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SEGMENTATION OF CLOUD ORGANIZATION PATTERNS FROM SATELLITE
IMAGES USING DEEP NEURAL NETWORKS

Abstract. Climate change is one of the most important challenges that humanity faces now. The essential part of climate
models is the movement of clouds, which affects climate parameters dramatically. Shallow clouds play a huge role in determining the
Earth's climate. They're also difficult to understand and to represent in climate models. Unfortunately, the exact modeling of clouds
movement is notoriously tricky and requires perfect knowledge of underling physical processes and initial states. Boundaries
between different types of clouds are usually blurry and difficult to define with rule-based decision systems. Simplification of the
segmentation step is crucial and can help researchers to develop better climate models. Convolutional neural networks have been
successfully applied in many similar areas, and for cloud segmentation itself, too. However, there is a high cost of good, pixel-level
labeled datasets, so the industry often uses coarse-labeled datasets with the either region or image-level labels. In this paper, we
propose an end-to-end deep-learning-based method for classification and segmentation of different types of clouds from a single
colored satellite image. Here, we propose the multi-task learning approach to cloud segmentation. Additionally to the segmentation
model, we introduce a separate classifier that uses features from the middle layer of the segmentation model. The presented method
can use coarse, uneven and overlapping masks for clouds. From the experimental results, the proposed method demonstrates stable
results and learns good general features from noisy data. As we observed during the experiments, our model finds types of clouds,
which are not annotated on the images but seem to be correctly defined. It is ranked in top three percent competing methods on
Understanding Clouds from Satellite Images Dataset.

Keywords: deep learning; satellite imaging; deep convolutional neural network; multi-target learning; cloud formations
classification; Kaggle; meteorology

21ex 14° (long-lat) Terra and Aqua MODIS visible
images from NASA Worldview. Thanks to the
crowd-source community at Zooniverse, they created
an annotated dataset with four types of clouds (Sugar,
Fish, Gravel and Flower) [1]. However, the
annotation of types and regions on photos was quite
noisy, so researchers asked for a stable and well-
generalized solution to classify and segment types of
photos on unseen images.

As rule-based approaches to solve the task of

1. Introduction

Today, all issues related to climate change are at
the forefront of discussions and different political
decisions. Quite a lot of companies pay serious
attention to the question of affecting the climate by
their by-products, as new and strict standards appear
which are designed to preserve nature and regressive
climate changes. Neglect of these standards may be a
reason for not just only a public censure, but also a
reason for significant fines. Thus, the resulting need

to maintain the climate in a normal state entailed the
need to analyze and build patterns of climate
behavior.

One of the most valuable features in determining
the Earth's climate model is the be-havior of clouds.
However, investigating their be-havior is one of the
trickiest parts, as it requires a perfect understanding of
underlying processes in the atmosphere. By
classifying different types of cloud organizations,
researchers hope to improve the phy-sical
understanding of these clouds, which in turn will help
us build better climate models.

Researchers at Max Planck Institute for meteo rology
collected clouds photo, roughly 10 000
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classifying and segmentation of cloud types give poor
results, machine learning approaches come to help.
Convolutional ~ neural  networks have  been
successfully applied in different areas of computer
vision, also in classification and segmentation. In this
paper, we propose an end-to-end method for the
segmentation of four types of clouds from an RGB
satellite photo. Also, we propose a pre- and post-
processing pipeline which helps our model to learn
good discriminative features from the noisy data. This
method was ranked 46 of 1538 competing methods
(Dice score of 0.66322) on Understanding Clouds
from Satellite Images Dataset.

Our code and experiment results are available by
the following link:
https://github.com/spsancti/kaggle-clouds/.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)
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2. Related works

To describe a wide range of research works as
possible, we review the works for RGB color
satellite images as well as other optical sensors such
as multispectral/infrared.

One of the methods for cloud detection was
designed by Zhu et al. [2] they provided a method
called Fmask (Function of the mask) for cloud and
cloud shadow detection in Landsat imagery. Fmask
uses rules-based approaches on cloud physical
properties to separate potential cloud regions from a
clear sky. As input data, they used information from
seven bands of enhanced thematic mapper (ETM)
and enhanced thematic mapper plus (ETM+)
sensors. Another approach was provided by Harb et
al. [3], they analyzed CBERS medium resolution
multispectral data and their algorithm uses a set of
literature indices, as well as a set of mathematical
operations on the spectral bands, in order to enhance
the visibility of the cloud/shadow objects. These
methods performed accurate results, nevertheless,
these methods highly depend on sensor models (i.e.
since they are rule-based methods) and proposed
solutions are not scalable to other types of sensors.

