Herald of Advanced Information Technology 2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

UDC 004:37:001:62

Vladimir V. Vychuzhanin', Doctor of Technical Sciences, Professor, Head of the Department of Infor-
mation Technology, E-mail: 126.ist.onpu@gmail.com, Scopus ID: 57193025809, ORCID:
http://orcid.org/0000-0002-6302-1832

'Odessa National Polytechnic University, Shevchenko Avenue, 1, Odessa, Ukraine, 65044

ON THE CONSTRUCTION OF A SOFTWARE ARCHITECTURE FOR
NUCLEAR SYSTEMS ON A CRYSTAL

Annotation. The article discusses how to build software architecture for multi-core systems on a chip (SoC), based on asym-
metric and symmetric multiprocessing, the hypervisor. Asymmetric multiprocessing is a port for several operating systems on physi-
cally separate processor cores. In symmetric multiprocessing in systems with core isolation, one OS is launched on several cores.
OS SMP- system is ported without user intervention with a growing number of cores. Since all cores are managed by a single OS,
message transfer between cores can occur at the L1 data cache level, providing faster communication with less jitter. Kernel isola-
tion allows you to reserve a kernel for a hard real-time application, protecting it from the influence of other high-performance ker-
nels, which for the software architecture allows you to select your operating system without creating low-level software when man-
aging multiple operating systems. The hypervisor refers to a low-level software system. It manages several independent operating
systems that are at a higher level. Developing multi-core systems-on-chip offerings focused on the embedded market are well suited
for asymmetric multiprocessing configurations. This architecture is useful for developers who use the performance of a real-time
operating system in combination with a diverse set of Linux kernel functions. The article discusses the software and hardware solu-
tions contained in the XAPP1079 environment, which are required to run Linux on a single Zyng-7000 All Programmable system on
a chip, and open source applications on the second core. Designing systems based on systems on a chip for high-performance and a
real-time applications requires an optimal solution taking into account the factors: data transfer time; separation of the operating
system. A system solution for high-performance and real-time applications using a symmetric multiprocessor processing architecture
with kernel isolation provides low latency, jitter and real-time system operation, while maintaining software SoC scalability. Pro-
grammable logic integrated circuits containing multi-core subsystems have an efficient architecture with symmetric multiprocessing
of data to ensure a compromise between the actual data transfer time and the low latency of their processing. The advantages of
using symmetric multiprocessing manifest themselves if the load is distributed among several resources. In this case, the time re-
quired to complete the task is reduced. However, the performance gain brought about by a simple multiplication of the number of
performers will not necessarily be linear. Some tasks should be performed only sequentially. Multi-core systems are able to process
packages much more efficiently than single-core ones - but only if they are managed by optimized software. It is expedient to develop
multi-core computing software, including an OS with support for symmetric and asymmetric multiprocessor data processing archi-
tectures, an embedded hypervisor, high-speed packet processing modules, and an exhaustive set of tools for the entire cycle of multi-
core computing systems. The results of such development will find application in multiprocessor supercomputers and server applica-
tions, in terminal devices, access aggregators and basic devices - where the highest throughput is required.

Keywords: multi-core system on chip; asymmetric multiprocessing; symmetric multiprocessing; programmable logic integrat-
ed circuit.

Introduction

Multi-core processors provide an increasing
level of performance and scalability required for
network equipment, control systems, and many other
embedded applications.

The use of multi-core processors as specific so-
lutions for specific types is based on common crite-
ria for evaluating the effectiveness of a given solu-
tion. Four such criteria can be distinguished: config-
urability; portability; scalability; performance.

Configurability allows you to determine how
easy it is to: configure the system for a specific de-
vice; switch to a new device configuration without
the need for a complete revision of the system set-
tings — boot, initialization / launch; what operating
system problems are associated with this. Portability

© V. Vychuzhanin; 2019

refers primarily to portability of applica tions, and to
some extent to the operating system used. Scalability
includes consideration of the possibilities of switch-
ing to a larger number of cores, which is associated
with higher performance multi-core processors.

Multi-core computing technology is firmly es-
tablished in the network device architecture.

The main prerequisites for the use of multi-core
processors in network equipment are closer integra-
tion of functions and performance gains due to the
use of more advanced traffic processing techniques
[1; 2].

Known methods of constructing software archi-
tecture for multi-core systems on a chip (SoC) are
based on asymmetric and symmetric multipro-
cessing, the hypervisor.

Multi-core SoCs are used to run basic operating
systems (OS), as well as for high-speed data pro-
cessing [3-10]. SoC software often consists of mul-

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Theoretical aspects of computer science,

ISSN 2663-0176 (Print)

programming and data analysis 11

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

tiple applications — from real-time systems to high-
throughput systems.

Such hybrid system solutions are becoming
more complex as modern SoCs are increasingly used
in high-performance systems with a large number of
processor cores and high-speed interconnects.

Providing a hard real-time mode (response of
the order of a few ps and jitter no more than 1 ps) in
high-performance systems requires careful selection
of possible solutions to such a problem.

Formulation of the problem

Increasing the number of cores in the SoC re-
quires solving problems related to the choice of
hardware, as well as software that takes into account
the optimal ratio between the actual data transfer
time and the low latency of their processing.

Analysis of recent research and publications

Currently, the developer can use three ap-
proaches to implement a hybrid system based on
SoC: asymmetric multiprocessing AMP (Asymmet-
ric Multi-Processing,), hypervisor solution and
symmetric multiprocessing SMP (Symmetric Multi-
Processing) with core isolation [1-10].

AMP is a port for several operating systems on
physically separate processor cores. For example,
launching an OS of bare metal class specifically de-
signed for solving real-time tasks on one core, and
running a full OS, for example, Linux, on other
cores.

The complexity level increases with the transfer
of messages between the OS, when memory sharing
and management are required along with other secu-
rity measures.

Since the cache memory is not shared between
different operating systems, it is necessary that the
transmission of messages is not performed through
the cache area (increases delay and jitter).

In addition, this is inefficient software architec-
ture in terms of scalability, since reporting is re-
quired as the number of cores increases.

The hypervisor refers to a low-level software
system. It manages several independent operating
systems that are at a higher level.

Although the initial porting in this case is simi-
lar to the AMP system, the advantage of the hyper-
visor is that it eliminates the need to solve non-
trivial resource management and messaging tasks.

On the other hand, the disadvantage of the hy-
pervisor is that it increases the overhead due to the
additional level of software, which reduces system
capacity and performance in real time.

