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MODELING THE MOTION OF A SOLID BODY UNDER THE ACTION OF THE MOMENT OF
LIGHT PRESSURE IN THE MEDIUM WITH RESISTANCE

Annotation. The paper describes the simulation of fast rotational motion of a dynamically asymmetric satellite relative to the
centre of mass under the influence of the joint effect of the moment of forces of light pressure and resistance. It is assumed that the
surface of the spacecraft is a surface of revolution. The medium creates a weak resistance proportional to the angular velocity of the
rigid body's own rotation relative to the centre of mass. Orbital motions with an arbitrary eccentricity are considered given. The
mathematical model of satellite motion in this formulation is described by a rigid system of differential equations: the fast variables
are Euler angles, and the slow variables are the modulus of the angular momentum vector, the kinetic energy, and the angles of ori-
entation of the angular momentum vector in space. Averaging is performed over the Euler-Poinsot motion. The averaged system of
equations of body motion allows numerical simulation of the satellite's motion relative to the centre of mass. The study is carried out
in a dimensionless form for a multiparameter system of equations. For numerical calculation, an implicit third-order Adams method
is used to integrate systems of differential equations. A personal computational package was developed for the constructed mathe-
matical model of the satellite, as well as a library for calculating the complete elliptic integrals of the first and second kinds. Numer-
ical calculation allows one to obtain the functions of modulating the modulus of the satellite kinetic moment vector, its orientation
angles to the orbit, as well as the satellite kinetic energy values. The analysis of the influence of the parameters of the problem on the
nature of the motion of the satellite relative to the centre of mass is carried out. A qualitative picture was obtained of the influence of
the initial values of the angles of orientation of the kinetic moment vector, the geometry of the masses, the eccentricity of the orbit,
the characteristic numbers of disturbing moments on the hodograph character of the kinetic moment vector. The hodograph of the
kinetic moment vector in three-dimensional space is simulated for various values of the system parameters. To construct three-
dimensional objects on the scene, according to the carried out numerical calculations, we developed our own software using DirectX

technology in C# language, simulating a virtual laboratory of a numerical experiment.
Keywords: mass geometry; hodograph; kinetic moment; light pressure; resistance, satellite

Introduction. The study of the problems of the
gyration of rigid bodies about a fixed point has re-
mained relevant for many decades. This is due to the
increasing demands on the accuracy of solving prac-
tical problems of cosmonautics, gyroscopy, etc.

The development of our own packages for
modelling mechanical processes allows us to study
the motion of a rigid body relative to a fixed point
under the action of various force factors, as well as
their combination. For each force factor, the
necessary physical and mathematical models are
constructed, and the question of the interaction of
force factors is also investigated. To generalize the
results obtained, it is necessary to build models in a
dimensionless form, choosing the characteristic
parameters of the problem as the scale.

One of the important characteristics of the
rotational motion of a solid relative to a fixed point
is the vector of angular (kinetic) momentum. The
hodograph of this vector is a spatial curve that
allows you to explore the nature of the motion of a
rigid body and determine the necessary relationships
between the parameters of the model.

