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CLASSIFYING MIXED PATTERNS OF PROTEINS
IN MICROSCOPIC IMAGES WITH DEEP NEURAL NETWORKS

Abstract. Nowadays, accurate diagnosis of diseases, their treatment and prognosis is a very acute problem of modern medi-
cine. By studying information about human proteins, you can identify differentially expressed proteins. These proteins are potentially
interesting biomarkers that can be used for an accurate diagnosis, prognosis, or selection of individual treatments, especially for
cancer. A surprising finding from this research is that we have relatively few proteins that are tissue specific. Almost half of all pro-
teins are categorized as housekeeping proteins, expressed in all cells. Only 2,300 proteins in the human body have been identified as
tissue enriched, meaning they have elevated expression levels in certain tissues. Thanks to advances in high-throughput microscopy,
images are generated too quickly for manual evaluation. Consequently, the need for automating the analysis of biomedical images is
as great as ever to speed up the understanding of human cells and diseases. Historically, the classification of proteins was limited to
individual patterns in one or more cell types, but in order to fully understand the complexity of a human cell, models must classify
mixed patterns according to a number of different human cells. The article formulates the problem of image classification in medical
research. In this area, classification methods using deep convolutional neural networks are actively used. Presented article gives a
brief overview of the various approaches and methods of similar research. As a dataset was taken “The Human Protein Atlas”, that
presents a tissue-based map of the human proteome, completed in 2014 after 11 years of research. All protein expression profiling
data is publicly accessible in an interactive database, enabling tissue-based exploration of the human proteome. It was done an
analysis of the work and the methods that were used during the research. To solve this problem, the deep neural network model is
proposed taking into account the characteristics of the domain and the sample under study. The neural network model is based on
Inception-v3 architecture. Optimization procedure contains combination of several tweaks for fast convergence: stochastic gradient
descent with warm restarts (learning rate schedule for exploring different local minima), progressive image resizing (training starts
from small resolution and sequentially increases each cycle of SGDR). We propose new method for threshold selection for F1 meas-
ure. Developed model can be used to create an instrument integrated into the medical system of intellectual microscopy to determine
the location of the protein from a high-performance image.

Keywords: Human Protein Atlas; deep learning; neural networks; classification; pattern recognition, stochastic gradient de-
scent

Introduction

Proteins are the doers in the human cell, execut-
ing many functions that together enable life. This
includes maintaining the structure (cell shape),
chemical catalysis, and motor function (muscle con-
traction, for example), and transport (say, hemoglo-
bin protein transports oxygen from the lungs to the
tissue and carbon dioxide in the opposite direction)
and complex regulatory functions to maintain con-
sistency internal environment (e.g. protein hormones
and all intracellular regulatory systems) and many
others.

Historically, classification of proteins has been
limited to single patterns in one or a few cell types,
but in order to fully understand the complexity of the
human cell, models must classify mixed patterns
across a range of different human cells.

Images visualizing proteins in cells are com-
monly used for biomedical research, and these cells
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could hold the key for the next breakthrough in med-
icine.

However, thanks to advances in high-throughput
microscopy, these images are generated at a far
greater pace than what can be manually evaluated.
Therefore, the need is greater than ever for automat-
ing biomedical image analysis to accelerate the un-
derstanding of human cells and disease [1], which
leads to accurate diagnosis, and selection of individ-
ual treatments, especially in cancer treatment.

As making diagnosis of diseases, prescribing
their treatment and prognosis more accurate is a very
acute problem of modern medicine, studying infor-
mation about human proteins is a very important
task.

The Human Protein Atlas (HPA) provides high-
resolution insights into the spatio-temporal distribu-
tion of proteins within human cells. The protein lo-
calization data is derived from antibody-based pro-
filing by immunofluorescence confocal microscopy,
using a panel of 64 cell lines to represent various
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cell populations in different organs and tissues of the
human body [11].