In SMP systems with kernel isolation, one OS
is launched on several cores. OS SMP-system is
ported without user intervention with a growing
number of cores. Since all cores are managed by a

single OS, message transfer between cores can occur
at the L1 data cache level, providing faster commu-
nication with less jitter. Kernel isolation allows you
to reserve a kernel for a hard real-time application,
protecting it from the influence of other high-
performance kernels, which for the software archi-
tecture allows you to select your operating system
without creating low-level software when managing
multiple operating systems.

Initial porting in SMP systems is difficult when
using multiple operating systems.

However, this can be significantly reduced if
porting begins with an SMP architecture.

If you need deterministic execution of programs
in real time, for example, when visualizing multime-
dia data, the possibilities of highly symmetrical pro-
cessing are very limited.

A situation may arise when applications run-
ning on different kernels access the same OS re-
source. In this case, access will receive only one of
the cores.

The remaining cores will be idle until the re-
lease of the critical area. Naturally, the performance
of real-time applications is sharply reduced. SMP
architectures implemented on an OS with a mono-
lithic core, such as Windows CE, are primarily vul-
nerable.

Properly used OS with SMP support allows you
to use the benefits of SMP, without requiring the use
of specialized APIs or programming languages.

Developers have used the POSIX standard (in
particular, the API) for many years in high-
performance SMP environments.

But in practice, these implementations have
been proven only for a small nhumber of processors
or cores (4-8). A well-designed SMP OS allows you
to run threads in an application at the same time on
any kernel.

This concurrency makes all chips processing
power available for applications at any time. In actu-
al practice, SMP works best with “CPU/Execution
bound” model processing. I/O delays tend to disrupt
the linear increase in SMP performance on several
cores.

This is because SMP is designed to exploit po-
tential parallelism in load sharing software. Specific
1/0O operations for input data streams are not parallel
in time.

They are parallel in “space”, i.e. Separate appli-
cations are required for each data stream that is not
individually subject to “parallel operation”.

Since one OS controls each core in the SMP
system, all inter processing (IPC) between the cores
is considered “local”.

Theoretical aspects of computer science,

12 programming and data analysis

ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

This improves performance because the system
does not require a special IPC protocol to provide
communication between applications running on
different cores.

Thus, there is no specific IPC requirement for
IPC to work effectively in an SMP environment.

Resource allocation in SMP is a concurrency
problem. In the SMP system, all resources, including
memory, are shared and managed by the OS.

However, if applications use a shared memory
access model, then by definition, built-in security
measures to ensure that different parts of the appli-
cation cannot access these shared resources at the
same time.

This is the main problem that underlies the so-
called problem of “parallelism” in multi-core sys-
tems.

Typically, applications developed for a proces-
sor model should not be associated with concurrent
access to shared resources, since the two threads are
not executed simultaneously.

Despite this, there are well-understood scenari-
0s in uniprocessor constructions in which there is a
possibility of a “collision” between two threads, ac-
cess to shared data caused by the presence of a mul-
ti-threaded or multitasking operating system.

In these cases, developer’s use OS supported
mutates or semaphores that control access to shared
data or resources to prevent damage to shared re-
sources.

But in a multi-core SMP scenario, even these
defenses fail, since they only provide simultaneous
access resulting from OS multithreading.

AMP

Pro
+ Simple system software design
+ Concurrent execution of different uni-
processcr cperating systems
Contra

+ All operating systems need to be fully
trusted

+ External synchronization required to
access shared resources

* No support for multi-processing
within a single application

+ Difficult to manage with more than 2
cores

+ Distributed configuration

It follows from this that the SMP model is re-
quired so that all single-core applications are
checked for the presence of the necessary protec-
tions for all threads that use common data or re-
sources. Comparing AMP and SMP (Fig. 1)

When building hybrid systems based on SoC,
the developer faces the accumulation of jitter and
delays at the stages: data transfer to system memory
from input/output ports; when the processor detects
new data in the system memory; copying data into
its own memory; performing calculations on the da-
ta; copying the result back to system memory; when
transferring the results back to the 1/0 port. Since
jitter and delay accumulate at all the listed stages, it
is necessary to optimize each of them.

Purpose of the article

Providing a trade-off between real-time data
transfer and low latency processing in multi-core
systems on a chip based on the choice of the optimal
software architecture.

Justification of the choice of the method of
constructing software architecture for multi-core
systems on a chip

Embedded systems can be high performance,
but not working in real time [9]. There is a need to
choose a real-time operating system or select the
feature set of the Linux distribution, given its short-
comings. An alternative to this choice may be -
asymmetric multiprocessing.

SMP

Pro

* Only one trusted system software
layer

+ Better control of CPU activities

+ Support for multi-processing on
application level

+ Simpler synchronization between
partitions

+ Homogenous configuration
Contra
* Increased complexity in SMP OS

+ Performance decrease compared to
AMP for loosely coupled applications

+ Cache coherency required

Fig. 1. Comparing AMP and SMP

Theoretical aspects of computer science,

ISSN 2663-0176 (Ptint)

programming and data analysis 13

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

System Memory (DDR)

CPU 0 (Linux)
@
i 3
Latency 2
RPMSG 5
E.
= Remoteproc RPMSG

| VRING Buffers

CPU 1 (FreeRTOS)

Remoteproc

FreeRTOS

Joxo

Fig. 2. Structure of Linux-FreeRTOS AMP

Modern SoCs contain various types of proces-
sors, a wide range of standard peripheral 1/0 devic-
es, and programmable logic [11-23].

For example, Xilinx Zyng-7000 SoCs include
dual-core ARM Cortex-A9 processors, standard pe-
ripherals (Gigabit Ethernet MAC, USB, DMA, SD /
MMC, SPI and CAN) and a large programmable
logic array. Such SoC products can be the basis of
the Linux / RTOS AMP system, providing substan-
tial flexibility for the real-time OS [24-32].

A typical AMP configuration is similar to a
PCl-based system, where the Linux domain func-
tions as a host, the RTOS domain, functions as an
adapter, and one or more shared memory areas are
used for inter-domain communication. In addition,
the Linux / RTOS AMP system can dynamically
reconfigure programmable logic based on time re-
quirements for operation, taking into account the
presence or absence of various external devices.

The Linux drivers used are designed to control
the loading and unloading of AMP from the second-
ary processor. Fig. 2 shows the distribution of
VRING buffers containing messages arranged in a
specific structure.

The SMP core can function both on one core
and simultaneously on several cores (Fig 2).

The ability to dynamically control the number
of cores is the main reason AMP developers prefer
the SMP core to the UP core. Remote Processor
(Remoteproc) is a Linux component that provides

for starting and stopping individual cores (remote
processors), as well as loading kernel software in the
AMP system.