Survey of prior research and formulation of
the problem. The motion of rigid bodies about a
fixed point in [1-11] composed of the Euler-Poinsot
motion around the vector of the angular momentum
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and the motion of the vector of the angular momen-
tum itself. If the body is not affected by the moments
of applied forces, then it makes some movement,
which is called unperturbed and is the Euler-Poinsot
movement. In real conditions, the disturbing mo-
ments of external and internal forces act on the
body. Such a movement is called perturbed. The task
of studying the rotational motion of a spacecraft un-
der the action of a moment of light pressure force is
one of the most important sections of the dynamics
of the rotational motion of a rigid body relative to
the centre of mass. The works [1-19] are devoted to
the study of perturbed motions of a rigid body under
the action of moments of forces of different physical
nature (gravitational [1], light pressure [2-4; 13-16],
influence of a cavity filled with a viscous fluid [5;
17-19], resistance [6-7], etc.) The task of studying
the rotational motion of a spacecraft under the action
of a moment of light pressure force is one of the
most important sections of the dynamics of the rota-
tional motion of a rigid body relative to the centre of
mass. Initially, satellites and spacecraft equipped
with extended solar panels or reflecting antennas
were studied. Then came the task of controlling ori-
entation using light pressure. A literature on these
issues can be found in the book [13] and the review
[14]. In [2], the integral characteristics of the force
effect of the light pressure on the body of the flight
device were obtained, and formulas for the moment
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of the forces of light pressure acting on the body
bounded by the surface of rotation were given. The
second research direction is the effect of light pres-
sure on the rotational-translational motion of aster-
oids [15]. The third direction is the study of the Yar-
kovsky effect [16].

The rapid development of IT-technologies al-
lows not only to apply new methods of research
tasks, but also to carry out modelling of the studied
processes [11; 20; 21].

The purpose and objectives of the study. The
main goal of the study is to simulate the hodograph
of the kinetic momentum vector for various values
of the parameters of the disturbing moments to con-
duct a qualitative analysis of the influence of the
disturbing moments on the satellite's motion relative
to the centre of mass.

To achieve this goal, the following tasks were
set:

building a mathematical model of the motion
of a rigid body relative to the centre of mass in a
medium with resistance under the action of the mo-
ment of force of light pressure;

numerical experiment at various values of pa-
rameters of disturbing moments;

three-dimensional modelling of the hodograph
of the kinetic momentum vector.

Building of a mathematical model. Consider
the motion of the satellite relative to the centre of
mass under the action of the joint influence of the
light pressure and resistance forces' moments. Rota-
tional motions are considered within the framework
of a model of a rigid body whose centre of mass
moves along a given fixed elliptical orbit around the
Sun [1].

Introduce three Cartesian coordinate systems
whose origin is compatible with the center of inertia
of the satellite [1]. The coordinate system

Ox. (1=1,2,3) moves progressively along with the
center of inertia: the axis Ox, is parallel to the orbit

perihelion radius vector, the axis OX, is the velocity
vector of the center of mass of the satellite at the
perihelion, and the axis OX, is normal to the orbit

plane. The coordinate system Oy, (i=1,2,3) is as-

sociated with the vector of kinetic moment G. The
axis Qy, is directed along the vector of the kinetic

moment G, the axis Oy, lies in the plane of the
orbit (ie, in the plane Ox;X,), the axis Oy, lies in
the plane Ox,y, and is directed so that the vectors
Yi. Y, Y5 formthe right triple [1]. The axes of the

coordinate system Oz, (i=1,2,3) are associated
with the main central axes of inertia of the rigid
body. The mutual position of the main central axes
of inertia and the axes Qy, is determined by the Eu-

ler angles. In this case, the direction cosines «;; of

the axes z, relative to the system Qy, are expressed

in terms of the Euler angles ¢, v, @ according to
known formulas [1]. The position of the angular
momentum vector G with respect to its center of
mass in the coordinate system Ox; is determined by
the angles A and ¢, as shown in [1].

The equations of motion of the body relative to
the center of mass are written in the form [1]:

dG _, ds_L di_ L,

@ @G dt Gsing'
%zesinesin(pcoxo 11 +
dt A A
+L2cosa//—Llsim//

G )

HY 2
d_cozecosg[i_m_(ﬂ_cos_(pj+
dt A A A,
+Llcosw+Lzsim//

Gsing
H Y 2
d_z//:G Sin"¢ oS @)
dt A A,
—LlCOSWJrLZSIantg@—%Ctg& (1)

Here L, are the moments of external forces rel-
ative to the axes Oy,, G is the magnitude of the
kinetic moment, A (i=1,2,3) — the main central
moments of inertia about the axes Oz, .