To generalize solution, Hu et al. [4] used
computer vision techniques to extract several low-
level features such as color, texture features, etc. to
estimate pixel-level masks using classical ML
algorithms. Ozkan et al. tried to apply deep neural
networks (such as Feature Pyramid Network) to
segment clouds from low-orbit Gokturk-2 and
RASAT satellites RGB images.

Not only satellite images were analyzed by
researchers. Zhang et al. [5] proposed a new
convolutional neural network model, called
CloudNet, for accurate ground-based meteorological
cloud classification. They built a ground-based cloud
data set, called Cirrus Cumulus Stratus Nimbus,
which  consists of 11  categories  under
meteorological standards. The total number of cloud
images is three times that of the previous database.

3. Problem statement

3.1 The Dataset

The image data used in this research was taken
from a single dataset. We used Understanding
Clouds from Satellite Images Dataset (UCSID). It
consists of 10000 RGB images taken from two
polar-orbiting satellites, TERRA and AQUA [6],
each of which passes a specific region once a day.
Because of the limited field of view of the imagers
installed on these satellites, each image is stitched

together from two places on orbit. The remaining
area that has not been covered by two orbits if filled
black. There are compression artifacts, so the black
color has some small-valued anomalies.

There are regions in satellite images that
contain certain cloud formations, with label names:
Fish, Flower, Gravel and Sugar. Each image has at
least one cloud formation, and can possibly contain
up to all four.

The labels for these regions were created in a
crowd-sourcing activity at the Max-Planck-Institute
for Meteorology in Hamburg, Germany, and the
Laboratoire de météorologiec Dynamique in Paris,
France. A team of 68 scientists identified areas of
cloud patterns in each image, and each image was
labeled by approximately 3 different scientists.
Ground truth was determined by the union of the
areas marked by all labelers for that image, after
removing any black band area from the areas [7]. All
images have a native resolution of 2100x1400
pixels. The sample image from UCSID with the
overlayed mask is shown in Fig. [1].

Image: f516a20.jpg. Label: Gravel Image: a44d1c0.jpg. Label: Flower

0.jpg. Label: Sugar

Fig. 1. Example images from UCSID with
masks overlayed

Due to the way UCSID was collected, it has a
significant amount of noise pixels in cloud masks.
As masks are composed of rectangles that overlay
cloud completely, there are many pixels, which are
labeled as clouds but, in reality, are not. Not all
clouds are marked, too. Additionally, because of the
concatenation of masks from different annotators,
classes can overlap significantly, including cases,
where all four classes are assigned to the same
pixels.

Most images contain more than one label per
sample. The distribution of cloud types per image is
shown in Fig. [2].
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Fig. 2. Number of cloud types per images

We analyze which cloud types are usually
found together. The distribution of labels co-
occurrence is shown in Fig. [3].
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Fig. 3. Frequency diagram of different labels
cooccurrence

UCSID is divided into 5546 train, 3698
validation and test images by competition
organizers. Additionally, we do not have access to
labels of validation and test datasets.

We did no modifications to the dataset
distribution (undersampling, oversampling, etc.).

3.2 Evaluation metric

In this research, we used the Dice coefficient,
which is the same as the Fl-score. The Dice
coefficient can be used to compare the pixel-wise
agreement between a predicted segmentation and its

corresponding ground truth. The formula is given by:
2-(XNY)

(X)+(Y)
where: X is the predicted set of pixels and Y is the
ground truth set of pixels.

The Dice coefficient is defined to be 1 when
both X and Y are empty. The overall score is the
mean of the Dice coefficients for every pair of
images and labels in the dataset.

Thus, we take into account the possible
difference in relative cloud sizes.

D=F,=

4. Method

4.1 Preprocessing

Model training and validation were performed
with preprocessed versions of the original images.
As original image resolution is unnecessarily large
and evaluation was performed in the resolution of
350x525 pixels, images were resized.

Because UCSID was collected from satellites
flying over the same regions, slight contours of sea
bed can be seen if photos are averaged. Also, the
shape of the black stripe on the photos depends on
the satellites’ position and region. A possible
correlation between place and preferable clouds type
could create an unwanted bias during training, so we
used aggressive strategies of data augmentation.
Also, showing as much variance as possible to the
model during training increases its ability to
generalize to unseen regions.