It is possible for the Linux OS infrastructure
used on the main processor to manage the life cycle
and communication with the software context on the
remote processor.

The Linux infrastructure has limitations, name-
ly, that Linux metal must be compatible at the API
level and have functional symmetry with its Linux
counterpart. The scheme of the software stack Multi-
core Framework and its use in RTOS is shown in
Fig. 3.

The Framework contains a well-abstracted
transfer level, consisting of the hardware interface
level and the OS abstraction level.

This allows users to transfer the Framework to
other processors and operating systems.

Fig. 3,b shows the remoteproc and rpmsg infra-
structure for the Linux kernel, which are kernel
space drivers.

Rpmsg implicitly assumes that Linux will al-
ways be the main OS and does not support Linux as
a remote OS in the AMP configuration. In addition,
the remoteproc and rpmsg APls are only accessible
from the Linux kernel space. There is no equivalent
API or library that can be used with other operating
systems.

For example, it is possible to dynamically re-
configure the SMP system shown in Fig. 4, in the

Theoretical aspects of computer science,

14 programming and data analysis

ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

AMP system shown in Fig. 5, and then returns to
SMP again, using the capabilities of remoteproc.

Full reconfiguration control is possible using a
user application or a system initialization script.

Reconfiguration management allows user ap-
plications to stop, restart, and start RTOS applica-
tions based on the dynamic needs of the system.

Kernel software (RTOS and user application) is
loaded from a standard Executable and Linkable
Format (ELF) file containing a section known as a
resource table. The resource table is similar to the
PCI configuration space.

These include the memory required for code
and RTOS data. Trace buffers are areas of memory
that automatically appear as files in the Linux file
system.

They provide basic traceability for a remote
processor that writes tracing, debugging, and status
messages to buffers, in which messages are available
for verification through the Linux command line or
custom applications.

The resource table can also be used to define
virtual input/output devices (VDEV), representing
pairs of shared memory queues that support message
passing between the Linux kernel and a remote pro-
cessor, as well as interrupt signaling between the
processors.

The Linux kernel initializes virtual 1/0O queues.

Software running on a remote processor includes
only the VDEV description in its resource table.

The remote processor messaging structure
(rpmsg) is a software messaging bus based on the
Linux kernel's Virtual 1/O system.

The exchange bus is similar to a local subnet in
which individual processors can create addressable
endpoints and exchange messages through shared
memory. The rpmsg framework acts as a switch,
routing messages to the appropriate endpoint based
on the recipient address contained in the message.

Since the message header contains the source
address; special connections between different pro-
cessors can be established.

For a Linux SMP kernel, this is a common
thing, and this means another reason that the SMP
kernel is preferred in AMP configurations.

Remote processor infrastructure manages inter-
rupts with minimal device driver support.

Multiprocessor kernel support is not limited to
homogeneous multiprocessor systems (systems us-
ing only the same type of processor).

All the functions described above can also be
used in heterogeneous systems (systems with differ-
ent types of processors).

For example, you can implement the PCB hard-
ware architecture (Fig. 6) on the Xilinx SoC Zyng-
7000, using one of the ARM processors as a control
processor and Xilinx MicroBlaze processors in pro-
grammable logic.

-~ T rd ™
Application Application
\ J
Char
\\ i ™, / device ﬁ\
Mentor Embedded Multicore Framework [MEMEF) Linux Kernel
.' [-
TRMsg
remoteproc RTOS remoteproc rpmsg user device
L | Virtlo platform driver driver
Or L A U
' ™ Bare-Metal P "
. Tpms
Porting Layer HIL e remoteproc —]
ent v
§) inlo]
&)) " J
A
™ T
Hardware [Hardware
b o
(@) (b)

Fig. 3. Multicore Framework in RTOS and Bare Metal Environments (a) and remoteproc and
rpmsg in the Linux kernel (b)

Theoretical aspects of computer science,

ISSN 2663-0176 (Ptint)

programming and data analysis 15

Herald of Advanced Information Technology 2019; Vol.2 No.1:11-23
Research and Modeling of Information Processes and Technologies

Linux (SMP)

Standard
/O

Fig.4. Structural diagram of SMP data processing

Linux (SMP) RTOS

Core 1
Remote Processor

Standard
110

Fig. 5. Migrating the SMP system to the AMP data processing system

Control CPU
(RTOS) SoC

=
B

Fig. 6. Implementation of PCB hardware architecture on SoC

Theoretical aspects of computer science,
16 programming and data analysis ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

Xilinx provides XAPP1079, which includes both
software and hardware solutions needed to run
Linux on one Zyng-7000 AP SoC processor core,
and open source applications on the second core
(Fig. 7).

The ARM processor can be used to run the
Linux SMP kernel (Fig. 8).

Adding Linux to the original design provides all
the standard multiprocessing functions described
above for both the ARM cores and the soft core pro-
Cessors.

It also has a wide range of Linux functions that
support various network interfaces (Ethernet, Wi-Fi,
Bluetooth), network services (web servers, FTP,
SSH, SNMP), file systems (DOS, NFS, cramfs, flash
memory) and others. Interfaces (PCle, SPI, USB,
MMC, video).

The Xilinx SoC Zyng-7000 provides two Cor-
tex-A9 processor cores [32-34] sharing common
memory and peripheral devices. AMP allows both
processors to run their own operating systems.

The reference circuit includes the hardware and
software necessary to create a reference design in
which both Cortex-A9 processor cores operate in
AMP configuration.

Measures were taken to prevent processor con-
flicts on shared hardware resources. To load and
debug the processor cores in the available templates,
select Zynq FSBL for AMP (Fig. 9).

,'. Linux User ‘
i Apps |

The optimal ratio between real-time deter-
minism and low latency data processing

Analysis of alternatives showed that SMP ar-
chitecture with core isolation provides the best solu-
tion for optimizing high-performance real-time sys-
tems based on SoC [35].

For a real-time OS, the system response time to
polling / interruption may lie in the nanosecond
range, and the time it takes to perform calculations
on the data depends on the application and is a fairly
predictable value.

There are two main ways to transfer data that
have different effects on DMA (Direct Memory Ac-
cess) time — transmission.

An example is the use of a source project based
on a development kit, for example, for a SoC Cy-
clone V [36-38] containing two nuclear subsystems
ARM Cortex-A9.

The basis of the array of programmable logic of
the PL Cyclone V family, unlike other families of
the Cyclone series, are adaptive logic modules (as
well as in the Arria and Stratix series).