In some cases, along with the variable 0 it is
convenient to use as an additional variable an im-
portant characteristic — kinetic energy T, the de-
rivative of which has the form:

d_T:Z_TL3+Gsin9[cose><
d G

(%ﬂL%—ij('—zCOSW—HSi“V/F

+sin (pcosw[%—iJ(Llcostr L, sin w)} (2)
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The centre of mass of the satellite moves along
the Keplerian ellipse with eccentricity e and orbital
period Q. The dependence of the true anomaly v
on time t is given by the ratio:

dv _ @,(l+ecosv)?
dt - (1—62)3/2

2

, @,
Q

where: @, is the angular velocity of the orbital mo-

tion, e is the eccentricity of the orbit.

A dynamically asymmetric satellite is consid-
ered under the assumption that the angular velocity
® of the satellite’s motion relative to the centre of
mass is substantially greater than the angular veloci-

ty of the orbital motion Wy, i.e.

e=a,l o~ Aw, /G <<1. In this case, the kinetic

energy of rotation of the body is large compared
with the moments of disturbing forces.

The projections L; of the moment of external
forces are added up from the moment of the forces
of light pressure L and the moment of forces of

: 3)

external resistance L;".

Assume that the surface of the spacecraft is a
surface of rotation, with the unit vector of the axis of

symmetry k directed along the axis Oz, . As shown

in [1; 2], in this case for the moment of the forces of
light pressure acting on the satellite, the equation
takes the form:

L =(a, (2, )RS /R )e, xk , (4)

Ry _

E
ac(gs)g_ pc :

S(s,)Z)(<.). P, :_(%jz.

c

Here €, is the unit vector in the direction of the

radius vector of the orbit; &, is angle between di-

S
rections €, and k so that |e, xk|=sing,; R is
current distance from the centre of the Sun to the
centre of mass of the satellite; R0 is fixed value of
R, for example, at the initial moment of time;
a, (&) is a coefficient of moment of light pressure
force, determined by surface properties; S is area of
“shadow” on a plane normal to the flow; Z, is a
distance from the centre of mass to the centre of
pressure; P, is light pressure value at a distance R
from the centre of the Sun; c is the speed of light;

E, is the magnitude of the energy flow of light

pressure at a distance R, from the centre of the Sun.

Assume [1] that, due to symmetry, the corre-
sponding function (4) has the form a, =a, (COS 55)
and approximate it by a trigonometric polynomial in
degrees of COS¢,. Represent the function

a,(cose,) as a, =a,+8,Ccosg +.... Consider
the second term of the expansion,
a,(cose,)=a,cose, a,(Cose,)=a cose, when

assuming that a, ~ ¢ .

It is assumed that the moment of resistance
forces L™ can be represented in the form L' = lo,
where the tensor | has constant components l;; in

the system Oz, , associated with the body [1, 6]. The
medium resistance is assumed to be weak of the or-
der of smallness &°: 1|/ G, ~ &% <<1, where |1
is the norm of the matrix of resistance coefficients,
G, is the kinetic moment of the satellite at the initial

moment of time..
The projections of the moment of external re-

sistance forces L, on the axis Oy, are written in

the form [1; 6]. Here is the projection on the axis
Oy, , and projections on the other axes have a simi-

lar view
i, 00

L =_Gi( IilaAlila31 + iy + Iisciiaas]_

i=1

Procedure averaging method. The task is to
study the evolution of satellite rotations on an as-
ymptotically large time interval t 0 & over which a
significant change in motion parameters occurs.

Consider the unperturbed motion (&£=0),
when the moments of external forces are zero. In
this case, the rotation of a rigid body is the Euler-
Poinsot motion [22]. Values G, 6, A, T, v turn
into constants, and ¢, ', @ are some functions of
time t. The slow variables in the disturbed motion
willbe G, 6, A, T, v, and the fast Euler angles
.y, 0.