4.2 Data augmentation

We used online augmentations, at least one
augmentation was applied to the training image
before inputting to the CNN. All augmentations
were from Albumentations [8] library: coarse
dropout; horizontal and vertical flips; shift, scale,
rotation; optical distortion; grid distortion, piecewise
affine distortion; shift of RGB channels; Gaussian
noise; motion blur; median and Gaussian blur;

sharpening; embossing; random changes of
brightness, contrast, and gamma.
Additionally, we used grid shuffle

augmentation. It alleviates the influence of the
persistent patterns of the image, simultaneously
preserving large enough parts of the clouds to be
successfully identified.

4.3 Network architecture

We aim to segment each satellite photograph
precisely despite noisy training masks. We build our
neural networks using conventional deep CNN,
which is built using the encoder-decoder
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architecture. Unfortunately, training the encoder
from scratch is computationally expensive,
especially given the small amount of training data
and noise in labels. Thus, we use Imagenet-
pretrained CNN architectures as initialization for
encoder [9].

Here, we propose the multi-task learning
approach to cloud segmentation (Fig. 4).
Additionally to the decoder, which predicts a
segmentation mask, we introduce a separate
classifier that uses features from the last layer of the
encoder.
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Fig. 4. Auxiliary classifier output during the
training phase

The decoder outputs 4 channels, one channel
per type of cloud. The classifier also has 4 outputs.
The motivation to use separate classifiers lies in the
assumption, that labels are less noisy on the image-
level. Individually annotated pixels can be noisy but
groups of pixels definitely represent the presence of
the cloud in the image. The addition of the classifier
passes more stable gradients to the encoder, which
increases the speed of training and accuracy. The
architecture of the classifier is shown in Fig. 5.
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Fig. 5. The architecture of the classifier

For the decoder, we utilize conventional
U-Net [10] and Feature Pyramid Network (FPN)
[11] architectures. In our experiments, we found,
that FPN decoder was consistently better because its
predictions are made in % of the image resolution.
This construct reduces the influence of noisy masks,
which explains better performance.

4.4 Training process
We used a single-stage training process and
single round pseudo-labeling for several particular
models.

4.4.1 Main training

The main training is performed on the 80 %
subset of UCSID, while the other 20 % is left as a
holdout dataset. The decoder was initialized with
random weights [12]. To save pretrained weights in
encoder while the decoder is in a random state, we
disabled training (froze) of the encoder for five
epochs while training decoder and classifier only.

We trained classifier and decoder separately.
Joint training of classifier and decoder as described
in 4.3 showed worse results. We observed, that it
happened because the classifier was training much
faster, than decoder and prevented decoder from
training on photos without clouds by stopping the
gradients.

Labels for classifiers were generated from
masks. If the ground truth mask was not empty, it
was considered a positive label for the classifier and
vice versa.

During our experiments, CNNs were trained up
to 50 epochs with early stopping [13]. Training
stopped automatically in a range from 30 to 40
epochs. We used a combination of novel optimizers:
Radam [14], LARS [15] and Lookahead [16]. This
combination was called “RangerLars” by deep
learning engineers [17]. In this task, it scored
consistently better, than the Radam baseline.

We use cosine annealing learning rate schedule
to achieve a better any-time performance of our
CNNs [18].

4.4.2 Loss functions

To train our models we used different loss
functions and their combinations. The basic losses
used are:

— Binary Cross-Entropy (BCE) loss which is
classically used for tasks of segmentation;

— Focal loss, as we tried to down-weight the
contribution of easy examples (non-noisy pixels);

— Soft Dice loss [19], we wanted to use loss
which correlates with the target metric;

— The logarithm of the Dice loss for better
convergence.
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Experimentally we've found that sum reduction
of BCE, focal and log dice losses outperforms other
losses separately on the validation set. Also, we used
trimming for the Focal and BCE loss to smooth out
the noise in ground truth labels presented in data.
Plots of used losses can be found in Fig. 6.

Binary Cross-Entropy

[ Trimmed at 2 Binary Cross-Entropy
Dice Loss

\ — Log Dice Loss

' Focal Loss

Trimmed at 1 Focal Loss

0.0 0.2 04 06 0.8 1.0
Probability of ground truth class

Fig. 6. The plot of different loss functions
(best viewed in color)

From this figure it is clearly seen, that trimmed
versions of losses penalize network less if its
prediction is incorrect, which happens frequently,
given the noisy data.