The highly promising technology that is nowa-
days used to localize proteins is high-throughput
fluorescence microscopy imaging (HTI). This imag-
ing technology allows a selected protein to be
stained with fluorescent antibodies. Then a micro-
scopic image of the whole cell is taken.

Together with the information of other staining,
such as the Hoechst staining [12] of the cell nucleus,
and the actin staining of the cytoskeleton [12], these
images provide a rich source of information on the
protein location. Which is very important and can be
used for studying the structure of different types of
proteins and therefore solving problems that need a
lot of resources.

The problem is that high amount of images,
their big size and complexity require high perfor-
mance in localizing proteins from deep learning
methods since imaging data together with the anno-
tation by the HPA project are an exhaustive source
of training data. Due to lack of resources another
problem is to optimize neural network model for
using as few re-sources as possible.

The Aim of this work is to create the method
and implement the model that is capable of localiza-
tion of target protein of interest within various cell
organelles in different cell types and lines from a
high-performance image using modern techniques in
the field of neural networks and deep learning.

Recent research

Big leap in performance caused by
convolutional neural networks (CNNSs), aroused
comparisons of computational methods with humans
or even human experts. Esteva et al. [3] have
compared CNNs with expert performance at
detecting melanoma in images of skin lesions.
Swamidoss et al. [14] have conducted a comparison
with two human experts of human proteins
classification. They worked with microscopy data on
tissue level belonging to four classes. In this work,
we aim at a more challenging task in which proteins
have to be localized within 28 classes with multiple
possible locations per sample.

Sullivan et al. proposed to combine two ap-
proaches for large-scale classification of fluores-
cence microscopy images. First, using the publicly
available data set from the Cell Atlas of the HPA,
authors integrated an image-classification task into a
mainstream video game (EVE Online) as a mini-
game, named Project Discovery. This data was then
integrated into a tool for automatic protein labeling
[16].

The M-CNN model [8] was designed for phe-
notype classification of human cell data. The main

idea of the architecture is to combine features ex-
tracted from the input at several spatial resolutions.
This is achieved by scaling the original image di-
mensions to widths and heights. These scaled ver-
sions of the input are processed by different convo-
lutional layers and the feature maps of the last layer,
are downscaled via pooling to the smallest resolu-
tion. Then, the feature maps are concatenated, com-
bined via 1x1 convolutions, and passed on to a fully
connected layer and the output layer.

Another prominent work, designed specifically
for high-throughput microscopic imagery is
Convolutional Multiple Instance Learning. Authors
focus on the problem of weak labels, i.e. that
microscopy images not only contain cells of the
target or labeled class but also cells that do not
comply with the label. The authors propose to tackle
this problem with multiple instance learning , where
cells belonging to the class label of an image are
identified automatically while the influence of other
cells on the result of the model is down-weighted by
using a special pooling function called noisyAND
[13].

In the field of HPA classification with deep
neural networks, one of the most recent state-of-
the-art works is GapNet [7].

Authors propose architecture designed specifi-
cally to process high-throughput microscopy imag-
es. Authors achieve the possibility to learn from
fine structures within images, as they do not have
to be downscaled via a two-step approach. In a first
step, an encoder consisting of several convolution
layers interspersed with max-pooling layers to
learn abstract features on different spatial resolu-
tions is used.

In the second step, they reduce the feature
maps from three different layers via global average
pooling to a size of one pixel and concatenate the
resulting feature vectors. The resulting features,
representing different spatial resolutions, are then
passed on to a fully connected network with two
hidden layers for the final prediction.

Huang et al. proposed [9] the densely connect-
ed convolutional architecture (DenseNet). The
basic idea of DenseNet is to reuse features learned
on early layers of a network contain fine-grained
localized information, on higher layers which have
a more abstract representation of the input. This is
achieved by passing feature maps of a layer to all
consecutive layers. A stated benefit of this architec-
ture is that it does not have to re-learn features sev-
eral times throughout the network. Hence, the indi-
vidual convolutional layers have a relatively small
number of learned filters.
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Human Protein Atlas Dataset

We conducted all experiments on the dataset re-
leased for the Kaggle Human Protein Atlas Image
Classification Challenge [1] by the Human Protein
Atlas. Challenge dataset contains more than 30,000
images taken from the Cell Atlas, which is the part
of the Human Protein Atlas.