Consider movement provided by

2TA >G’ > 2TA, . Introduce the value
—A)(2TA -G?
G A) zAi ) (0<k*<1),  (5)
(A-A)(G*-2TA)
that is a constant in undisturbed motion i.e. the mod-
ulus of elliptic functions [23] describing this motion.
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To construct the averaged system of the first
approximation, we substitute the solution of the un-
perturbed Euler-Poinsot motion [22] to the right-
hand members of equations (1) — (2) and conduct
averaging over the variable y , and then over the

time t, taking into account the dependence of ¢,
on t [24]. At the same time, for the slow varia-

bles6, A, G, T the former notation is preserved.
As a result, we get the following expressions:

Z_f =-aR? (2(5R2)‘l H (kz)sin 5sin2(A-v),
?j_? —-aR’ (GRZ)_1 H (kz)cosécosz(/l—v),

dG G 2
E:_W{IZZ(A&_%)W“ )+

1y (A - A K2 =W (K*) |+
(A -A)[L-W (K]},
dT 2T )
E=—W{IZZ(A—A3)W(k )+
s (A= A)[K2 =W (K*) |+
CA-A)NA-ANA-A)

V (k?)
x{%[kz —W(kZ)J+%(l—kZ)W(k2)}+

L (A= A)D(KY) @_W(kz)]}

A V(K
oy, E(K?)
W(k?) =1 <’

V(K= A= A+ (A= AK?
D)= A (A=A)+A(A-A)K. ©)

Here K(k?) and E(k®) are complete elliptic
integrals of the first and second kind, respectively
[23].

The function H (k) in the first two equations
is determined by the ratios:

2
H :l{gaz Ek )—1}, if 2TA-G*>0,

2177 KK
H :i{ﬁ{kz_ . E(kZ)}_l},
2] k? K (k?)

if 2TA2—G2<0,a2=U+h,a=AB(AI_AZ),
l+o Ai(AZ—A3)
hz{Z_Tz_i]i, -
G" AJA-A

From equations (6) it follows that only the re-
sistance force affects the change in G and T . In [6,
8, 9] it was shown that the variables G and T

strictly decrease for any k* [0,1].

As is known [1] thatR = p, /(1+ecosv), the
focal parameter of the orbit is determined by the
equality p, =7"* (1—62)/a)§/3 , Where 77 is the
gravitational constant. Then the first two equations
of system (6) for the angles of orientation of the ki-
netic moment vector will take the form:
ds _ aR} ¢”(@1+ecosv)’

dt 2G  n**(1-¢?)?
2 4/3 2
1 S
a2 __aR o 2(/3+ecc; ;/) H cos 5 cos’ (1 —v)
dt G n@1—-e%)
(8)

Hsinosin2(A—v)

After averaging the equation for k® will take
the form:

dk’ |33 _|11 2

it ALAAg - p)(a-k)-
»7 E(K

[(1- 2)+(1+ 2)k ]%}

:2|22A1A3_|11A2A3_|33A1A2 ] 9)
(|33A1 - IllAS)AZ

X

Numerical analysis of averaged satellite spin.
To conduct a numerical study, we construct a
mathematical model in a dimensionless form. To
nondimensionalize the system, we take the unit of

measurement of time e;", moment of inertia- A and
modulus of the vector of kinetic moment - its initial
value G, then the dimensionless values of the mod-
el are denoted and defined as:

=y, Azz% AS:% GZGE, f=§,

(i=123).

