Herald of Advanced Information Technology 2020; Vol.3 No.1: 406-417

Design of Computer Systems, Networks and their Components

UDC 004.6

Oleksandr K. Teslenko?!, Candidate of Technical Sciences, Associate Professor of System Software and
Specialized Computer Systems Faculty, E-mail: teslenko@scs.kpi.ua, ORCID: 0000-0002-5891-4345
Maksym Y. Bondarchuk?, PhD student of System Software and Specialized Computer Systems Faculty, E-
mail: bondarchuk.m.y@gmail.com, ORCID: 0000-0002-4861-6627

!National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave.,
Kyiv, Ukraine 03056

IMPLEMENTATION OF ARBITRARY BITNESS PERMUTATIONS IN ONE OF THE
CLASSES OF LINEAR STRUCTURES

Abstract: Speed of transformation and simplicity of implementation are one of the key contributors in permutation researches.
The paper reviews the implementation of arbitrary bitness permutation in the field of computer engineering on one of the classes of
combination structures of linear complexity from the number of variables — one-dimensional cascades of structural units. The fact
that the reflection formed by the specified linear structure is completely the same as the reflection of the corresponding Mealy finite
state machine as a prototype of the structural module of the cascade is used. This allowed us to explore the properties of structural
units and the cascade as a whole in the context of the concepts of the theory of digital automata. The implementation of arbitrary
bitness permutations is based on usage of the connected graphs for state table and on usage of unique combinations without repeats
for each row of output table. The purpose of this permutation is to convert large volumes of data in fast and simple way using
hardware or software with the ability to be used in multiple areas of researches. The study of providing the bijectivity of the
reflection and the equivalence analysis of permutations was performed. The algorithm of construction of finite-state machines for
implementation of direct and inverted permutations is shown, as well as examples of state and output tables construction. Examples
of hardware implementation using field-programmable gate arrays are given. The size of state and output tables for the software
implementation is estimated. The number of unique bijective reflections and amount of key information for the investigated
permutation in cryptographic transformations has been estimated. The theoretical speed of transformations of the bijective reflection
is estimated for both field-programmable gate arrays and software implementation according to the modern indicators of types of
computing devices memory speed. The practical verification of processing speed is made with software implementation. Areas of
application of the investigated arbitrary bitness permutation are proposed.

Keywords: permutation functions; structural synthesis of finite state machines; Mealy machine; bijective reflection; field-
programmable gate arrays

Introduction such implementation of permutation gives the

Permutations (substitutes) are considered as
functions of a single variable that provide a bijective
reflection of input data at the output. Permutations
are used when considering theoretical questions in
different sections of mathematics (e.g. finite group
theory, finite fields, combinatorics, etc.), and in
practical development (for example in cryptographic
transformation). Despite the considerable results of
studies of permutations in mathematics [1], in
computer engineering the implementation of
substitutions has been studied to a lesser extent. In
mathematics it is ordinary to characterize
permutation by its degree — the number of elements
of the input (output) set. In computer engineering,
permutation can be characterized by the bitness b of
the binary input data. In this case the degree of
permutation is 2°. The purpose of the work is
creation and research of hardware and software
means for implementation of permutations of
arbitrary bitness. The problem is cost optimization
and processing time while ensuring that the values
of the result bits depend on all the input data bits, or
at least on all previous input data bits. The usage of

© Teslenko, O. K., Bondarchuk, M. Y., 2020

prospect of increasing efficiency in creating various
data transformations in one or another criterion set.

Analysis of recent scientific publications and
achievements

Hardware implementation methods of limited
bitness permutations have been investigated in a
number of papers [2-4] in particular [3] and [4] have
the implementation results for any 8-hit
permutations, as well as for 8-bit permutations class
with special properties, both made on field-
programmable gate arrays (FPGA). The software
implementation of permutations of a limited bitness
is simple and is used in cryptographic
transformations [5-6]. The considered papers
investigate the “permutation-implementation”
approach: one or another class of permutations is
formed and then the implementation of permutations
of this class is determined. [7] proposes
“implementation-permutation” approach to the
implementation of permutations, which could be

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

406

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406417

Design of Computer Systems, Networks and their Components

described as follows: determines the linear
complexity combinational structure from the bit of
the input data, one-dimensional cascade of
structural units (OCSU), and defines the
classification of such structures: the classes of the

simplest, simple, complex, unidirectional,
bidirectional and regular.
Obviously, it is theoretically possible to

implement permutations of arbitrary bitness with
OCSU. This raises the following tasks: what should
be the structural unit (SU) and how many and what
permutations can be implemented on the OCSU of
the appropriate class? In general, these problems
are not solved.

The [8] shows that with the simplest
unidirectional regular OCSU, 48 different
substitutions of arbitrary bitness (with 22 degree)
(b > 1) can be implemented by changing the SU.
850 simple substitutions with 2P degree (b > 1)
can be implemented on the simplest bidirectional
regular OCSU, as presented in [9]. The significant
increase in the number of different permutations
with a slight complication of OCSU allows
predicting the effect-tiveness of further
complications.

Problem formulation
This paper discusses the implementation of

arbitrary bitness permutations in the class of
unidirectional complex regular OCSUs. The
structural unit of the cascade consists of two
combination schemes: the first one implements the
value of signals at the primary outputs, and the
second one implements the value of the signals at
the side outputs. The inputs of both combination
circuits receive signals from the primary and side
inputs of the SU (Fig. 1) Obviously, this class of
OCSU implements the reflection of the input data,
which is the same with the reflection of the input
sequences of the corresponding Mealy finite-state
machine (FSM or FSA - finite-state automata).
This allows us to use the automata theory [10] to
solve the following problems:

1) define combinational circuits for the
signals’ formation at the outputs of the SU and
implementation of permutations of arbitrary bitness
(bijective reflections) on the OCSU;

2) define conditions for different OCSUs to
implement the same permutations;

3) determine the number of different
permutations that can be implemented on the
OCSU of the selected class;

4) define inverted SU, that would provide the
implementation of inverted permutation for given
direct SU.

F(X,)
\
[)
VEY yeEY VEY veEY
A A A A
r 3 2 1
f” ff) fo fu
AI AI AI AI
fs [¢®] £ [¢® f: [¢® f o
5 S S S
x€eX xekX xeX xeX
\ J
Y
X,

Fig. 1. Unidirectional OCSU for F(Xr) permutation implementation

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

407

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406417

Design of Computer Systems, Networks and their Components

Research Results

Terminology

Suppose we have a finite set of symbols called
the input alphabet X of dimension n: {x;, x5, ..., X, },
a finite set of symbols called the output alphabet Y
of dimension n: {y;,y,, ..., ¥}, a finite set of states
S of dimension m, a state transition function
ﬂ(x, 5):Sx X — S, the output transition function
£, (x,5):S x X - Y and the initial state s, € S.