Every sample consists of four high-resolution
images corresponding to the different fluorescent
channels (Fig. 1).

These four channels correspond to four different
filters:

e green filter for the target protein structure of

interest;

e Dblue landmark filter for the nucleus;

e red landmark filter for microtubules;

e yellow landmark filter for the endoplasmatic

reticulum.
The distinct patterns in the images together with the
reference markers make it possible to precisely clas-
sify the spatial distribution of a protein within the
cell.

The dataset has different limitations:

e The staining of target proteins in the green
channel is not equally successful and differs
in intensity.

e The images differ in their intensities and the
target proteins are not always located the
same way.

e There are morphological differences be-
cause cells in the dataset are of different

types.

100

Fig. 1. The fluorescent channels of a single sample
from HPA dataset

The immunofluorescence-based approach used
in the Cell Atlas allows a simultaneous analysis of the

protein distribution in all organelles. This enables the
possibility to study the spatial distribution of proteins
in their cellular context and the identification of all
proteins that are located to more than one organelle,
which can be called “multilocalizing proteins™ [18].

For each sample, the task is to determine in
which of the 28 organelles the protein of interest ap-
pears, where multiple organelles are possible as same
proteins can come together in different cell organelles
due to cell functions.

Dataset has highly imbalanced classes’ distribu-
tion with two orders of magnitude between most- and
least-counted classes (Fig. 2).

Consequently, accuracy only is not the right
score to measure the performance and fine validation
strategy is needed. Metrics for this validation will be
discussed later here.

We can see that most common protein structures
belong to coarse grained cellular components like the
plasma membrane, the cytosol and the nucleus. In
contrast small components like the lipid droplets, par-
oxysms, endoscopes, lysosomes, microtubule ends,
rods and rings are very seldom in the train data. We
explore correlations of different targets in order to
find common patterns in classes’ distribution. Targets
have small correlations, except of lysosomes and en-
dosomes, that occur together frequently in cell opera-
tion (Fig. 3). We can note high correlation between
endosomes and lysosomes. They both contain im-
portant substances for the functioning of the cell. Fur-
thermore, endosomes store internalized materials until
their digestion while lysosomes fuse with endosomes,
aiding the digestion of materials inside the endosome.
Thus, protein of interest is frequently contained in
both of them [21].

For these classes the prediction will be very dif-
ficult as we have only a few examples that may not
cover all variability’s and model probably will be
confused during learning process by the major clas-
ses. Due to this confusion, the model will make less
accurate predictions on the minor classes.

Too little sample numbers in rare classes re-
quired to combine oversampling with under sampling
to achieve more uniform distribution in training
phase. We oversampled classes that have less than
100 samples by the factor of five. To reduce influence
of dominant classes, we undersampled them with the
factor of two.

We spitted preprocessed data into train (85 %)
and validation (15 %) sets using iterative approach for
multilabel stratification [15] in order to prevent domi-
nance of rare classes in the train set due to its bigger
percentage. As test set, we used test data and evalua-
tion procedure that was providing by Kaggle [1] plat-
form.
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Methods

Neural network structure

Cells in dataset can be of different sizes. To be
able to deal with multi-scale recognition, we needed
the appropriate network structure. Through experi-
ments with different neural network architectures,
we found Inception-v3 [4] to be most efficient in
terms of capacity and computational resources. It
consists of blocks that can utilize features of differ-
ent scales (Fig. 4). Each block represents convolu-
tion operation with kernel size written on block.
Thus, each column of operations can have different
receptive fields and can grasp different scales. In
addition, its balanced width/depth change in each

module aid reduction of information loss in the flow,
what leads to greater network capacity w.r.t. pa-
rameters number?