In addition, the Cyclone V family of chips con-
tain digital variable-precision signal processing
units, embedded RAM blocks, high-speed transceiv-
ers, hardware IP blocks (PCI Express controllers and
external synchronous memory controllers), and pro-
ject protection against unauthorized copying and
modification.

ExecutableCode

Fig.7. Xilinx XAPP1079 structure

Theoretical aspects of computer science,

ISSN 2663-0176 (Ptint)

programming and data analysis 17

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

Software architecture includes:

» VXWorks real-time OS, running in SMP mode
on a dual-core ARM processor.

* The real-time application continuously per-
forms calculations on the data and sends the results
back to the 1/O port.

VxWorks real-time OS includes a multitasking
kernel, interprocess communication and synchroni-
zation tools, tools for cross-compiling, performance
monitoring.

The VxWorks operating system has, a client-
server architecture and is built in accordance with
the microkernel technology, i.e. at the lowest unin-
terrupted kernel level (WIND Microkernel), only
task scheduling and management of their interaction
/ synchronization are processed.

The rest of the functionality of the operating core
- memory management, | / O, etc. — is provided at a
higher level and implemented through processes.

This ensures the speed and determinism of the
kernel, as well as the scalability of the system.

VxWorks can be configured for small embed-
ded systems with strict memory constraints, as well
as for complex systems with advanced functionality.

Moreover, the individual modules themselves
are scalable.

Specific functions can be removed during as-
sembly, and specific nuclear synchronization objects
can be omitted if the application does not need them.

Although the VxWorks system is configurable,
i.e. individual modules can be loaded statically or
dynamically; it cannot be said that it uses a compo-
nent-based approach.

Core 0

(Linux SMP)

Internal Interconnect

Standard
I/0O

Internal Interconnect

Fig. 8. Running the Linux SMP kernel

Theoretical aspects of computer science,

18 programming and data analysis

ISSN 2663-0176 (Print)

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

"> New Project I |]

Templates

application project.

Available Templates:

Create one of the available templates to generate a fully-functioning

Dhrystone

Empty Application
Hello World

wiP Echo Server
Memory Tests
Peripheral Tests

li"d]

Iyng FSBL
Zyng FSBL for AMP [

< Back [et

- &

AMP Modified First Stage Bootloader »
(FSBL) for Zyng. The FSBL configures the
FPGA with HW bit stream (if it exists) and
loads the Operating Systermn (05) Image
or Standalone (5A] Image or 2Znd Stage
Boot Loader image from the non-volatile
memory (MAND/MNOR/QSPI) to RAM
(DDR) and starts executing it. |t supports
multiple partitions, and each partition
can be a code image or a bit stream.
MOTE: Modified add support for muttiple
files for AMP.

| Finish Cancel

| |

Fig. 9. Selection of a custom template FSBL

All modules are built above the base core and
are designed in such a way that they cannot be used
in other environments.

The VxWorks core has the following options:
— the number of tasks is not limited:;

— the number of task priority levels is — 256;

— task scheduling is possible in two ways - priority
preemption and cyclic;

— the means of task interaction are message

queues, semaphores, events and channels (for task
interaction within the CPU), sockets and remote
procedure calls (for network interaction), signals (for
managing exceptions) and shared memory (for data
separation);

— several types of semaphores are provided for man-
aging critical system resources: binary, computa-
tional (counting) and mutually exclusive with priori-
ty inheritance;

— deterministic context switching is supported.

On the experimental system [35] on the basis of
the SoC Cyclone V Kkit, the cycle completion time
and jitter were measured using various amounts of
transmitted data.

With intensive FTP traffic processing the sec-
ond core, after performing test runs, the delay was
reached at the pus level with less than 300-ps jitter.

An FTP application using both kernels was also
launched on VxWorks SMP [36].

At the same time the speed doubled.

Thus, when using the SMP method with kernel
isolation, the performance of the system during data
transfer is reduced.

In order to minimize the decrease in system
performance, it is necessary to find a compromise
between bandwidth and the solution of the real-time
support problem.

Conclusions

Designing a system based on SoC for high-
performance and real-time applications require an
optimal solution taking into account the factors: data
transfer time; separation of the operating system.

A system solution for high-performance and re-
al-time applications using an SMP architecture with
kernel isolation provides low latency, jitter, and real-
time system performance while maintaining soft-
ware scalability of SoC.

Theoretical aspects of computer science,

ISSN 2663-0176 (Ptint)

programming and data analysis

19

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

Programmable logic integrated circuits contain-
ing multi-core subsystems have an efficient architec-
ture with symmetric multiprocessing of data to en-
sure a compromise between the actual data transfer
time and the low latency of their processing.

The advantages of using SMP are manifested if
you distribute the load among several resources.

In this case, the time required to complete the
task is reduced.

However, the performance gain brought about
by a simple multiplication of the number of per-
formers will not necessarily be linear.

Some tasks should be performed only sequen-
tially.

Multi-core systems are able to process packages
much more efficiently than single-core ones - but
only if they are managed by optimized software.

It is advisable to develop multi-core computing
software, including an operating system with SMP
and AMP architectures, an embedded hypervisor,
high-speed packet processing modules, and a com-
prehensive set of tools for the entire development
cycle of multi-core computing systems.

The results of such development will find ap-
plication in multiprocessor supercomputers and
server applications, in terminal devices, access ag-
gregators and basic devices - where the highest
throughput is required.

References

1. Nepomniachtchi, O. V. (2008). “Verifica-
tion problems when designing systems on a crys-
tal”. [Electronic resource]. — Available at : http:
[Iwww.mrwolf.ru. Nauka_i_obrazovanie
Tochnye_nauki / 9644. — Active link : 07.12. 2017.

2. Mark Gunter. (2012). “Optimized Software
for Multi-Core Processors Provides Breakthrough
in network capacity”. In MKA: VC, No. 4, pp. 38-
47 (in English).

3. Putrya, F. M. (2009). Arkhitekturnyye oso-
bennosti protsessorov s bol'shim chislom vychislit-
el'nykh yader, [Architectural features of processors
with a large number of cores], In Information
Technology, No. 4, pp. 2-7 (in Russian).

4. Grles, M. (2005). “Building ASIPs. The
Mescal Methodology”, University of California at
Berkeley electronics research laboratory, 25 p.

5. Evans, D. J. & Margaritis, K. G. (1992).
“Algorithms for VLSI processor arrays”, In El-
ektroteh. Vestn. V. 59, No 2, pp. 61-67.
DOI.10.1016/0141-9331(93)90102-D.