@,
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Introduce the dimensionless characteristic num-
ber of this mode
aRio)”
A= 2/3
Go77

System (6), taking into account (8), in the di-
mensionless form takes the form:

2
? :_%% H (k?)sinsin2(2—v)
- _
2
(31_/1 :_%% H (k?)cos s cos® (1 -v)
. —

S B e - AW+
i (1= A )[ K -W (K*) ]+
(A - A)[1-W (K ]}

dT 2T (- ~ )
E=—m{|22 (1-A )W (k) +

i (1= A ) [ K -W (K*) ]+
LA-A)A-A)A-A)

(10)

V (K?)
x{%[kz —W(kz)]+%(1—k2)W(k2)}+
o, ¢ A _Vézk)z?(kz) [1—W(k2)]},
W(k?) =1- E((t’) V()= A - A+ A

D(k2)=(A2—A3)+A3(1—AZ)k2. (11)

Relations (7) after nondimensionalization take
the form:

2
H :1{3512 E(k )—1}, if 2TA-G?>0,

2|7 K(K?)
H =1{£{k2— - E(kz)}—l}, if
2] k K (k?)
2TA, —G? <0,
, _o+h O_:As(l_'&z)
l+o’ (AZ_A3) ’
{ZT_i]ﬂ
G* A)A-A

Conduct a numerical study for the system of
equations (11), and the equations for changing the
true anomaly (3) in a dimensionless form:

dv _ (1+ecosv)®
dT (1_e2)3/2 '

Conduct a numerical calculation of the satel-
lite's motion relative to the centre of mass when its
centre of mass moves in a circular orbit (e =0). For
the moments of inertia of the satellite, set the values

A, =0.8, A, =0.5. The initial values of the angles
of orientation of the kinetic moment vector relative
to Ox; are: 0, =0.337, 4, =0. The true anomaly

at the initial moment of time is v, =0. The module

of elliptic functions has the value k*=0.5. The
study is conducted for a small moment of resistance
forces with the same coefficients along the three
axes of inertia 1,=1,=1,=001. For the
characteristic number of the moment of the force of
the light pressure we choose the value y, =1.

The result of changing the angle of deviation of
the kinetic momentum vector G from the axis of
the vertical to the satellite orbit plane is shown in
Fig. 1, the angle of rotation of the kinetic moment
vector about the vertical axis is shown in Fig. 2
From fig. 1, it can be seen that the angle function

&(7) is periodic with a non-constant amplitude.

The angle function A(z) in Fig. 2 has gaps of

ascending and descending, which allows to conclude
that at first stage the kinetic momentum vector G
rotates about the vertical axis to the orbit plane
counter-clockwise, slowing the rotation, and then
clockwise.

s
1.6

14+
1.2:4F
1.0
0.8 1

0.6 1

Fig. 1. Graph of changes in the angle of
deviation of the vector G from the vertical to the
plane of the orbit
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0 20 40 60 80 100 3

Fig. 2. Graph of changes in the
angle of rotation of the vector G around the
vertical to the plane of the orbit

Fig. 3 shows the variation curves of the
modulus of the kinetic momentum vector G(z)
(Curve 1), the kinetic energy T (z) (Curve 2), and

the modulus of the elliptic functions k*(z)

(Curve 3). All functions are decreasing, since under
the influence of the moment of resistance forces the
attenuation of the perturbed motion of the satellite
relative to the centre of mass occurs.

0 20 40 60 80 100

Fig. 3. Graphs of changes in kinetic energy,
kinetic momentum and modulus of elliptic functions

Conduct the simulation of hodograph of the
kinetic moment vector according to the performed
numerical calculations. Fig. 4 shows the result using
our own visualization package for a three-
dimensional hodograph curve. The outer sphere of
the frame type corresponds to the initial value of the
modulus of the angular momentum vector, and the
inner continuous sphere corresponds to the final
calculated value of the modulus of the vector G.
The black curve is a three-dimensional hodograph
that simulates the motion of a satellite relative to the
centre of mass under the influence of the combined
moments of light pressure and resistance for given
parameters of the model.

From Fig.4 it can be seen that the hodograph of
the kinetic moment vector G covers the Ox,axis.