To make our deep network invariant to image
size (which is needed for progressive training), we
use global average pooling as a final layer before
dense layers. It reduces spatial dimensions of the
feature map of any size to one pixel.

We used the modified version of Inception-v3
modules that also includes Batch Normalization af-
ter every inception block. This addition allows much
faster convergence than traditional Inception model
[19].
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Fig. 4. Inception-v3 module

Obijective function

Imbalanced dataset imposes limitations on objec-
tive functions that we could use. As the evaluation
measure is F1, so we considered to be optimal to use
soft-F1 loss function, which is represented by differ-
entiable lower bound for Fbeta score [6] at fixed
beta value of one.

_ 2 tp
Fy=lep )(1+ﬂz).tp+ﬁ’2. fn+fp (@)

where: tp, fn and fp are true positives, false negatives
and false positives respectively.
Here, these values are calculated in differentiable
manner as multiplications of one-hot encoded targets
and raw predictions after sigmoid output.

Progressive image resizing

To save resources while training, training starts
from small resolution and sequentially increases it
when validation loss plateaus. This heuristic acts as
regularization at early stages forcing neural network
to learn coarse features first, and then refining details
only when it is really needed. In addition, it reduces
training wall time significantly due to bigger batch
size with lower image resolution. The batch size for
model depend on memory consumption and was cho-
sen as large as possible to fit in the GPU with 11GB
memory given desired image size (Table 1).

Table 1. Progressive image size sequence

Step Image size | Batch size

1 221x221 48
2 256x256 36
3 296x296 27
4 320x320 20
5 384x384 15
6 440x440 11
7 512x512 8

ISSN 2663-0176 (Print)

Warm restarts

Ensembles of neural networks are known to be
much more robust and accurate than individual net-
works. To increase performance we used Snapshot
Ensemble technique to create ensemble. As in origi-
nal paper [10], we used cosine annealing learning
rate (Fig. 5). As an optimizer, we used Stochastic
Gradient Descent with momentum.
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Fig. 5. Cosine annealing learning rate schedule

To stabilize training at high learning rate part of
the cycle, gradient clipping was used. The gradients
normalized, if their L1 norm exceeds threshold
(which was set to 10.0 in experiments).

We incorporated warm restarts with progressive
image resizing by increasing image size at each cy-
cle of learning rate; such multi-scale ensemble per-
formed better, than ensemble trained only with high-
est image resolution possible. We suppose this hap-
pening due to different size of different cells and
different morphology of different cell lines in the
dataset. Thus, neural network could learn useful fea-
tures at different scales.

Threshold selection

As the problem is multi-label with severe class
imbalance and correlations between several classes,
we decided to select thresholds for each class indi-
vidually. We chose threshold with linear search for
each class while keeping thresholds for other classes
fixed. This optimization could increase F1 score for
the same network up to 22 %.

Other researchers mentioned that such approach
could lead to poor generalization [2]. To increase
generalization, we searched for thresholds that not
only maximize F1 score, but also keep precision and
recall close to each other to increase stability (Fig.
6).

We added additional penalty © to linear search,
equal to:

o=-a-P—-R )

where: & is a small number, P is precision and R is
recall. It allows more robust threshold selection with
optimal precision-recall tradeoff.
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Results

In this work, we introduced a method and practi-
cal experimental notes for multi-target protein local-
ization. It shows high predictive performance and
can perform even better with more data of higher
resolution or different staining images. For it, we
used modified version of Inception-v3 neural net-
work architecture. In order to ensure fast and robust
training, we used combination of stochastic gradient
descent with restarts and progressive image size. We
show the method of robust threshold selection for
imbalanced dataset with noisy labels for F1-score
metric. As part of this work, we took part in Kaggle
Human Protein Atlas Image Classification Chal-
lenge. Presented solution took 231-th place among
2172 teams with final F1 value of 0.495 on a sepa-
rate test set.