6. Kung, S. Y. (1988). “VLSI Array Proces-
sors”, Prentice-Hall, Inc., 600 p.
DOI.10.1109/iscas.1988.14929.

7. Borkar, S., Cohn, R., & Cox, G. (1988).
“Parallel Computing”, Proc. Supercomputing ’88.
Kissimmee, pp. 330 — 339, doi.
10.1109/superc.1988.44670.

8. Eds. Ole-Johan Dahl, Edsger, W. Dijkstra, &
C. A. R. Hoare Dijkstra. (1972). “Notes on struc-
tured programming”, Structured Programming, Ac-
ademic Press, Publ., 88 p. DOI. 10.1007/978-3-
642-59412-0_19.

9. Ni, Nick. “Best practices for designing high-
throughput, real-time SoC systems”. [Electronic
resource]. — Available at : http:// www.embedded-
computing.com. — Active link : 07.12. 2017.

10. Shcherbakov, K. S., & Shcherbakov, S. A.
(2009). Tekhnologiya razrabotki vstroyennogo pro-
grammnogo obespecheniya dlya PLK. [Technology
of development of embedded software for PLC.]. In
News of Tomsk Polytechnic University, V. 315 (5),
pp. 28-32 (in Russian).

11. Palagin, A. V., & Yakovlev, YU. S. Oso-
bennosti proyektirovaniya komp'yuternykh sistem
na kristalle PLIS. [Features of designing computer
systems on a FPGA chip], In Mathematical Ma-
chines and Systems, No. 2, pp. 1-14 (in Russian).

12. Koch, D. (2013). “Partial reconfiguration
on FPGAs. Architectures, tools and applications”,
Springer-Verlag, 296 p.

13. Palagin, A. V. (2007). “Reconfigurable
computing technology”, In Cybernetics and Sys-
tems Analysis, Springer New York, V. 43(5), pp.
675-686. DOI.10.1007/s10559-007-0093-z.

14. Mentens, N. (2015). “Dynamic Hardware
Reconfiguration in Industrial Applications”, In Lec-
ture Notes in Computer Science, pp. 513-518.
D0i.10.1007/978-3-319-16214-0_47.

15. Evtushenko, N. D. “Methodology of design-
ing systems on a chip. Basic principles, methods”.
[Electronic resource]. — Available at : http:
Il'www.mriprogress. msk.ru/news.php@id=7. -
Active link : 07.12. 2017.

16. Bukhtev, A. (2004). Sistemy na kristalle.
Novyye tendentsii. [Systems on a crystal], New
Trends in Electronics NTB, No. 3, pp. 52-56 (in
Russian).

17. Bukhteyev, A. (2003). Metody i sredstva
proyektirovaniya sistem na kristalle, [Methods and
means of designing systems on a chip], In Chip
News, No. 4 (77), pp. 4-14 (in Ukraine).

18. Shagurin, I. “Systems on a crystal. Features
of implementation and prospects of application”.
[Electronic resource]. — Available at http:
http://www.russianelectronics.ru/leader-
review/2189/doc/40316/. — Active link : 07.12.
2017.

Theoretical aspects of computer science,

20 programming and data analysis

ISSN 2663-0176 (Print)

https://doi.org/10.1016/0141-9331(93)90102-D
https://doi.org/10.1016/0141-9331(93)90102-D
https://doi.org/10.1109/iscas.1988.14929
https://doi.org/10.1109/iscas.1988.14929
https://doi.org/10.1109/superc.1988.44670
https://doi.org/10.1109/superc.1988.44670
http://www.embedded-computing.com/
http://www.embedded-computing.com/
https://doi.org/10.1007/s10559-007-0093-z
https://doi.org/10.1007/978-3-319-16214-0_47
https://doi.org/10.1007/978-3-319-16214-0_47
http://www.russianelectronics.ru/leader-review/2189/doc/40316/
http://www.russianelectronics.ru/leader-review/2189/doc/40316/

Herald of Advanced Information Technology

2019; Vol.2 No.1:11-23

Research and Modeling of Information Processes and Technologies

19. Shagurin, I. I. (2006), Sozdaniye “sistem na
kristalle” na osnove PLIS s ispol'zovaniyem sinte-
ziruyemykh protsessornykh yader. [Creation of
“systems on a chip” on the basis of FPGA using
synthesized processor cores], In Problems of de-
veloping promising microelectronic systems: col-
lection of scientific articles. Scientific Tr, Moscow,
Russian Federation, IPPM RAS, pp. 382-385 (in
Russian).

20. Gorbunov, V. C. “Application of program-
mable reconfigurable schemes for solving problems
of processing large graphs™. [Electronic resource].
— Available at : http://www.Rosta.ru./GraphHPC-
2014 04 — Gorbunov.pdf. — Active link : 07.12.
2017.

21. Adamov, Yu.F. “Designing systems on a
chip”. [Electronic resource] — Available at
http://www.bmstu-
sm5.narod.ru/puchkov/puchkov_lec.pdf. .
link : 07.12. 2017.

22. (2017) “Route and method of designing a
system-on-chip controller chip for SD-cards of
standard SDHC” [Electronic resource] — Available
at http://www.Kit-
eru/artlcles/0|rCU|t/2012 11 154.php. - Active
link : 07.12. 2017.

23. Tarasov, I. “Systems on a chip based on
FPGA Xilinx FPGA with built-in PowerPC proces-
sors”. Part 2. [Electronic resource]. — Available at :
http: //kit-e.ru/articles/plis/2005_8 82.php. — Ac-
tive link : 07.12. 2017.

24. (2017). “Advantages of Xilinx 7 Series All
Programmable FPGA and SoC Devices”. [Electron—
ic resource]. - Available at :
http://www.ni.com/white paper / 14583 / en /. -
Active link : 07.12. 2017.

25. John A. “Carbone. RTOS devices with
downloadable app modules”. [Electronic resource]
— Available at : http: // www.eetimes.com/. — Ac-
tive link : 07.12. 2017.

26. Vychuzhanin, V. V. (2018). “Distributed
software package based on the APACHE SPARK
framework for processing streaming BIG DATA
from complex technical systems”, In Informatics
and Mathematical Methods in Simulation, V 8(2),
pp 146-155, (in Ukraine).
Doi.org/10.15276/imms.v8.n02.146.

27. Vychuzhanin, V. V. (2011). Povysheniye
kachestva peredachi vysokoskorostnykh signalov s
ispol'zovaniyem ustroystva na PLIS, [Improving
the quality of transmission of high-speed signals
using the device on the FPGA], In Modern elec-
tronics, No 5, pp 46-51 (in Russian).