In the case when the machine is considered as a
SU prototype, the input and output alphabets are the
same, the values of n and m are degrees of two and
the functions of outputs and states are implemented
by the corresponding combination circuits. We will
assume that state and output functions are fully
defined. We will also assume that the machine is
connected graph, which means, that it does not
contain unreachable states and none of its states is
equivalent to another [10]. In addition, an initial
value is set at the side inputs of the first OCSU
design module. This value corresponds to the initial
state of the machine (Fig. 1).

Let us denote the set of all sequences of length
r from the elements of the input alphabet by X, and
by Y. for the output one. The Mealy machine
(respectively OCSU) maps the set X, to the set Y, of
OCSU (X, - Y,).

Reflection bijectivity analysis

Machine implementation of the permutation
(according to OCSU) means the implementation of a
bijective reflection (X, — Y,) at any value of r. In
other words, different sequences of X, correspond to
different sequences of Y,..

To eliminate the ambiguity of the permutation
(bijective reflection) of arbitrary bitness, which is
implementation by the FSA (or OCSU), we will
hereafter denote it as F(X,).

Two sequences of characters considered
different if they differ at least in one character. If
machine’s reflection is not bijective for some r, it
will not be bijective for any r; > r.

The loss state is called the state s; for which
exist x;,x, € X, where x; #x, and f,(s;,x;) =
fo (s, x5). Taking this into account, the following
theorems are given.

Theorem 1. The machine’s reflection f: X, —
Y, is bijective on X if and only if the machine A does
not contain loss states reached from the initial state
Sp In r steps [11-12].

Theorem 2. In order for OCSU to implement
the F(X,) permutation, it is required and sufficient
that, for any signal at the side inputs of the SU, at
the primary (not side) outputs, the combination
circuit implements any substitution of the values of
the signals at the primary inputs.

The bitness of the F(X,) permutation is b =
r log n. The degree of permutation is n".

Equivalence analysis

Let p(s) be some permutation of elements of
the S set and let p~1(s) be the inverse permutation,
thatis, p(p™(s)) = p~'(p(s)) = s.

Theorem 3. If for any machine A we create an
automatic machine A, with the same alphabets X, Y,
S and with the following functions v,(x,s) =
fole,p(s)), vs(x,5) = p~ 1 (fs(x, p(s))), and with
the initial state so, = p~*(s,), then machines A and
A; will be equivalent.

Prove. Let x symbol be the input of A and A;.
A; machine generates v,(x,s) = f,(x,p(s)) output
symbol, and v(x,s) = p~1(f;(x,p(s))) state. In
the first iteration, the initial state of the machine A,
is 59, = p~* (o). So, we have

vo(x,8) = fo(xr p(s)) = fo (x; p(SOA))
= fo(x:p_l(so)) = fo(x,5).

A; will go into the state

P (5 () = r7 (5 (op 7 60)) =
P (fs(x, 50)).

The same happens for any number of the
following input characters. Thus, both machines
implement the same reflection, which means, they
are equivalent [10].

Thus, in the OCSU class under consideration,
there are m! OCSUs that implement the same F(X,)
permutation, which is important when estimating the
number of different permutations.

Structural unit construction algorithm

The basic algorithm for construction output
tables is as follows. Output table rows are states. A
random number generator is used to get a random
character from the set of outputs. The generator
produces the next output symbol. The character is
added to the row of the table that does not contain
this character. If the character produced by the
generator exists in all rows, it is skipped. The
algorithm ends when all rows are filled. The basic
algorithm for forming the state table is as follows. A
random number generator is used to get a random

408

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406417

Design of Computer Systems, Networks and their Components

state from the set of states. Produced states are
placed in the free cells of the state table. The
algorithm ends after all cells in the state table are
filled. If we want to get the connected graph, then
the respective connectivity checks must be
performed. If machine happens not to be a connected
graph, the state table construction algorithm repeats.
Direct reflection state and output tables
generation algorithm code snippet using C#:

InitialState = _random.Next(M);
for (int i = @0; 1 < M; i++)
{
StateMatrix.Add(new List<int>());

OutputMatrix.Add(new List<int>());

for (int j = 0; j < N; j++)

{
StateMatrix[i].Add(_random.Next(M));

}

while (OutputMatrix[i].Count < N)

{
int y = _random.Next(N);

if (!OutputMatrix[i].Contains(y))

{
OutputMatrix[i].Add(y);

}
}
}
So, let’s consider the example of the machine

form =12 andn = 8.

In each cell of the output table (Table 1) is one
of the symbols of the output alphabet, and in each
cell of the state table (Table 2) is one of the states.

The numeration of state and output table is
made from top to bottom, starting with the first state
and ending with the last one. The numeration of
columns of conversion tables and exits is from left
to right, starting with the first character of the input
alphabet and ending with the last.