Future research

The main future aim is to improve model perfor-
mance for classes that have small amount of samples
overall. For this purpose, existing approach can be
supplemented with metric learning [20]. This will
allow matching new unknown samples to known
samples using learned distance metric. This ap-
proach can sufficiently decrease overfitting for rare
classes.

Another direction of the research can be focused
of increasing the generalization properties of exist-
ing neural network architectures. Domain
knowledge augmentations or AutoAugment can be
used [5].

In addition, approach with progressive resizing
combined with warm restarts needs future investiga-
tion. It can be useful for heterogeneous cell data that
was captured at different magnification. In addition,
this combination in can be successful in other differ-
ent problems, e.g. it can be useful in tasks with
strong influence of perspective.

Conclusions

We presented an approach for protein localization
using deep neural network. Tests show robustness of
the presented solution and high quality of predicted
labels. It is a generic and robust method which can
process input images of arbitrary size capable of
learning images from various heterogeneous cell
types. Future advances of this technique can show
substantial potential in other localization tasks with
future research of miniaturizing the deep neural net-
work as well.
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Meduyunu. Busuarouu ingpopmayiio npo nodceki npomeinu, moxciugo ioenmuikysamu ougpepenyiino excnpecogsami Oinku. LJi
npomeinu € NOMeHYiliHO yYikagumu Oiomapkepamu, AKI CIi0 GUKOPUCMOBYBAMU Ol MOYHO20 OiaeHO3Y, NPOcHO3Y a0 eubopy
IHOUBIOYANBbHO20 NIKY8AHHSA, 0COONUBO 8 PA3i OHKONIOSTYHUX 3aX680PI06anb. Pe3yiomamu 00ciioicenb NoKa3yoms, Wo 6iOHOCHO MA0
Oinkie mano OiInKi8 6 no0cvkoMy mini € mranecneyigiunumi. Matixce nonoguna 6cix 6UIKi6 KIACUDIKYEMbCA AK OONOMINCHI OLIKU,
wo excnpecyiomscst 6 yeix kuimunax. Tineku 2300 6inxie 6 opeanizmi moounu Oyau idenmuikosani sik mranecneyigiuni, wo
03HAYAE, WO BOHU MAlOMb NIOBUUEHT PiBHI eKcnpecii @ negHUX MKAHUHAX. 3a60AKU OOCASHEHHAM 8 00Nacmi 8UCOKONPOOYKMUBHOT