— Active

28. Vychuzhanin, V. V. (2012). Primeneniye
PLIS dlya uvelicheniya propusknoy sposobnosti
ustroystv, [The use of FPGAs to increase the
bandwidth of devices], In Modern electronics, No
3, pp- 60-62 (in Russian).

29. (2018). “Zyng-7000 SoC. Technical Refer-
ence Manual”. [Electronic resource] — Available at
. http: // www.xilinx.com, 2018. — Active link :
01.12. 2018.

30. (2018). “Zyng-7000 SoC. Data Sheet:
Overview”. 2018. - DS190 (V1.11.1). [Electronic
resource]. — Available at : http: // www.xilinx.com.
— Active link: 01.12. 2018.

31. (2018). “Platform Zyng-7000. Another
round of innovation”. [Electronic resource]. —
Available at

http://www.russianelectronics.ru/developer-
r/review/2189/doc/57818/. — Active link :
2018.

32. Mario, Vestias, & Horacio, Neto. (2014).
“A many-core overlay for high-performance em-
bedded computing on FPGas”. In 1% International
Workshop on FPGAs for Software Programmers,
Munich, Germany, pp- 71 - 76.
Doi.org/10.1109/fpl.2014.6927483.

33. McDougall, John. (2014). “Simple AMP”.
In Bare-Metal System Running on Both Cortex-A9
Processors APP1079, (V1.0.1), 32 p.

34. Vychuzhanin, V. V. (2010). PLIS serii Cy-
clone s vstroyennymi apparatnymi transiverami.
[FPGA of Cyclone series with built-in hardware
transceivers], In Modern Electronics, No. 5, pp. 28-
33 (in Russian).

35. Ni, Nick. “Best practices for designing
high-throughput, real-time SoC systems”. [Elec-
tronic resource]. — Available at : www.embedded-
computing.com. — Active link : 07.12. 2017.

36. Smith, M. C., & Peterson, G. D. (2012).
“Optimization of Shared High-Performance Recon-
figurable Computing Resources”, In ACM Transac-
tions on Embedded Computing Systems, V. 11, pp.
1-22. D0i.10.1145/2220336.2220348.

37. Chakma, K. A. (2011). “Hierarchical
Scheduling Approach for Symmetric Multipro-
cessing Systems”. In Software Engineering, V.
1(1), pp. 61-65. D0i.10.7763/Inse.2013.v1.14.

38. Cyclone, V. (2018) “Hard Processor System
Technical Reference Manual”. [Electronic resource]
- Available at
https://www.intel.com/content/dam/www/ programma—
ble/us/en/pdfs/literature/hb/cyclone-v/cv_54006.pdf. —
Active link : 01.12. 2018.

Received 18.12.2018

01.12.

Theoretical aspects of computer science,

ISSN 2663-0176 (Ptint)

programming and data analysis 21

Herald of Advanced Information Technology 2019; Vol.2 No.1:11-23
Research and Modeling of Information Processes and Technologies

'Buuy:kanin, Borogumup BukropoBu4, 10KTOp TeXxHiu. Hayk, npodecop, 3aBixyBay kad. indopmariiiui
texuounorii, E-mail: 126.ist.onpu@gmail.com, Scopus ID: 57193025809,
ORCID: http://orcid.org/0000-0002-6302-1832

'Onechkuii HaLliOHABHUIA TTONTITEXHIYHKI yHiBepeuTer, np. [lleBuenka, 1, Oneca, Ykpaina, 65044