The influence of the moment of the forces of
light pressure is characterized by the dimensionless

parameter y, (10), which is included in the right set

of members of the first equations of the system (11).
Changing this parameter affects changes in the

functions &(7) and A(7). Fig. 5 shows the result

of calculating the function of the deviation of the
angular momentum vector from the vertical to the
orbit plane. Curve 1 corresponds to the value of

xi=1 curve2- y, =2, curve3- y =3.Itcanbe
seen that an increase in the parameter of the light
pressure leads to an increase in the amplitude and a

decrease in the oscillation period, but the nature of
the function is preserved.

X,
Fig. 4. Hodograph of the kinetic
momentum vector

S

1.2
0.8 s Ny ;
0.6+
0.4 :

0.2

0 10 20 30 40 50 4

Fig. 5. The influence of the moment of force
of light pressure on the angle of deviation

The magnitude of the modulus of the elliptic
functions affects the gradients of the functions of the
satellite’s motion characteristics relative to the
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centre of mass. Fig. 6 shows the curves of the angle
of rotation A for different values of the input

parameter. Curve 1 corresponds to k* =0.99, curve

2 - to k=05, curve 3 — to k*=0.3. The
hodograph of the kinetic moment vector has a
character similar to that shown in Fig. 4.

10

-30

-40

-50
0 20 40 60 80 100

Fig. 6. The influence of the moment of force
of light pressure on the angle of rotation

The study of satellite motion in an elliptical
orbit for 0 <e <1 showed that the hodograph of the
angular momentum vector has minor changes.

The hodograph of the kinetic moment vector
has a significant effect on the initial value of the
orientation angle o .

Carry out a numerical calculation for the

parameters e=0,A, =08, A =05, v,=0,
k®=0.5, l,=1,=1;=001, =1 A4,=0
for different initial values of the angle of deviation
of the vector G from the vertical axis to the plane of

the orbit. Fig. 7 shows the result of modelling the
hodograph of the Kkinetic moment vector for

0, =0.257, in Fig. 8 —for§, =0.57 .

Fig. 7. Hodograph for 6, =0.25z

Fig. 8. Hodograph for 6, =0.57

According to the simulated hodographs of the
kinetic moment vector of Fig. 4, Fig.7, Fig 8, it can
be concluded that increasing the initial angle of
deflection of the vector G from the vertical to the
orbital plane reduces the time of rotation of this
vector near the vertical axis in the counterclockwise
direction.

Changing the initial value of the angle of
rotation of the vector G does not change the
character of the hodograph, but performs the rotation
of the curve by the initial angle A, .

Conduct a study for a satellite with a different
mass geometry, taking into account the fulfillment

of the inequality 1> A, > A, for which relation (5)
is valid. Perform a numerical calculation for the
parameters e=0, v,=0, k*=05,
l,=1,=1;;=001, =1, 4,=0, 6,=0.337.
Set the moments of inertia of the satellite A, =0.2,

A, =0.1. These values correspond to the body

which mass is more distributed along the OX, axis.

According to Fig. 9, the rotation of the kinetic
moment vector occurs only in the clockwise
direction, while the hodograph itself has a different
form. The same direction of motion of the angular
momentum vector will be maintained in the case of a
satellite with a mass distributed along the two axes

Ox; and Ox,. Fig. 10 shows the simulated
hodograph of the kinetic moment vector for the
geometry of masses A, =0.9, A, =0.1. It is seen
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that an almost uniform mass distribution in the
Ox X, plane leads to a more sinusoidal hodograph
curve.

Fig. 9. Hodograph for a satellite with a mass
distributed along the OXx axis

Fig. 10. Hodograph for a satellite with a mass
distributed in the OX;X, plane

To conduct numerical simulations of a satellite
with 1< A, < A, mass geometry, it is necessary to
swap A and A, in the equations of system (6) and
equality (5). In addition, the value of y in equation
(9) is replaced by —y, and in equation (9) add the
minus sign (“-“). The conducted numerical analysis

did not reveal any new types of hodographs of the
kinetic moment vector.