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MIKPOCKONIT 300pasiceHHs 2enepylombCs 3aHaomo weuoko ona pyunoi oyinxu. Omoice, nompeba 6 asmomamusayii ananizy
biomeduynux 300padicenb AK HIKOMU GelUKd, Wob NpUCKOpUMU pPO3YMIHHA JIOOCOKUX KAimun i 3axeopiosans. Ilcmopuuno
Knacugixayis OiKie 0OMedcysanacs iHOUBIOYATbHUMU NAMMEPHAMU 8 OOHOMY A60 OeKiTbKOX Munax KiimuH, aie 0 NOBHO20
PO3YMIHHA CKIAOHOCHE THOOCLKOT KAIMUHU MOO€N NOGUHHI KIACUIKY8amu 3Miani na mepHu 8iOn08iOHO 00 KITbKOCHI DI3HUX
munig¢ moocvkux Kuimuu. Y cmammi cgopmynvosana npobdnema xiacugikayii 300padicenb 8 MeOuyHuUX O0CHONCeHHAX. Y yiil
obnacmi aKmueHo BUKOPUCOBYIOMbCA Memoou Kiacugikayii 3 GUKOPUCMAHHAM 2TUOOKUX 3A20pMANbHUX HEUPOHHUX MEPediC.
Ilpeocmasnena cmamms 0ae KOpomKull 02150 Pi3HUX nioxo0ig i Memodie nodioHo2o docriddicenns. Ak Habopy danux 6yn0 832mo
«Human Protein Atlasy, wo npedcmagnse mrkanunny Kapniy npomeoma moounu, ckiadeny ¢ 2014 poyi nicas 11 poxie docniodxcens.
Bci oani npoghintosanns excnpecii npomeinié 3aeaibHOOOCMYNHI 6 THMEPAKMUSHIN 0a3i OaHUX, WO 0036015E OOCTLIONCYBAMU
npomeom MOOUHU HA MKAHUHHIL OCHO8I. Byno nposedeno ananiz pobim i memoois, AKi OYiu UKOPUCMAHI 8 X00I Q0CHiOMceHHs. [
eupiwenHs yiei 3a80aui 3aNPONOHOBAHA MOOeNb 2IUOOKOI HEUpOHHOI Mepexci 3 YPAaxXy8aHHsAM XaApaKmepucmux OOMeHY |
docnidacysanoi subipku. Moodenwv neliponHoi mepesci 3achosana na apximexmypi Inception-v3. Ilpoyedypa onmumizayii micmumuo
KOMOIHAYiI0 0eKLIbKoX Memooig OJig WEUOKOL 30IHCHOCHI: CIMOXACMUYHUL 2PAJIEHRMHULL CHYCK 3 NEPe3anyCcKoM (3MIHA WEUOKOCHI
HAGYAHHS OISl GUBYEHHSI DIZHUX JIOKAAbHUX MIHIMYMIB), npocpecusHe 3mina po3MIpY 300pajicenis (HA8UAHMA NOYUHAEMbCS 3
HesenuKoi po3dinbhoi 30amuocmi i nocaioosHo 36invwye it koacen yuxi SGDR). Mu npononyemo nosuti memood subopy nopozy ons
s3axoou FIl. Po3pobnena modenb moodice Oymu uxkopucmana Onsi CMEOPEHHS Npunaoy, iHmezpo8aHoc0 6 MeOUdHy Cucmemy
iHmMenexmyanbHoi MiKpoCKonii, Ot 6USHAYEHHS MICYsL PO3MAULYBAHHS OIIKA NO BUCOKOEHEKMUBHOMY 300PANCEHHIO.
Kniouosi cnosa: Human Protein Atlas;, anuboke nasuanns, neiiponni mepeici; kiacugikayis,; posniznasants oopaszie
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KJIACCHO®UKALUSI MATTEPHOB BEJIKOB HA MUKPOCKOIMMYECKHUX
MN30BPAKEHUSX C UCITOJIB30BAHUEM I'TYBOKHX
HEMWPOHHBIX CETEN

Annomayun. B nacmosuee epema mounas OuazHOCMuUKA 3a001e8anuil, UxX 1edeHue U nposHo3 AGIAIMCA OCmMpPol NpooIeMou
cospemennoil meduyunvl. H3yuas ungopmayuto o uenogeueckux 6GeiKax, 603MONCHO uoeHmupuyuposams Oughpepenyuanvro
aKcnpeccupyemvie 6enxu. Imu Oenku A6IAMCA NOMEHYUANbHO UHIMEPECHLIMU OUOMAPKEPaMU, KOmopble Cledyem UCHOab308amy
011 MOYHO20 OUACHO3A, NPOSHO3A UNU 6b1O0PA UHOUBUOYANLHO20 NeHeHUs, OCOOEHHO 8 Clydde OHKONIO2UHECKUX 3a001e6aHull.
Pesynomamul uccnedosanuti nokazeleaiom, 4mo OMHOCUMENIbHO MANO 0eNKO08 MAno 0elKo8 6 Heno8edecKom meie AGIAIMCA
mxanecheyuguunvivu. Iloumu nonosuna écex benkog Kiaccu@uyupyemcs Kaxk 6CHoOMozamenbHbie OenKu, IKCnpeccupyemble 60 6cex
xknemxax. Tonvko 2300 benkos 6 opeanuzme uenogexa Obliu UOeHMUGUYUPOBAHLL KAK MKaHecneyuguynbsle, Ymo o3Hadaem, 4mo onu
UMEIOM  NOBbIUEHHbIE — YPOBHU — IKCHpECCUU 6  OnpedeleHHvlx — mKauax.  Bnacooapa — docmuowenusm 6  obracmu
8bICOKONPOU3800UMENBHOU MUKPOCKONUU US0OPANCEHUS 2EHEPUPYIOMCA CIUMKOM Obicmpo Ona pyunotll oyenxu. CrnedosamenvHo,
NOMPEOHOCHb 6 A8MOMAMUAYUU AHATUIA OUOMEOUYUHCKUX U300PAXHCEHUNl KAK HUKO20a 6eluKd, 4mobbl YCKOpUmb NOHUMAHUe
uenoseueckux Kiemox u sabonesanuil. Hcmopuuecku Kiaccugpuxayusi 6enkos 0epaHuyusanacs UHOUSUOYANbHLIMU NAMMEPHAMU 6
OOHOM UMU HECKOAbKUX MUNAX KIemOK, HO OAfi NONHO20 NOHUMAHUA CNONCHOCMU Yel08eYecKOU KIemKu MOOenu OONHCHbL
Kaaccuguyuposams cmewanHble nammepHsbl 8 COOMBEMCMEUL C KOTULECMBOM PA3IUUHBIX THUNOE Yello8eHecKux Kiemok. B cmamve
chopmynuposana npobnema KiaccuQukayuu uU300padiceHuli 8 MeOUYUHCKUX ucciedosanusx. B osmou obnacmu axmusho
UCNONL3VIOMCA MEMOObL KIACCUPUKAYUU € UCNONbI0BAHUEM 2TYOOKUX CEEPMOYHBIX HelpOHHbIX cemell. [Ipedcmagnennas cmamos
Oaem Kpamxuil 0630p pasnuyHblx NOOX0008 U Meno008 No00bHO20 ucciedosanus. B kauecmee nabopa danmvix Gvln 63am «Human
Protein Atlas», npedcmasnsowuii mxanegylo kapmy npomeoma ueiogeka, cocmasierntyto 6 2014 200y nocne 11 nem ucciedosanuil.
Bce oanmnvie npogunuposanus sxcnpeccuu beixa odujedocmyntol 6 UHMEPAKMUGHOU 0a3e OAHHBIX, YMO NO3680JIs1em UCCIe008amb
npomeom uenosekda Ha MKaHesoU OCHoge. Bvli npousseden awanuz pabom u Memooos, Komopwle ObliU UCHONb308AHBL 8 X00e
uccnedosanus. /lna peuwteHus 3moii 3a0ayu npedodtceHa Mooeisb 2nyO0Koll HEeUPOHHOU cemu ¢ Y4emom XapaKxmepucmux 0oMeHa u
uccnedyemoti 8v100pku. Moodensv HelipoHHOU cemu OcHosana Ha apxumekmype Inception-v3. Ilpoyedypa onmumusayuu cooepicum
KOMOUHAYUIO HECKONbKUX MEmo008 Ol OblCmpOll CXOOUMOCMU. CMOXACIMUYECKUll 2PAOUEeHMHbIIL CNYCK C  Nepe3anycKamu
(usmeHeHue ckopocmu 06VYeHUs ONf USVYEHUS DASTUYHBIX JOKATbHLIX MUHUMYMOB), NpOSPEeCCUsHOe U3MEHeHUue pasmepa
uzobpasicenus (obyuenue HauuHaemcs: ¢ HeOOILUIO2O paspeuleHus U nociedogamenvHo yeeaudusaem xadxcovii yuxn SGDR). Mot
npeonazaem Hoguvlil Memoo evlbopa nopoea 0na mepvl Fl. Paspabomannas mooens modxcem Oblmb UCNONb308AHA Ol CO30AHUS
npubopa, UHMezPUPOBAHHO20 8 MEOUYUHCKYVIO CUCTeMY UHMELNEKMYAIbHOU MUKPOCKONUU, Ol ONpeoeneHUst MeCmONOIONCEHUs.
6enKa no 8blcOK0IPHEKMUBHOMY U300PANHCEHUTO.
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