PO MOBYJIOBY IMMPOI'PAMHOI APXITEKTYPH JIJISI BATATOSAIEPHUX
CUCTEM HA KPUCTAJII

Anomauia. Y cmammi posensimymi cnocobu no6yoosu npospamuoi apximexmypu 011 6a2amosoepHux cucmem Ha Kpucmanii
(SoC), ocHno-6amHi Ha acumMempuuyHOlO I CUMEmMPUUHOW Oazamonpoyecopuoi 00pobKu, cinepsizopa. Acumempuuna
MHO20NPOYECCOPHAsL 0OPOOKa A6ASE cOO0I0 NOPM OISt OEKIIbKOX ONEPAYIUHUX CUCmeM Ha I3UUHO OKpeMUX npoyecopHux aopax. ¥
cumempuyHit bazamonpoyecoproi 06pobKku 6 cucmemax 3 izonayicto s0ep 3anyckaemvcsi 00na OC na dexinvkox sopax. OC SMP-
cucmemu nopmyemocs 6e3 yuacmi Kopucmyeaya npu 3pocmaiouiil xinexocmi sioep. Ockinbku @ci s0pa niokopsomucsi oouiti OC,
nepeoaua coobuje-nuii Midic sopamu modice 8iodysamucs na pieni L1 kewa oanux, 3a6e3neuyiouu Oinbil WeUOKUL 36" 930K 3 MEHWUM
Oorcummepom. I3015yis 20pa 0038075€ 3apezepsysamu A0po Ol 3CMOCYBAHHS HCOPCMKO20 PEAbHO20 YAcy, 3aXuuarodu oo io
SNIUBY [HUWUX BUCOKONPOU3BOOUM-HUX S0ep, WO 0N npocpamHoi apximexkmypu 0036ois€ subpamu euxopucmogyeany OC, e
CMBOPIOIOYY NPOSPAMHe 3a0e3neyenHs HU3bKo20 pieHs npu ynpaeninui Oexinokoma OC. [unepeuzop eioHocumbcsi 00 cucmemu
HU3bK020 Npocpamnoz2o pisns Bow ynpasnse Oexinokoma uezanexchumu OC, wo 3Haxo0sambcs Ha Oiibul BUCOKOMY PDIGHI.
Bacamosnoepni nponosuyii cucmem na xpucmani, opienmogani Ha 60y008aHuli PuHOK, 0obpe nioxodamv Onsi KoHupieypayil 3
acumempuunoio bacamonpoyecopnoi 06pobroro. Ilodibna apximexmypa Kopucha po3pOOHUKAM, WO BUKOPUCIOBYIOMb
NPOOYKMUBHICMb ONepayiiinoi cucmeMmu peanbHo20 Yacy 6 NOEOHAHHI 3 PI3HOMAHIMHUM Habopom @QyHKyil sopa Linux. ¥ cmammi
po3ensHymi npoepamui i anapamui piuienns, wo micmamocs 6 cepedosuugi XAPP1079, neobxioni ons 3anycky Linux na oonomy
npoyecopromy sopi Zyng-7000 All Programmable cucmemu na kpucmani, i 000amu 3 8iOKpUmuM GUXIOHUM KOOOM HA OPy2OMy
sa0pi. Ilpoexmysanns cucme-mu Ha 6asi cucmem Ha Kpucmani 0N GUCOKONPOOYKMUGHUX 000AMKI6 I 000AMKI8 peanibHO20 4acy
BUMAAE ONMUMATBLHO2O DIWENHsl 3 YPAXY8aHHAM (axmopie: yacy nepeoayi OaHux, nooiry onepayitinoi cucmemu. Cucmemue
piwenns 0sl BUCOKONPOOYKMUBHUX 000amKi6 | 000AMKI6 peanrbHO20 Yacy 3 GUKOPUCHIAHHAM CUMEMPUYHOIO 6azamonpoyecopHoi
apximexmypu o6podKu oanux 3 i301ayi€ero s0pa 3abe3nedye Mani 3ampumku, oxcummep i pobomy cucmemu 8 pe-dcumi peanbHo2o
uacy, 3bepiearouu npu yvomy npocpamuy macuimabosanicmo SoC. Ilpoepamosani nociuni inmezpanvhi cxemu, sKi Micmsmo
b6acamosidepni niocucmemu, MarOmob epeKmuHol apxXimekmypolo i3 CUMempuyHolo 6a2amonpoyecopHoi 06pobKolo danux Ol
3a0e3neuents KOMIPOMICY MIdC PeanrbHuM 4acom nepeoaui Oamux i Manow 3ampumkoio ix obpobku. Ilepesacu uxopucmamisi
cumMempuyHolo 6azamonpoyecoproi 00poOKU NPOAGNAIOMbCA, AKWO POZNOOLIUMU HABAHMAMCEHHA MIdC OeKilbKoma pecypcamu. ¥V
yvoMy cry-uai wac, HeoOXiOnuil Onsi BUKOHAHHA 3a60aHHA, 3meHutyemovcs. OOHaK npupicm npooyKmMueHOCHI, Wo NPUBHOCUMbC
NPOCUM MHOJMCEHHAM YUCIA BUKOHABYIE, He 0008'513k060 OyOe niniuHum. [leski 3a60aHHA NOSUHHI SUKOHYEAMMUCA MINbLKU
nocnioogno. bazamosdepui cucmemu 30amui 06podIAMU nAKemy 3HAYHO epexmueHiule 0OHOSIOEPHUX - e MINbKU 3d YMOBU, WO
HUMU Kepye ONnmumizamopa-3ipoeannum npozpamue 3abesnevenns. Joyinbhoio € pospobka npocpamnozo 3abe3nevyeHHs
bazamosndeprux obuucieny, skuio-uarouezo OC 3 NIOMPUMKOIO CUMEMPULHOIO | ACUMEMPUYHOIO 6aA2amonpoyecopHoi apXimexkmypu
006pobKu danux, 66y008aHULL 2UNEPEU3OP, MOOYIL UWBUOKICHOI 0OpOOKU nakemis, a maxkodic GuyepnHuLl Habip iHcmpymenmapiio s
6Cb020 YUKTLY PO3POOKU 6a2amosdepHux 0OuUCTIO8anbHUx cucmem. Pesynomamu makxoi pospobku 3Hauoyme 3acmocy8aHHs 6
bazamonpoyecopHux CynepkoMn'tomepax i CepeepHux NPU-nOLOMHCEHHSX, 6 KIHYe8UX NPUCMPOAX, azpe2amopax 0oCmyny i 6a308ux
npUCMposix - mam, oe NompiObHO HANOLIbUA NPONYCKHA 30ANHICb.

Knrouosi cnoea: mnozosdepnas cucmema Ha Kpucmaii, acumempuuna 6a2amonpoyecopra o6podKa Oanux, cumempuiHd
bazamonpoyecopra obpobKa 0aHux, NPOSPAMOBAHA NOIYHA IHMESPATIbHA CXeMd

'Boruy:xanun, Biaagumup BUKTOpOBHY, JOKTOp TEXHHUECKHX HAYK, podeccop, 3aB. Kad.
uH(OPMAIMOHHBIX TexHomorui, E-mail: 126.ist.onpu@gmail.com, Scopus ID: 571930258009,

ORCID: http://orcid.org/0000-0002-6302-1832

YOnecckuii HAMOHATBHBINA MONTUTEXHHYECKUIT yHuBepcurer, mp. [lleBuenko, 1, Onecca, Ykpauna, 65044

O IMIOCTPOEHUU TPOTPAMMHOWM APXUTEKTYPHI JIJISI MHOT'OSIJIEPHBIX
CUCTEM HA KPUCTAJIJIE

Annomayun. B cmamve paccmompenvl cnocobbi NOCMPOeHUs NPOZPAMMHOU apXUMEKMypbl Ol MHO20SIOEPHbIX CUCHIEM HA
kpucmanne (SoC), OCHOSaHHbIE HA ACUMMEMPUYHOU U CUMMEMPUYHOU MHOLONPOYECCOPHOU obpabomke, 2unepgusope.
Acummempuynas mHoeonpoyeccopras obpabomka npeocmasisiem coOol Nopm Onsl HECKONbKUX ONEPAYUOHHBIX CUCTHEM HA
usuuecku 0moenbHbIX NPOYECCOPHBIX AOPAX. B cuMMempuyHol MHO2ONPOYecCoOpHOU 06pabomK 8 cucmemax ¢ uzonsyuell 10ep
sanyckaemcs oona OC Ha neckonvkux aopax. OC SMP- cucmemvl copmupytomces 6e3 yuacmus no1s306ames npu pacmyujem ducie
s0ep. Tlockonvky ece siopa ynpasnsiromesa oououi OC, nepedaua coobwenuli Meicoy A0pamu Mojicem npoucxooums na ypoghe L1
Koua OauHwix, obecneyusas b6onee ObICMPYIO C853b C MeHbuUM Oxcummepom. HMzonayus a0pa no3gonsiem 3ape3epeuposams 10po
Ol NPUTONHCEHUS HCECMKO20 PEAbHO20 8PEMEHU, 02PANCOAs €20 OM BIUAHUA OPYUX BbICOKONPOU3BOOUMENbHBIX A0ep, 4mo OJis
NpoSpamMMHOl apxumekmypel no3gonsem avlopams ucnoavzyemyto OC, ne coz0asas npozpammmoe obecneuenue HUK020 ypoGHs npu

Theoretical aspects of computer science,
22 programming and data analysis ISSN 2663-0176 (Print)

https://www.scopus.com/redirect.uri?url=http://www.orcid.org/0000-0002-6302-1832&authorId=57193025809&origin=AuthorProfile&orcId=0000-0002-6302-1832&category=orcidLink
https://www.scopus.com/redirect.uri?url=http://www.orcid.org/0000-0002-6302-1832&authorId=57193025809&origin=AuthorProfile&orcId=0000-0002-6302-1832&category=orcidLink