For a complete analysis of the constructed
model, it is necessary to consider the moment of

resistance forces for which 1, # I,, # 1.

Perform a numerical calculation for the
parameters e=0,A, =08, A =05, v,=0,
k®=05, y =1, 4,=0, & =0.337 provided
that the moment of resistance force has a projection
only on OX,. Fig. 11 shows the result of modelling
the hodograph of the kinetic moment vector for
l,=1,,=0, l,=0.1.1Itis seen from the figure

that a feature of this hodograph is its rotation on a
small value of the modulus of the vector of the
kinetic moment.

Fig.11 Effect of resistance on the hodograph.

A numerical analysis carried out for different
values of the components of the inertia tensor
showed that all possible hodographs of the kinetic
moment vector in this satellite model have been
modelled.

Conclusions and prospects for further re-
search. A numerical study of the perturbed motion
of the satellite under the influence of the combined
effect of the moments of the forces of light pressure
and resistance has been carried out. An analysis of
the model obtained and the results showed that by
modelling satellites with different mass geometries,
we can obtain the rotation of the angular momentum
relative to the centre of mass in different directions
around the vertical axis to the orbit plane. The hodo-
graph of the vector G always covers the vertical
axis to the orbit plane.
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The analysis showed that the initial value of the
deviation of the angular momentum vector from the
vertical axis to the orbit plane has a significant effect
on the hodograph form.

It makes sense to construct a similar model in
the case of a quasi-rigid body with a cavity com-
pletely filled with a viscous fluid, to simulate a lig-
uid satellite core.
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MOJAEJIOBAHHA PYXY TBEPAOI'O TLIA I AI€FO MOMEHTY
CBITOBOI'O TUCKY B CEPEJOBHII 3 OITIOPOM

Anomauin. Mooemoemvcs weuokuil 06epmanrbHull pyx OUHAMIYHO HECUMEMPUYHO20 CYRYMHUKA BIOHOCHO YEHmpPY MAC Nio
0i€I0 CRLILHORO 6NAUGY MOMEHMY CUl C8ima06020 mucky i onopy. Ilepedbauaemvcs, wjo NOBepXHsi KOCMIYHO20 anapamy
npedcmasnsie coborw nosepxuio obepmanns. Cepedosuuge cmeoproe clabkuil onip nponopyiuHull Kymoeoi ueuoKocmi 61acHo20
obepmannsi mina 6ionocno yeumpy mac. Opbimanvui pyxy 3 O0O0GIIbHUM eKCYEHMPUCUMEMOM BBAICAIOMbC  3A0AHUMU.
Mamemamuyna modeib pyxy CynymHuka 6 MAakiii ROCMAHOSYI ONUCYEMbBCS JCOPCMKOIO CUCMEMOIO OUDEPEHYIANbHUX DIGHSHD.
Iposooumwcs ycepeonenns 3a pyxom Einepa-Ilyanco. Ycepeonena cucmema pigHsaHb pyxy mila 00360J18€ NPOGOOUMU YUCETbHE
MOOENIOBAHHA  PYXy CYNYMHUKA GIOHOCHO yeHmpy Mac. JocniodceHHs nposooumvcs 6 0Oe3pOo3MIpHOMY ueisioi  0as
b6azamonapamempuunoi cucmemu pienans. IIposedeno ananiz 6niugy napamempie 3a60anHs HA XapaKmep pyxy CynymHuka 6i0HOCHO
YeHmpy MAc: NOYAMKOGUX 3HAYEHb KYMi6 OpieHMayii 6eKmopa KiHemuiHo20 MOMEHMY, 2e0Mempii Mac, excyenmpucumemy opoimu,
XapaxmepHux uucen 30ypiorouux momenmis. Moodenioemscsi 20002pag eexmopa KinemuyHo20 MOMEHMY y MPUGUMIPHOMY NPOCMOPI
07151 PI3HUX 3HAYEHb NAPAMEMPI6 CUCIEMU.