Table 1. Output table of F(X,) FSA
X1 Xp X3 X4 Xs Xg X7 Xg

S1 Vi | YVa | Ve | Y7 | Y2 | Ys | Y3 | Vs

S2 Y6 | V3 Yo | Yg | Ys | V7 | V2 N1

S3 | Va | Ys | V3 | Ve | V2 | Vs | Y1 | Y7

Sa | Y1 | V3 | Y8 | Va | Vs | V7 | Ve | V2

S5 Vi | Y7 | Ye | V3 | V2 | V5 | Va | Vs

Se | Y3 | V1 | Ve | Vs | YVa | Vg | Y7 | V2

S7 Yo | Y7 | V3 Vi | Ye | Y2 | Vs | Vs

Sg | Va | V1 | Vs | Vs | V2 | Ve | Y3 | V7

S9 | Vs | Y7 | Va | Y8 | Y2 | V3 | Ve | W1

S1o0 | YVa | Y1 | V7 | Vg | Ys | Y2 | V3 | Ve

S11 | Ve | V3 | V2 | Y1 | Y5 | Va | Vs | V7

S12 | Vo | V2 | V7 | Y1 | Y3 | Ys | V5 | Va

Table 2. State table of F(X,.) FSA
X1 Xy X3 X4 Xs Xg X7 Xg

S1 S1 | S12 | S5 | S11| S4 [S11 | Ss Sq

S2 | S7 | S11 | S4 | S4 | Sg | S12 | Sg | S3

S3 [S10 | S12 | $1 S7 | S10 | Ss S9 | Se

S4 | Se | S7 | S1 | S5 | Sg | Sg | S10 | S7

S5 | S11 | S12 | S5 S3 Sa S7 | S10 | Sa

Se¢ | S9 | S7 | S3 S9 | S3 | S6 | S3 | Se

S7 Sg Sg Sg S9 | S11 | S7 S7 $1

Sg [S10| S2 [S11 | S5 | Se | $1 Sa4 | S12

S9 S7 S2 Sg S6 S2 | S12 | S12 | S10

S10 | S9 | S10 | S12 [S11 [S12 | S7 | S2 Sg

S11 | S9 | S11 | S12 | S1 | S10 | S9 S1 | S11

S12 | S4 | S12 | S9 | S4 | S5 | S | S5 | Ss

Software implementation of reflection
X, - Y, reflection implementation algorithm
code snippet using C#:

int state = InitialState;

var outputs = new List<int>();

for (int 1 =0; i < r; i++)

{
outputs.Add(OutputMatrix[state][input[i]]);

state = StateMatrix[state][input[i]];
}

return outputs;

It’s easy to see simplicity of implementation
when using conversion tables, which can be stored
in either the memory or processor cache and high
speed of direct and inverse transformations.

Note that in general case it may be necessary to
reformat the result in Y,..

Inverted reflections

In computer engineering, the usage of direct
permutations is in many cases accompanied by the
inverted permutations. The inverted bijective
reflection Y, — X, (inverted permutation F~1(Y,.)) is
defined as F~1(F(X,)) = X, and is implemented by
the inverted machine. The inverted machine is
determined based on the direct machine.

Inverted permutation F~1(¥,)
implementation construction algorithm

The output function is generated using
following algorithm. The symbols of the direct
machine’s output table (Table 3) are rearranged for
each state s independently from other states. For
each output table cell from left to right that
corresponds to y, output alphabet character we put
x;, input alphabet character, that was responsible for
the current symbol y, in the direct permutation

FSA

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

409

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406417

Design of Computer Systems, Networks and their Components

output table. Indices a and b can have any value or
can be the same.

State table (Table 4) is generated based on the
inverted machine’s outputs function and direct
machine’s output table. The symbols of the direct
machine’s state table are rearranged for each row
independently from other. In the cell corresponding
to the y, output alphabet symbol from left to right
we put s, state that has the same coordinates in the
state table as the corresponding to y, output symbol
inverted permutation output table’s symbol x;.
Indices a and b can have any value or can be the
same.

Inverted reflection state and output tables
generation algorithm snippet using C#:

InitialState = directMachine.InitialState;
for (int i = @0; 1 < M; i++)
{

StateMatrix.Add(new List<int>());

OutputMatrix.Add(new List<int>());

for (int j = 0; j < N; j++)
{
for (int k = @; k < N; k++)

{

if (directMachine
.OutputMatrix[i][k] == j)
{
OutputMatrix[i].Add(k);
StateMatrix[i].Add(
directMachine.StateMatrix[i][k]);
break;

}
}
}
}

Inverted bijective reflection Y, — X, formation
algorithm is completely the same as previous
algorithm for direct machine. The difference is only
in the usage of appropriate tables.

Table 3. Output table of F~1(Y;) FSA

Vi V2 Y3 YVa Vs Ye Y7 Vs
S1 | X1 | X5 | X7 | X3 | X6 | X3 | X4 | Xg
Sz | Xg | X7 | X3 | X3 | X5 | X1 | X6 | X4
S3 | X7 | X5 | X3 | X1 | X6 | X4 | Xg | X2
Sy | X1 | Xg | Xp | X4 | X5 | X7 | X6 | X3
Ss | X1 | X5 | X4 | X7 | Xe | X3 | X2 | Xg
Se | X2 | Xg | X1 | X5 | X4 | X3 | X7 | Xe
S7 | Xa | X6 | X3 | X4 | X7 | X5 | X2 | Xg
Sg | X2 | X5 | X7 | X1 | X4 | X6 | Xg | X3
Sg | Xg | X5 | Xg | X3 | X9 | X7 | X2 | X4
Sto | X2 | X6 | X7 | X1 | X5 | Xg | X3 | X4
S11 | X4 | X3 | X | Xg | X5 | X1 | xg | Xy
Si2 | X4 | X9 | X5 | Xg | X7 | X1 | x3 | X4

Table 4. State table of F~(Y;.) FSA

Vi Y2 Y3 Ya Vs Ye Y7 Vs
S1 | S1 | S4 | S5 | S12 | S11| S5 | S11 | Sa

S | S3 | Sg | S11 | Sa4 | Sg | S7 | S12 | Sa

S3 | S9 | S10 | S1 | S10| S5 | S7 | Se | S12
S4 | S¢ | S7 | S7 | S5 | Sg | S10| S8 | S1

S5 [S11 | S4 | S3 | S10| S7 | S5 | S12 | S4
Se | S7 | Se | S9 | S3 | So9 | S3 | S3 | S

S7 | Sog | S7 | Sg | Sg | S7 [S11 | Ss | 51
Sg | S2 | S6 | S4 | S10| Ss | S1 | S12 | S11
S9 [S10| S2 |S12 | Sg | S7 | S12 | S2 | Se

S10 [S10 | S7 | S2 | S9 [S12 | S9 | S12 | S11

S11 | S1 | S12 | S11 | S9 | S10| So | S11 | S1
S12 | S4 | S12 | S5 | S5 | S5 | S4 | S9 | Se

Hardware implementation using FPGA

Regular unidirectional OCSU is a combination
circuit where each SU implements d + w boolean
functions from d + w variables, where d = log n,
w = logm. In modern FPGA [13], any boolean
function of 6 variables can be implemented on a
single lookup table (LUT). If d + w < 7, then d +
w LUTs are required to implement a single SU, and
r(d + w) LUTs are required to implement the
OCSU reflection (X, —» Y,). Two 5-variables
functions can be implemented using one LUT.
Then for d +w < 6 (e.g. =2, w=2) the SU is
implemented using two LUTs, and byte
transformations are implemented using 8 LUTSs.