Herald of Advanced Information Technology 2019; Vol.2 N0.1:11-23
Research and Modeling of Information Processes and Technologies

ynpasnenuu Heckonvkumu OC. T'unepsuzop omHocumcsi, K cucmeme HU3K020 NpopammHo2o yposus. OHa ynpasisiem HeCcKOIbKUMU
nezasucumvimu OC, Haxoosuumucs Ha 6oiee 6blCOKOM YpoeHe. Pazsusarowjuecs MHO20510epHble NPEONIONCEHUS CUCmeM Ha
Kpucmainie, OpUEHMUPOBAHHbIE HA BCMPOEHHLIL PBIHOK, Xopowo nooxoodam 01 KOHQueypayuii ¢ ACUMMEMPUYHOL
MHO2onpoyeccopHotl obpabomxou. Ilo006Has apxumexkmypa noie3Ha paspabomyuxam, UCHOTb3VIOWUM HPOU3BOOUMETbHOCHIb
ONEPAYUOHHOU CUCMEMbl DeANibHO20 8PEMEHU 6 COYEmAHUU C pPasHooOpasHblM Habopom @yukyui sopa Linux. B cmamve
PAccMompervl npoSpamMmHble U annapamuvle peutenus, cooepacauuecs 6 cpede XAPP1079, neobxodumvle Ona 3anycka Linux na
00HoM npoyeccoprom siope Zyng-7000 All Programmable cucmemvl Ha Kpucmasie, u RPULONCEHUSL C OMKPLIMBIM UCXOOHBIM KOOOM
Ha emopom siope. IIpoexmuposarue cucmemvl Ha H6aze cucmem Ha KpUcmaiie Oisl BbICOKORPOU3B0OUMENbHbIX NPULONCEHUL U
NPUTIOJNCEHUTL PEATbHO20 8PEMEHU MPeyen ONMUMAIbHO20 PEUEHUs. C YUemoM (aKmopos: epeMeru nepedaiu OAHHbIX, pa30eieHus
onepayuonHot cucmemvl. CucmemHoe pewienue sk 8blCOKONPOU3E0OUMENbHBIX NPULONCEHULL U NPUTOHCEHUTL PEAIbHO20 6PEMEHU C
UCNONb306AHUEM CUMMEMPUYHOU MHOZONPOYECCOPHOU APXUMEKNYPbl 06pabomKY OAHHBIX ¢ U30IAYUel A0pa obecneyugaem Mabie
3a0epoicKy, Odcummep U pabomy CUCEMbL 8 PeNCUMe PealbHO20 6PEMEHU, COXPAHAS NpU SMOM NPOSDAMMHYIO
macumabupyemocms SoC. IIpoepammupyemvie 02UYecKue UHMESPATIbHbIE CXeMbl, COOepiicaujie MHO20SI0epHble NOOCUCTEMD,
obnaoaiom 3pghekmusnol apxumexmypoi ¢ CUMMEMPUHHOU MHO2ONPOYECCOPHOU 00pabomKol Oanubix O o0becneyeHus:
KOMNPOMUCCA MENCOY PeanbHbIM BpeMeHeM nepedayu OaHHbIX U MALoU 3a0epickoll ux obpabomxu. Ipeumywecmea ucnonv3o6anus
CUMMEMPUUHOU MHO20NPOYECCOPHOU 0OPAbOMKY NPOAGIAIOMCS, eCii paAcnpeOeums HAsPy3Ky MeNCOy HECKOTbKUMU pecypcamu. B
9moMm cryuae epems, mpedyemoe 0isi GbINONHeHUs: 3a0auu, ymenviuiaemcs. QOOHAKO NPUPOCH NPOU3E0OUMENTLHOCHIU, NPUBHOCUMbLIL
APOCMbIM YMHOMCEHUEM YUCIA UCNOTHUMEeNel, He 00s3amenvHo Oydem nuHetinoiM. Hexomopvie 3a0auu OONICHbL GbINOTHAMbCSA
MObKO nociedosamenvho. MHo2os0epHbie cucmembl CHOCOOHbL 0Opabampieamv NAKembl 3HAYUMETLHO 3pghexmusnee
OOHOSIOEPHBIX - HO MOILKO NPU YCIOGUL, YMO UMU YIPAGISLem ONMUMUUPOSAHHOe npoepammHoe obecneuenue. Llenecoobpastoti
AGIAEMCSL pA3pAOOMKA NPOSPAMMHO20 00eCneueHusi MHO20S0epHbIX ebluucienutl, exmouaioweo OC ¢ noddepiuckoil
CUMMEMPUUHOU U ACUMMEMPUYHOU MHOZONPOYECCOPHOU ApXUMeKmyp — 06pabomku OAHHbIX, 8CIMPAUBAEMBbIIL 2UNEPEU30pP, MOOYIU
CKOPOCMHOU 00pabomK NAKemos, a MAKdice UCUEPNbISAIOWUIl HABOP UHCMPYMEHmMAapus Ol 6Ce20 YUKIA pa3pabomKu
MHO20SI0EPHbIX GbIYUCIUMENbHBIX cucmeM. Pezynomamvl makotl paspabomku HAiloym npuMeHeHue 6 MHOLONPOYEeCCOPHBIX
CYNEPKOMNBLIOMEPAX U CEPEEPHBIX NPUTONCEHUSX, 6 OKOHEUHbIX YCMPOUCMBAX, azpe2amopax 00Cmyna u 6a306bix YCmpoucmeax -
mam, 20e mpebyemcs HaubOIbWAS NPONYCKHASL CHOCOOHOCTD.

Kniouesvte cnosa: mHo2050epHas cucmema HA KPUCMALIE, ACUMMEMPUYHAS MHO20NPOYECCOPHAs 0OpabomKka OaHHbIX,
CUMMEMPUUHASL MHO2ONPOYECCOPHAS. 0OPADOMKA OGHHBIX, NPOSPAMMUPYEMASL IOUYECKAS. UHMESPANbHASL CXeMd

Theoretical aspects of computer science,
ISSN 2663-0176 (Ptint) programming and data analysis 23

	5. Evans, D. J. & Margaritis, K. G. (1992). “Algorithms for VLSI processor arrays”, in Elektroteh. Vestn. V. 59, No 2, pp. 61-67. Doi.10.1016/0141-9331(93)90102-D.