Kniouogi cnosa: ceomempis mac, 200oepag; KinemuuHnuti MOMenm; C8imMa08uUll MUCK; ONip; CynymHuK

'Paunnckasi, Aina JleOHMIOBHA, KaHIUIAT (pU3MKO-MATeMaTHYECKMX HayK, JOLEHT, JOLEHT Kad.
TeopeTryeckoil mexanuku, E-mail: rachinskaya@onu.edu.ua

LOnecckuii HaIMOHANBHBII yHuBepcuteT umenu M. Y. Meunukosa, yi. /IBopsinckas, 2, Onecca,
VYkpauna, 65082

MOJIEJIMPOBAHUE JIBUKEHUS TBEPJIOT'O TEJIA IO JEUCTBUEM MOMEHTA
CBETOBOI'O JABJIEHUSA B CPEJE C COITPOTUBJIEHUEM

AHHDmalﬂl}l. Modeﬂupyemc;z 6blcmpoe epaiwyameilbHoe 08UICEHUE OUHAMUYECKU HeCUMMEMPUUHO20 CRYMHUKA OMHOCUMENbHO
yenmpa macc 100 Oelicmeuem COBMEeCMHO20 GIUSHUSL MOMEHMA CUIl CEEM0B020 OABNCHUS U COnpomueieHusl. Hpe()no,meaemc;z, umo
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HOBEPXHOCTbL KOCMUYECK020 annapama npeocmagisem coboil nosepxHocms epawjenus. Cpeda cosdaem ciaboe conpomusnenue
NPONOPYUOHATILHOE Y2080 CKOPOCIU COOCMBEHHO20 8pawjeHus meid OmHOCUmenvho yenmpa macc. Opbumanbhvle OBUNMCEHUS C
NPOU3EONLHIM IKCYEHMPUCUMEMOM CHUMAIOMCA 3A0aHHbIMU. Mamemamuueckas MoOenb OBUNCEHUs CHYMHUKA 8 MAKOU NOCMAHOBKe
onucwisaemcs Hcecmkol cucmemoil ouggpepenyuanvhvix ypasrenuil. Ilpoeooumcs ycpeonenue no osudscenuto Dinepa—Illyamuco.
Vepeonennas cucmema ypasnenutl Osudicenus mena NO3601Aem NPOBOOUNb HYUCIEHHOE MOOETUPOBAHUe OBUNCEHUS CNYMHUKA
omHocumenvHo yeumpa macc. Hccnedosarnue nposooumcs 8 6e3pasmepHom euoe O MHO2ONAPAMEMPULECKOU CUCEMbl YPABHEHUI.
IIposeden ananus GAUAHUA NAPAMEMPOE 3a0auU HA XAPAKMED OBUIICEHUS CHYMHUKA OMHOCUMENbHO WEHMPA MACC: HAYANbHbIX
3HAYeHUll Y208 OPUEHMAYUl BeKMOPA KUHEMUYeCKO20 MOMEHMA, 2e0Mempuu MAcc, dKCYeHmpucumema opoumsl, XapaxmepHuix
yucen O3MyWarowux momenmos. Mooenupyemes 20002pagd 6ekmopa KUHemu4ecko2o MOMeRmMa 6 mpexmepHoM nPOCMpPancmee npu
PA3NUYHBIX SHAYEHUAX NAPAMEMPOE CUCTEMbL.
Knrouesvie cnosa: zeomempus macc; 20002pagh; KUHeMu4ecKuti MOMEHN; C6emogoe 0asieHue; ConpomusieHue; CnymHuxk
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	.                 (10)
	Relations (7) after nondimensionalization take the form:
	Conduct a numerical study for the system of equations (11), and the equations for changing the true anomaly (3) in a dimensionless form:

