding large groups of algorithms that can be paralleliz...
	4. Implementation of transparent parallelizing technology. Transparent parallelizing technology has been implemented as a cluster computing framework. This section describes architecture of the framework and main decisions made during implementation.
	6. Testing of efficiency of offered technology The problem has been tested on a computer with Intel Core i5 CPU M430 running at 2.27GHz in different configurations (this processor has 2 cores and supports Hyper-Threading) [36-37]. Ten runs were done f...
	Conclusion. This paper describes implementing transparent parallelizing technology as a cluster computing framework on Java. The technology has been implemented as a framework that consists of server part, a client part, administrative tool and tools ...
	Conclusion. This paper describes implementing transparent parallelizing technology as a cluster computing framework on Java. The technology has been implemented as a framework that consists of server part, a client part, administrative tool and tools ... (1)
	The closest analogue of the offered technology is the T-system that is being developed in Program Systems Institute of the Russian Academy of Sciences [40, 41]. Although the offered technology has been developed independently, its main principles are ...
	References