The 8-inputs circuit is implemented using 4
sequentially connected SUs, each with 2 inputs and
2 outputs (Fig. 1). In this way, the byte reflection is
implemented. The number of different byte
reflections is equal to the number of different SUs,
considering graph’s connectivity of the machines
and their equivalence. According to (1), the number
is over 20 million, but the number of different 8-bit
permutations is much larger: 1.26887E+89.
However, there is a problem of permutation’s
belongings, which are implemented on four such or
other SUs, given the requirements for one or
another application, which is the subject of further
research.

Let t;yr be the delay of one LUT. Then the
processing speed is rt; ;7.

An example of a unidirectional OCSU is
shown in Fig. 1.

SU’s state and output tables size estimations

An alphabet of length n requires d = log n bits
for each character. Dimensions of state and output
tables are n x m. w = logm bits are required to

410 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406417

Design of Computer Systems, Networks and their Components

store the current state. Thus, the total amount of
memory for the presented function is
Q =nmd + (nm + Dw.

The results of this calculation are presented in
Table 5. The value of Q accurately reflects the
amount of memory required in the case of software
implementations. In the case of bit-stream

implementation for FPGA debugging, Q can be
considered as the lower bound.

Table 5 provides a visual representation of the
volumes of data for SU formation. We see that large
values of n and m require terabytes of data, which
complicates hardware implementation but is not a
problem for modern software implementations.

Table 5. Memory amount required for the FSA software implementation

n d, bits m w, bits Q, bytes Q,MB Q,GB
8 3 8 3 48 0,00005 0,00000005
16 4 16 4 257 0,00024 0,00000024
64 6 64 6 6145 0,00586 0,00000572
64 6 128 7 13313 0,01270 0,00001240
128 7 128 7 28673 0,02734 0,00002670
128 7 256 8 61441 0,05859 0,00005722
256 8 256 8 131073 0,1250 0,00012207
256 8 512 9 278529 0,266 0,00025940
1024 10 1024 10 2621441 2,50 0,00244141
1024 10 2048 11 5505025 5,3 0,00512695
4096 12 4096 12 50331650 48 0,04687500
16384 14 16384 14 939524098 896 1
16384 14 32768 15 1946157058 1856 2
65536 16 65536 16 17179869186 16384 16
65536 16 131072 17 35433480194 33792 33
1048576 20 1048576 20 5497558138883 5242880 5120
1048576 20 2097152 21 11269994184707 10747904 10496
2097152 21 2097152 21 23089744183299 22020096 21504
2097152 21 4194304 22 47278999994371 45088768 44032
4194304 22 4194304 22 96757023244291 92274688 90112
4194304 22 8388608 23 197912092999683 188743680 184320
8388608 23 8388608 23 404620279021571 385875968 376832
8388608 23 16777216 24 826832744087555 788529152 770048
16777216 24 16777216 24 1688849860263940 1610612736 1572864
16777216 24 33554432 25 3448068464705540 3288334336 3211264

Bijective reflections number estimations

Obviously, the number of reflections of any
length is determined by the number of different SUs
and depends on the initial state and the number of
different states and output functions. Thus, the
number of possible permutations F (X,) is

0(n,m) = Lg Ly m,

where: Ly, is the number of state functions; Ly, is the
number of output functions and m is the initial states
number.

Output table’s number is calculated as

Lfs = mnm’

which is any case of a state table without any
restrictions. The development of the adjusting
parameters of this number is the subject of further
research and can be considered as the number of
connected graphs, in accordance with the accepted
restrictions.

Using the formula for the number of possible
connected graphs with m vertices of A001349

sequence [14], the number of state functions is
reduced to

Given this sequence, the number of conversion
functions can be represented by the following range
o nn-1)

2 2
1+ logZTk” < L; <m"m.
k=0 '

Output functions number Ly, is calculated as the
variation of output table rows, each of which has n!
variants according to the bijectivity requirements at
m possible places [15]. That is

_ ()
Ly, = Ay = (n!_m)!,33333
where m < nl.
Taking this into account the number of

F(X,) permutations can be approximated as

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

411

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406-417

Design of Computer Systems, Networks and their Components

m(n!)!

mnm+1(n!)!

27 2
1+logz — k™ (n!_m)!so(n,m)s

Note that the number of different permutations
F(X,) will be at least m! times smaller, according to
Theorem 2.

Software implementation processing speed
estimations

To convert one character of the input sequence,
three operations must be performed: two memory
reads using indices from state and output tables and
status change. The index is determined by the value
of the current state and the input alphabet character
as stated above. Status change is a memory write
operation. Since no calculations are used, the direct
and inverse transformations times are directly
proportional to the speed of used memory (CPU
cache levels L1, L2, L3, L4, random-access memory
(RAM), read-only memory (ROM), external device,
etc.).

Let’s denote the speed of performing one
operation with memory as v (MB/5s).

Then the conversion time T of the input
message with the length r of the input alphabet is
calculated as

(D

(n! —m)!

table, one read operation of the current state and one
write operation of the new state.

Table 6 lists the memory capacity and
maximum speed of different types of memory
according to recent studies [16]. The amount of
storage should be considered when evaluating the
permutation appliance in accordance with Table 5.

Table 6. Speed and volume of memory types

Memory type Volume Speed
L1 cache 128 KB 700 Gbps

L2 cache 1 MB 200 Gbps

L3 cache 6 MB 100 Gbps

L4 cache 128 MB 40 Gbps
RAM Gigabytes 10 Gbps

ROM Terabytes 160 MB/s

Table 7 shows the permutation processing time,

depending on the type of memory, bitness of the
input alphabet and the number of states. For cases
when the maximum amount of memory at the time
of article writing exceeds the requirements of Table

T = 4vr, 5, the time is marked by *,
where: the factor 4 consists of one read operation
from state table, one read operation from output
Table 7. Theoretical time of permutation processing
r T L1, ns T L2, ns T L4, ns T L5, ns T RAM, ns T ROM, ns
8 4,26E-02 1,49E-01 2,98E-01 7,45E-01 2,98E+00 4,66E+01
16 8,51E-02 2,98E-01 5,96E-01 1,49E+00 5,96E+00 9,31E+01
32 1,70E-01 5,96E-01 1,19E+00 2,98E+00 1,19E+01 1,86E+02
64 3,41E-01 1,19E+00 2,38E+00 5,96E+00 2,38E+01 3,73E+02
128 6,81E-01 2,38E+00 4,77E+00 1,19E+01 4,77TE+01 7,45E+02
256 1,36E+00 4,77E+00 9,54E+00 2,38E+01 9,54E+01 1,49E+03
512 2,72E+00 9,54E+00 1,91E+01 4,77E+01 1,91E+02 2,98E+03
1024 5,45E+00 1,91E+01 3,81E+01 9,54E+01 3,81E+02 5,96E+03
2048 1,09E+01 3,81E+01 7,63E+01 1,91E+02 7,63E+02 1,19E+04
4096 2,18E+01 7,63E+01 1,53E+02 3,81E+02 1,53E+03 2,38E+04
8192 4,36E+01 1,53E+02 3,05E+02 7,63E+02 3,05E+03 4,77E+04
16384 8,72E+01 3,05E+02 6,10E+02 1,53E+03 6,10E+03 9,54E+04
32768 1,74E+02 6,10E+02 1,22E+03 3,05E+03 1,22E+04 1,91E+05
65536 3,49E+02 1,22E+03 2,44E+03 6,10E+03 2,44E+04 3,81E+05
131072 6,98E+02 2,44E+03 4,88E+03 1,22E+04 4,88E+04 7,63E+05
262144 1,40E+03 4,88E+03 9,77E+03 2,44E+04 9,77E+04 1,53E+06
524288 2,79E+03 9,77E+03 1,95E+04 4,88E+04 1,95E+05 3,05E+06
1048576 5,58E+03* 1,95E+04 3,91E+04 9,77E+04 3,91E+05 6,10E+06
2097152 1,12E+04* 3,91E+04 7,81E+04 1,95E+05 7,81E+05 1,22E+07
4194304 2,23E+04* 7,81E+04 1,56E+05 3,91E+05 1,56E+06 2,44E+07
8388608 4,46E+04* 1,56E+05 3,13E+05 7,81E+05 3,13E+06 4,88E+07

412

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406-417

Design of Computer Systems, Networks and their Components

Appliance

The proposed implementations of permutations
can be used in data compression [17], combination
circuits optimization [8; 18], non-algorithmic
implementation of encoders and decoders of fault-
tolerant coding [19] and to increase efficiency of
algorithms’ software implementation [20]. The studied
permutation has a wide range of applications and can
theoretically be used in any device that requires, for
example, high speed encryption and decryption.

Results comparison with existing counterparts

The effectiveness of the proposed solutions
follows from the comparisons with known results.

In hardware implementations, for example, byte
permutations in our case, it is enough to use C =
8(d +w)/d LUTs, at the same time, the best
implementations of the byte substitutions proposed in
[4] require 19 LUTs. If wetake d =4, w =2 (n =
16, m = 4), then we have C = 12 LUTs. If we want
to implement two boolean functions with 5 variables
andtaked = 2, w = 2 (n = 4, m = 4), we will have
C =8 LUTs.

About time characteristics of software
implementations. In [21], the implementation of
high-bitness permutations using simple
transformations in Galois fields is considered. The
theoretical speed calculations are substantially
inferior to those given in Table 7, since in our case
we achieve speed of up to one million Mbps. There
are no experimental results in [21].

Table 8 shows the results of the experiments
(processing time T, and processing speed ¥9,.) for the
implementation of the bijective reflections for the d =
w = 8 (n = m = 256) case, and the r value actually
corresponds to the number of bytes of the file. The
experiments were performed using DDR3 RAM and
an Intel Core i7-6700K processor.

Experimental time of processing is lower than
theoretical (especially when converting small amounts
of data), because in modern multi-threaded operating
systems it is difficult to gain monopoly access to
system resources, especially cache when processing
long-length files.

In [5] experimental data of time of cryptographic
transformations by the “Kalyna” standard are given.
The best results have a speed of about 2500 Mbps.
Speeds in Table 8 in general exceed the results of
“Kalyna”. However, it should be noted that the
conditions for conducting the experiment in [5]
actually correspond to theoretical calculations. This is
evidenced by usage of a cache that contained only one
block (16 to 64 bytes) of the original message and
encrypted only that block (in fact, electronic code
book (ECB) mode). In our case, the theoretical
speed is more than one million Mbps.

Table 8. Permutation’s software
implementation processing time and speed

r T, O3I1, ns 9, Mbps
1024 3,06E+04 255,00
2048 3,46E+04 451,26
4096 4,26E+04 732,92
8192 5,14E+04 1216,55
16384 7,54E+04 1657,00
32768 1,18E+05 2110,82
65536 2,09E+05 2396,50
131072 3,94E+05 2541,13
262144 7,65E+05 2615,53
524288 1,50E+06 2672,66
1048576 3,06E+06 2612,61
2097152 5,78E+06 2769,95
4194304 1,17E+07 2743,38
8388608 2,12E+07 3023,83
Conclusions and prospects for further
research

The obtained results allow conversion of files
of any finite length. The number of different
transformations increases faster than the exponent of
the n and m parameters and does not depend on the
file size. For example, at n = m = 8 (bitness of the
SU data is only 3), the number of different F(X,)
permutations are estimated to be at least 10%.

The studied implementation of the permutations
provides good performance, although it does require
memory space for the conversion table and the
outputs. The results show that, in terms of the
required amount of data, the output and state tables
can be embedded even in the processor cache to
provide high-speed conversion.

The subject of further research is the analysis of
the strong cryptography of the proposed
implementations of arbitrary bitness permutations
and comparison of results with block cipher
algorithms (it is clear that the studied function is
faster, but has worse strong cryptography values, but
it is not clear how much values will deiffer) and
development of algorithms for different levels of
cryptanalysis.

The prospect of further study may also be the
consideration of a class of bidirectional OCSUs (Fig.
2 and Fig. 3), which are not considered in this paper
because of too high memory requirements for large
graph sizes.

Regarding providing bijection reflection in
bidirectional SUs. For two states in both directions
theoretically and practically the question is solved
[9]. For more than two states, the solutions are not
yet known.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

413

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406-417

Design of Computer Systems, Networks and their Components

yeY yeY veY veY
r 3 2 1
foon fo, for, fon,
o ———P > —>
- ———— < < — =5
f;‘n—w fs‘a‘ fs‘z f;'ll

! !

! !

x€X x€X X €EX x€EX
Fig. 2. Bidirectional OCSU for permutation
y

P 1
1 1
1 1
1 1
1 1
1 1
1 I A A !
1 1
1 1
+ > I

| IS
! ¢ > !
! .
- 1 < . T
f., 4——— i
e J I
|
1
1
1

Fig. 3. One element of bidirectional OCSU for permutation

References

1. Hazewinkel, Michiel. (2000).
“Permutation”, Encyclopedia of Mathematics,
Springer Science+Business Media B. V. Kluwer
Academic Publishers. ISBN 9789048153787. DOI
10.1007/978-94-015-1279-4.

2. Peng, Li. (2019). “The Generation of
(n,n(n—1),n—1) Permutation Group Codes for
Communication Systems”, Communications IEEE
Transactions on, Vol. 67, No. 7, pp. 4535-4549.
DOI 10.1109/TCOMM.2019.2902149.

3. Boss, E., Grosso, V. & Guneysu, T. (2017).
“Strong 8-bit sboxes with ecient masking in
hardware”, J. Cryptographic Engineering. No. 7(2),
pp.149-165. DOI 10.1007/s13389-017-0156-7.

4. Fomin, D. B. & Trifonov, D. B. (2019). “Ob
aparatnoy realisazii odnogo klassa baytovyh
podstanovok”. [About hardware implementation of
one class of byte permutations]. Prikladnaya
diskretnaya matematika, Appendix 12, pp. 134-137
(in Russian).

5. Oliynykov, R., Gorbenko, R., Gorbenko, I.,
Kazymyrov, O., Ruzhevcev, Y. & Gorbenko Y.
(April-June 2015). “Pryntsypy pobudovy i osnovni
vlastyvosti novoho natsional’noho standartu
blokovoho shyfruvannya ukrayiny” [Construction
principles and basic properties of Ukraine’s new
national block cypher encryption standard]. Zakhyst
informatsiyi, Vol. 2, pp. 142-157 (in Ukrainian).

6. (November 2001). “Advanced Encryp-tion
Standard (AES)”. (PDF). Federal Information

414

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.1: 406-417

Design of Computer Systems, Networks and their Components

Processing Standards. DOl
10.6028/NIST.FIPS.197.

7. Tarasenko, V. P., Teslenko, O. K. &
Yanovska, O. Y. (2007). “Problemy aparatnoi
realisacii pidstanovok”. [Problems of hardware
implementation of permutations]. Naykovi zapysky
UNDIZ, No. 2, pp. 52-58 (in Ukrainian).

8. Tarasenko, V. P., Teslenko, O. K. &
Yanovska, O. Y. (2010). “Vlastyvosti povnykh
pidstanovok, yaki realizuyut’sya nayprostishym
odnonapravlenym rehulyarnym OKKM?”. [Properties
of complete permutations implemented by the
simplest unidirectional regular 0OCSsU].
Radioelektronni i komp ’yuterni systemy. No. 6, pp.
123-128 (in Ukrainian).

9. Tarasenko, V. P., Teslenko, O. K. &
Yanovska, O. Y. (2012). “Mozhlyvosti
naiprostishym dvonapravlenyh reguliarnyh
odnovymirnyh kaskadiv konstruktyvnyh moduliv
schodo realizacii riznyh povnyh pidstanovok™.
[Features of the simplest bidirectional regular one-
dimensional cascades of structural units for the
implementation of various complete permutations].
Radioelektronni i kompyuterni systemy. No. 7 (59),
pp. 147-153 (in Ukrainian).

10. Glushkov, V. M. (1967). “Syntes cyfrovyh
avtomatov”. [Synthesis of Digital Automata].
Moskov, Russian Federation (in Russian).

11. Karandashov, M. V. (2014). “Issledovanie
biektivnykh avtomatnykh otobrazhenii na kol’tse
vychetov po moduliu 2*". [Research bijective
automaton mappings on the ring of residues modulo
2K]. Computer Science and Information
Technologies: Proc. Intern. Sci. Conf. Saratov,
Russian Federation, Publ. Center “Nauka”, pp. 148-
152 (in Russian).

12. Gill, A. (1962). “Introduction to the theory
of finite-state machines”. New York, Toronto,
Ontario, London, McGraw-Hill Book Co., Inc., 207
p. (Russ. ed.. “Gill A. Vvedenie v teoriiu
konechnykh avtomatov”. Moscow, Russian
Federation, Publ. Nauka, 272 p.) (in Russian).

13. “Summary of Virtex-6 FPGA Features.
Virtex-6 Family Overview”. XILINX DS150 (v2.5).
[Electronic resource]. — Auvailable at:
https://www.xilinx.com/support/documentation/data
_sheets/ds150.pdf. — Active link: 20.08.2015.

14. “Sequence A001349 — Number of
connected graphs with n nodes”. The On-Line
Encyclopedia of Integer Sequences® (OEIS®).

[Electronic resource]. — Available at:
http://oeis.org/A001349. — Active link: 10.01.2020.

15.J. H. van Lint & Wilson R. M. (1992). “A
Course in Combinatorics”, Cambridge University
Press.

16. SiSoftware Official Live Ranker
“SiSoftware Zone”. [Electronic resource]. -
Available at:

https://ranker.sisoftware.co.uk/top_device_all.php?q
=d6ebdb. — Active link: 31.07.2014.

17. Tarasenko, V. P., Teslenko, O. K. &
Yanovska, O. Y. (2007). “Vykorystannya pryamykh
ta obernenykh pidstanovok dovil'noyi rozryadnosti
dlya pidvyshchennya efektyvnosti isnuyuchykh
zasobiv ushchil'nennya danykh”. [The use of direct
and inverse arbitrary bit permutations to improve the
performance of existing data comperssors]. Fourth
International Scientific and Practical Conference
“Metody ta zasoby koduvannya, zakhystu vy
ushchil’nennya informatsiyi”, Vinnytsia, Ukraine,
pp. 223-226 (in Ukrainian).

18. Tarasenko, V. P., Teslenko, O. K. &
Yanovska, O. Y. (2010). “Analiz vplyvu
pidstanovok na dekompozytsiyu bulevykh funktsiy”.
[Analysis of the effect of permutations on the
decomposition of boolean functions]. Herald of
University “Ukrayina” Informatyka,
obchyslyuval ‘na tekhnika ta kibernetyka, No. 8, pp.
40-47 (in Ukrainian).

19. Klyatchenko, Y. M., Teslenko, O. K. &
Yanovska, O. Y. (2011), “Vykorystannya
pidstanovok dlya nealhorytmichnoyi realizatsiyi
koderiv ta dekoderiv zavadostiykoho koduvannya”
[Use of permutations for non-algorithmic
implementation of encoders and decoders of fault-
tolerant coding]. International Scientific Conference
“Suchasni komp’yuterni systemy ta merezhi:
rozrobka ta vykorystannya”, L’viv, Ukraine, pp.
191-193 (in Ukrainian).

20. Mel’nykova, O. A. & Maslyennikova, A. O.
(2017). “Pidstanovky dlya pidvyshchennya
efektyvnosti prohramnoyi realizatsiyi alhorytmiv,
yaki vykorystovuyut’ znakovo-tsyfrovi
predstavlennya”. [Permutations for increasing the
efficiency of software implementation of algorithms
that use character-to-digital representations].
“Tekhnichni nauky” Series, Vol. 15 Kharkiv
National University of Radioelectronics, Kharkiv,
Ukraine, pp. 126-132 (in Ukrainian).

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems

415

https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://oeis.org/A001349
https://ranker.sisoftware.co.uk/top_device_all.php?q=d6ebdb
https://ranker.sisoftware.co.uk/top_device_all.php?q=d6ebdb

Herald of Advanced Information Technology 2020; Vol.3 No.1: 406-417
Design of Computer Systems, Networks and their Components

21. Abornev, A. V. (2014). “Nelineynyye matematika. VVol. 7, pp .40-41 (in Russian)
podstanovki na vektornom prostranstve, rekursivno-

porozhdonnyye nad kol’tsom Galua Received. 31.01.2020
o)) Received after revision 17.02.2020
kharakteristiki 4” [Nonlinear permutations on a Accepted 20.02.2020

recursively generated vector space over a Galois ring
of characteristic 4], Prikladnaya diskretnaya

YJIK 004.6

Tecaenko, Onexcanap Kupuiaosuy, KanamaaT TeXHiY. HayK, CTapIIUil HAyKOBHH CIIBPOOITHHK,
JIOLIEHT Kadepu CUCTEMHOTO POTPaMyBaHHS 1 CIIEIiali30BaHUX KOMIT IOTEPHUX CUCTEM,

E-mail: teslenko@scs.kpi.ua, ORCID: 0000-0002-5891-4345

Bonpapuyk, Makenm FOpiiioBuy, acnipant kaeapu CHCTEMHOTO IIPOrpaMyBaHHs i CIeliaTi30BaHuX
koM fotepuux cucteM, E-mail: bondarchuk.m.y@gmail.com, ORCID: 0000-0002-4861-6627
'Hanionanbauii TexHivamii yHiBepeuTeT Yipainu « KHiBChKHMIA MOTiTeXHIUHMIT iHCTHTYT iMeHi Irops
Cikopcekoroy, mpoctiekt [lepemoru 37, Kuis, Ykpaina, 03056

PEAJII3AIIA IIJICTAHOBOK JOBLJIBHOI PO3PSATHOCTI B OJHOMY I3
KJIACIB JIHIHHUX CTPYKTYP

Anomauia: I[llsuokicmv nepemeopenns i npocmoma peanizayii € 0OHUMU 3 KTOHO8UX (DaKkmopie niocmarook. Y cmammi
PO32IAHYMO peanizayito niOCMAHOBKU O008iIbHOI po3psAOHOCMI 8 00nacmi Komn tomepHOi iHowceHepii Ha 0O0HOMY 13 K1ACIi8
KOMOIHQYIUHUX CMPYKMYp JAIHIUHOI CKIAOHOCMI 6i0 KITbKOCMI 3MIHHUX — OOHOBUMIDHUX KACKAOI8 KOHCMPYKMUGHUX MOOYIIE.
Buxopucmano moi paxm, wo ioodpadicenns, axe gopmye exasana NiHiiHA CMPYKmMypa, NOGHICMIO 30ieaemvcs 3 8i000pa*CEHHAM
8I0N0BIOH020 CKiHYeHHO20 aémomama Mini ax npomomuny KOHCMPYKMUGHO20 MOOYis Kackady. Lle 0ozeonuno docnioxcyeamu
81ACMUBOCMI KOHCMPYKMUBHUX MOOYVII8 ma KACKady 6 yiiomy y pospisi nowsamv meopii yugposux asmomamis. Peanizayisn
NIOCMAHOBOK O0BLIbHOL PO3PAOHOCMI NONA2AE Y BUKOPUCHAHHI NPUBEOeHUX agmomamie Onsi mabauyi Cmauie i 6UKOPUCMAHHI
VHIKAIbHUX KOMOIHayil Oe3 nosmopie 0isl KOJICHO20 psoKy mabauyi euxooie. Memoro peanizayii danoi niocmanoeku € wiguoke
Nnepemeopents OaHUX 8eUKUX 00 €MI 3 MOJNCIUGICINIO 3ACMOCYBAHHSA 8 KLTbKOX HANPSAMKAX OO0CTIONCEeHb NpU NpoCcmiil peanizayii Ha
anapamuomy abo npoepamHomy pieui. Bukonano 0ocniddicenns 3abe3neuenns GIEKMUSHOCI 6i000PANCEeHH MA NPOBEOCHO AHANL3
ekgieanenmuocmi gidodpadicens. Iloxasano aneopummu Gopmysanns aemomamie 01 peanizayii npamux ma O06epHeHUx
NIOCMAHOBOK, @ MAKONC NPUKIAOU (PopMyeaHHs mabauyb nepexodie ma euxodis. Hasedeno npuxnadu anapammuoi peanizayii na
NnpoepamMoBanux N02iuHUX iHmezpanvHux cxemax. Buxonano oyinky o6’emy mabauys nepexodié ma 6uxodié 0as anapamuoi ma
npoepamuoi peanizayii. BUKOHAHO OYIHKY KIIbKOCMI VHIKAMbHUX OIEKMUSHUX 8i000padicenb. IIposedeno meopemuyny OYiHKY
weuoKocmi GIEKMUSHUX 8I000padicelb Npu peanizayii Ha NPOSPAMOBAHUX JIO2IUHUX IHIMESPATIbHUX CXeMAX, A MAKONC NPU NPOSPAMHIL
peanizayii 32i0HO 3 CYHACHUMU NOKASHUKAMU WEUOKOCMI 8UOI8 NAM 'Simi 0OYUCTIOBAILHUX NPUCMPOi8 071 KOJicHo20 6udy. Hasedeno
eKCnepuMenmanvty OYiHKY, a MAaKodiC NpoeeoeHo NpAaKMuuHy nepesipKy weuoKocmi nepemeopeHHs 3a 00NOMO20I0 NPOSPAMHOL
peanizayii. 3anpononosano odaacmi 3acmMocy8anta O0CIIOHNCEHUX pednizayill NiOCMano80K 008iIbHOT PO3PAOHOCHII.

Knrwuosi cnosa: pynxyii niocmanosok, aemomam Mini; iekmugne 8i000pajicents, NPOSPAMOBAHI JI02IYHI IHMe2PAIbHI CXeMu

VK 004.6

Tecnenxo, Anexcanap KupuiuioBu4, KanauaaT TEXHUY. HAyK, CTAPLINI HAYYHBIHA COTPYIHHUK,
JIOLIEHT Kadeapbl CUCTEMHOTO IMPOTPaMMHUPOBAHUS H CIIEIINATUN3UPOBAHHBIX KOMITBIOTEPHBIX CUCTEM,
E-mail: teslenko@scs.kpi.ua, ORCID: 0000-0002-5891-4345

'Bonnapuyk, Makcum IOpbeBnd, acnupanT Kadeapbl CHCTEMHOTO IIPOrPaMMUPOBAHUS U
CTEeIHATU3UPOBAHHBIX KOMIBIOTEPHBIX cucTeM, E-mail: bondarchuk.m.y@gmail.com,

ORCID: 0000-0002-4861-6627

'HaupmonansHblil TeXHIYECKHIT yHUBepcUTET YKpauHbl «KueBcKkuil MOIUTEXHUYECKUA HHCTUTYT UMEHU
HUrops Cuxopckoroy, npocrekt [1obenst 37, Kues, Ykpauna, 03056

416 Information technologies and computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; Vol.3 No.1: 406-417
Design of Computer Systems, Networks and their Components

PEAJIM3AIIAA IOJCTAHOBOK ITPOMU3BOJIBHOM PA3PSTHOCTHU B OJJHOM U3
KJIACCOB JIMHEWHBIX CTPYKTYP

Annomayusn: Cropocmv npeoOGpazoeanus U NPoCMoOmMAa pPeaiu3ayuu SGUSIOMCs OOHUMU U3 KIIOYesblX (DAKMOpos
noocmanosok. B cmamve paccmompenvl peanuzayuio NOOCMAHOEKU NPOU3EOTLHOU PA3PAOHOCMU 6 001acmu KOMHbIOMEPHOU
UHIICEHepUU HA OOHOM U3 KIACCO8 KOMOUHAYUOHHBIX CIPYKMYP AUHEUHOU CIONCHOCMU OM KOAUYECMEA NEPEMEHHbIX — OOHOMEPHBIX
Kackaoo8 KOHCmMpYyKmusHwvix mooynel. Hcnonvzoean mom ¢pakm, umo omobpasicenue, KOmopoe opmupyem yKa3aHHas TUHeHas
CMPYKMypa, NOJHOCHbIO COBNAdAem ¢ OMOOPAdCEHUeM COOMEEeMmMCmsylouje20 KOHeuHo2o agmomama Munu kax npomomuna
KOHCMPYKMUBHO20 MOOYJIA KACKAOA. DMO NO380UN0 UCCIe008AMb CEOUCMEA KOHCMPYKMUBHBIX MOOYIell U Kackaod 8 yeiom 8
paspeze NoHAMuUU meopuu yu@posuix asmomamos. Peanuzayusi noOCmaHo8oK Npou360IbHOU PA3PSIOHOCMU 3AKIIOYACMCS 8
UCNONb30BAHUU NPUBCOCHHBIX ABMOMAMO8 0Ji1 MAOIUYbL COCMOSHUL U UCHOTb308AHUU YHUKATbHLIX KOMOUHAYULl Oe3 nosmopog 0iist
Kanxcoo2o cmpoxke madauyvl 6vix0008. Llenvio peanuzayuu OanHOU NOOCMAHOSKU AGISEMCS Gblcmpoe npeobpazoeéanue OaHHbIX
OONbUWUX 00LEMOB C BO3MONCHOCHBIO NPUMEHEHUSL 8 HECKONbKUX HANPAGICHUSX UCCLe008AHULl NpU NPOCMOU peaiu3ayuu Ha
annapamnom uiu nPpOSPaAmMMHOM ypogHe. Bulnoanenvl ucciedoganus obecneyenus OUeKMUGHOCIY OMPAICEeHUs. U NPOBeOeH AHAIU3
aKsusarenmuocmu ompaicenui. Ilokazano aneopummel GOpMUPOSAHUS aABMOMAMO8 O Pearu3ayuu NpsIMbIX U 0OpPAMHbIX
NOOCMAHOBOK, A MAKHCe NPUMEPbL POPMUPO8ans mabauy nepexooos u evixo00s. llpusedenvl npumepvl annapamHoil peaiu3ayuu
HA NPOCPAMMUDYEMBIX NIOSUYECKUX UHMEZPANbHbIX cxemax. Buinoinena oyenka obvema mabiuy nepexoooé u 6vixo008 O
annapamuou u npocpaMMHOU peanusayuu. Bulnoinena oyenxa Koiuuecmea YHUKATbHbIX OueKmueHblx ompagicenutl. IIpogedeno
MeopemuyecKyr0 OYeHKy CKOPOCHU OUEKMUSHBIX OMPAlCeHUNl NPU Pedatu3ayuu Ha NpoepamMmMupyemvix JT02UHeCKUX UHMeSPalbHblX
cxemax, a makdice NpU NPOSPAMMHOU Peanu3ayuy CO2IACHO COBPDEMEHHbIM NOKA3AMENSIM CKOPOCMU 6UO08 NAMSIMU
BLIULUCIUMELHBIX YCMPOUCME Ol Kaxcoo2o euda. TIpugedenvl IKCHEPUMEHMANLHYIO OYEHKY, d MAKI’Ce NPOGEOeHO NPAKMUYECKYIO
NPOBEPKY CKOPOCMU NPeodpa3’06anusi ¢ NOMOWbI0 NPoSpamMmHol peanusayuu. Ilpednodceno obnacmu npumeHeHust UCCIe008aAHHbIX
peanuzayuti NOOCMAHO80K NPOU3BOIbHOU PA3PAOHOCTIU.

Knroueswie cnosa: ¢pynxyuu noocmanosok, asmomam Munu, OuexmueHoe omooOpadiceHus, npPoSpammupyemvle 102UNecKue
UHMe2PALbHbLE CXeMbL.

Oleksandr Teslenko, Candidate of Technical Sciences
Research field: system programming, cryptography,
design of specialized computer systems

Maksym Bondarchuk, PhD student
Research field: cryptography, automata theory,
heuristics, artificial intelligence

ISSN 2663-0176 (Print) Information technologies and computer systems 417
ISSN 2663-7731 (Online)