We used Binary Cross-Entropy loss for the
classifier, as we found image-level labels to be
stable.

During training, we evaluated the performance
of the segmentation model using only non-empty
masks making the classifier to be responsible for the
detection of empty images. Using this technique, we
were able to increase the recall of the segmentation
model.

At training time, we regularize our models for
better robustness. We use conventional methods,
e.g., weight decay and dropout.

4.4.2 Pseudo-labeling

We use pseudo-labeling [20] to reduce the
effect of noisy labels during the initial stage of
training. We used an ensemble of previously trained
models to re-label the training set. Then, we used the
modified training set to train other CNNs.

While introducing significant confirmation bias
[21], this method reduced noise in labels
significantly, as now; masks were generated by
single labeler with proper procedure. In Fig. 7 we
show ground truth and pseudo-labeling masks
(boundaries — ground truth, fill — pseudo labels).

As seen from this illustration, pseudo-labels are
way smoother and look more consistent with the
underlying clouds.

Fig. 7. Example of pseudo-labels on the photo
with severe label noise (best viewed in color)

To reduce unwanted bias, we use pseudo-labels
only to pretrain CNNSs for the first five epochs. It
reduced training time significantly and led to better
performance on holdout and testing sets.

Additionally, we used the testing set as pseudo-
labels, too. To decrease noise in pseudo-labels, we
used binarized masks after post-processing. It
reduced the influence of overlapping clouds and
small noisy masks, generated only by the ensemble
itself.

Networks trained this way performed slightly
better on holdout set and slightly worse on the final
test set than networks that were trained only with
ground-truth labels.

4.5 Inference

During inference, we resized testing images to
the size, on which models were trained. Predicted
masks were resized to the fixed resolution of
350x525 pixels. Also, we apply the sigmoid function
to the CNN output to get probabilities.

To obtain the final segmentation mask, we
multiply classification output by segmentation mask.
This allows us to reduce false-positive results in the
post-processing step. The structure of the inference
network graph is shown in Fig. 8.
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Fig. 8. Inference CNN setup
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We utilize test-time augmentations,
ensembling, and mask post-processing to achieve
more stable results.

4.5.1 Test-time augmentations

To reduce the variance of predictions, we
utilize test-time augmentations (TTA) [22]: we
make predictions on different changed versions of
the original images, and then average prediction
results. As pictures of clouds can be viewed from
any angle and in different time of the day, we
utilize the following changes to each original
image:

1. Original image;

2. Horizontal flip

3. Vertical flip

4. Multiplicative dimming

5. Multiplicative brightening

Here, we define multiplicative dimming and
brightening as a multiplication of image pixel
intensity values over a constant factor (0.9 for
dimming, and 1.1 for brightening).

4.5.2 Post-processing

Segmentation CNN  outputs  continuous
floating-point numbers for every pixel. To
transform them into the binary mask, we threshold
them. Using the holdout validation set, we perform
a linear search for the threshold that maximizes the
Dice coefficient, given fixed predictions of CNN.

Also, as the Dice coefficient is defined to be 1
when prediction and ground truth are empty, even a
single false positive pixel makes the Dice
coefficient 0. We use minimal size cutoff, by
assigning all zeros to the mask, which has area
lower than a threshold. To perform a search, we
selected areas from 5 % to 20 % of the total area of
the segmentation mask.

The example of threshold selection is shown in
Fig. 9. We select threshold and cut size, which
maximizes the Dice score and lies in the flat region
of the plot [28]. We make an assumption, that this
type of threshold selection guarantees similar
performance on different datasets.

Gravel

P "\‘
2 =

7

Sugar

Fig. 9. The dependency of Dice score
from the threshold and minimum size
cutoff (best viewed in color)

4.5.3 Ensemble

We used single-fold models, with different
split, to get a more robust ensemble of them.

In our ensemble, we used models with a diverse
set of encoder architectures. Additionally, we
selected models that had different distributions of
errors relative to images on the holdout set.

Because models were trained with different
settings (input shape, interpolation, color scheme,
etc.), we obtained prediction masks from every
model separately. To obtain final predictions, we
average obtained masks w.r.t. to channels and apply
post-processing to the result. The post-processed
mask is then used to evaluate the ensemble.

Our best ensemble consisted of the following
encoder architectures:

. ResNet-34 [23]

. ResNet-50

. EfficientNet-BO0 [24]
. EfficientNet-B1

. EfficientNet-B2

. DenseNet-121 [25]

. DenseNet-169

~No ol N

We used the Catalyst framework [26] based on
PyTorch [27] with GPU support. Evaluation of the
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whole ensemble was performed on Nvidia V100 GPU
in 40 minutes, processing 1.5 seconds per image.

5. Results

Our test stage was split into two parts: local
testing and Kaggle testing. As we found locally, the
ensembling method is the best one, and we evaluated
it on Kaggle validation and test datasets.

On a local dataset of 1110 images, ensembling
with TTA performed the best, as well as it
performed better on the testing dataset of 3346
images as it has a better ability to generalize on
unseen images.

Ensembles scored 0.66732/0.66322
validation/test Dice score for an ensemble without
test-set pseudo-labeling and 0.66988/0.65982 with
it.

The ensembles showed their stability in the
final scoring, keeping consistent rank (60 and 46 of
1538) on validation and testing datasets,
respectively.

Conclusions. In this paper, we proposed an
end-to-end deep learning-based method for the
segmentation of different types of clouds from RGB
satellite images with a preprocessing and post-
processing pipeline. We have trained the ensemble
from several networks on augmented data and made
a hyperparameter selection for better model
performance.

We have used an ensemble of 7 CNN
architectures (ResNet-34, ResNet-50, EfficientNet-
B0, EfficientNet-B1, EfficientNet-B2, DenseNet-
121,DenseNet-169) and made transfer learning for
our final solution.

From the experimental results, the proposed
method demonstrates stable results and learns good
general features from noisy data. As we observed
during the experiments, our model finds types of
clouds, which are not annotated on the images but
seem to be correctly defined by the model.

Future work can extend this method with the
interpretation of the model predictions, as well as for
the whole ensemble.
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CETMEHTAIIA HATEPHIB OPT AHI3AIIIL XMAP HA CYITYTHUKOBHUX
30BPA’KEHHSAX 3 BUKOPUCTAHHAM I'NIMBOKHUX
HEMPOHHHNX MEPEX

Anomauia. 3mina Kiimamy € 0OHIEI 3 HAUBANCTUBIUUX NPOOIEM, WO CMOSAMb 3apa3 Nepeo TI0OCMEOM. Baxciusorw yacmunoo
KAIMamuynux mooeneti € pyx xmap, AKuu pizko enaueac na napamempu kinimamy. Hesucoxi xmapu epaioms Genuuesny poiab y
susHauenni kuimanmy 3emni. Ixniti pyx maxooc ckradno sposymimu i npedcmasumu 6 KiimamuuHux modenax. Ha ocanv, moune
MOOENIOBAHHS PYXY XMAP € CKIAOHOK 3a0auer0 md umMazde OOCKOHAN020 3HAHHA OCHOBHUX (DISUYHUX Npoyecié i NOoYamkosux
cmanie. Meoici Midic pisHUMU MUNAMU XMAD 3A36UHALL POSMUMI § iX 8ANHCKO BUSHAUUMU 30 OONOMO20I0 CUCMEM NPUUHAMMA PilieHb
Ha ocHosi npasui. CnpowjeHHss emany ceeMeHmayii Mae upiliaibHe 3HAYeH s | MoJice QONoMo2muy OOCTIOHUKAM 8 po3pooyi Oinbus
dockonanux Kiimamuunux mooeneil. Kougonioyitini HelupouHi Mmepeoici Oyau YCHIWHO 3ACMOCOBAHI 8 0a2ambOX AHANOSTYHUX
obnacmsax, a makoodic Onsi camoi ceemenmayii xmap. Ilpome, icnye npobrema 6ucoxoi eapmocmi Xopouwiux HaOOpié Oanux 3
MApKY8aAHHAM HA Pi6HI NiKCeNis, MoMy 6 2any3i 4acmo UKOPUCMOBYIOMbCA 2py0i Habopu OaHUX 3 MiMKamMu pieHsa 300padxcenus. YV
yill cmammi Mu nPONOHYEMO KOMNIEKCHULL Memo0 HA OCHO8I eMubOK020 HA8YAHHA 01A Kiacugixayii ma ceemenmayii xmap pisHux
MUunié 3 00HO20 KOIbOPOBO2O CYRYMHUKOB020 300padicenHs. Tym mu npononyemo bazamo3adaunuil nioxio 0o cezmenmayii xmap. Ha
0odamok 00 mooeni ceemenmayii, Mu 6600UMO OKpeMull KAACUQikamop, AKUll GUKOPUCTNOBYE O3HAKU 3 CePeOHbO20 DI6HA MOOeli
ceemenmayii. [Ipeocmasnenuii memoo moodice guKopucmogysamu 2py0i, HepisHI | Maki, Wo NEPeKpusamvpcs MACKU 018 Xmap.
Buxoosauu 3 pezynbmamis excnepumenmis, 3anponoHO8aHUNL MemooO OeMOHCMPYE cmMabiibHi pe3yIbmamu i 8UBYA€E XOPOuli 3a2albHi
Xapakmepucmuky 3 3auiyMaeHHUx 0aHux. Ak mu cnocmepieanu nio 4ac eKxcnepumMenmis, Haua Mooelb NPasuibHO 3HAX0OUMb XMaApu,
SKI He AHOMOBAHI HA 300PANCEHHAX. 3anponoHo8anutl Memood éxooums 6 mon 3 % ceped KOHKYpyiouux memoodié Ha Habopi OaHuUx
Understanding Clouds from Satellite Images.

Keywords: aiuboke nasuanmns;, cynymnuxosa 3tomKa; 2nuOOKI KOHEOMOYIUHI HEUPOHHI Mepedici; 6a2amoyilbo8e HAGHAHHSI,
knacughixayis xmapuux ymeopenw; Kaggle; memeoponozis
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CEIrMEHTAIUS HATTEPHOB OPTAHU3AIINA OBJIAKOB HA CITYTHUKOBBIX
CHUMKAX C UCITOJIBb30BAHUEM I'JIYBOKHX
HEWPOHHBIX CETEHN

Annomauusa. Hsmenenue Kiumama aeisiemcsi OOHOU U3 GANCHEUWUX NPOoOAeM, CMOAWUX celdac neped Heio8eyecmeom.
Basicnoii wacmvio kiumamuyeckux mooeneil a6nsemcsi 0gudicenue 001aKo8, KOMOpblll CUNbHO GIUsem HA Napamempul Kiumamd.
Husxue obaaxa uepaiom ocpomuylo ponv 6 onpedenenus kmumama 3emau. VX O0eudicenue CloOdiCHO NOMAMb U NPeOCMAsUmbv 8
KaumMamuyeckux mooensx. K coxcanenuro, mounoe Mooenuposanue O8UNCEeHUss 001aK08 ABNAEMC s CIONCHOU 3a0ayell u mpebyem
MOYHO20 3HAHUSA OCHOBHBIX PUSUUECKUX NPOYECCO8 U HAYATbHBIX COCMOAHUY. I panuybl Mexcoy pasnbimu munamiu 061aKo8, 00bI4HO
Pazmuimul, uX MpyoHO ONPeoelunms ¢ NOMOWLIO CUCHEeM NPUHAMUS peueHull Ha OCHO8e npaguil. Ynpowenue smana cecmeHmayui
umMeem pewlaroujee 3HAYeHue U MOXdCem NOMOYb UCCIe08AMENIM 6 pa3spabomie Oolee COBEPUEHHBIX KIUMAMUYECKUX MOOeLel.
Ceepxmounvie HelpoHHble cemu YCHewHo NPUMEHAIOMCS 60 MHOSUX AHANOSUYHBIX OOIACMAX, a MaKdce Olis CaMOll cesMeHmayuu
obnaxos. Oonako cywecmeyem npobiema 8blCOKOU CHOUMOCIU XOPOUIUX HAOOPO8 OAHHBIX C MAPKUPOBKOU HA YpOGHe NuKceiel,
HO2MOMY 8 OMPACAU YACMO UCNOAb3YIOM 2pyOble HADOPbL OAHHBIX C PA3MEMKOU YPOSHS uzobpasxcenus. B smoti cmamve mul
npeonazaem KOMNIEKCHbI MemooO HA OCHOGe 2yO0oK020 0byuenus Ol K1aCCUQuUKayuu u ceecmenmayui 001aKo8 pasHvlX munog ¢
00HO20 YBEMHO20 CNYMHUKOB020 U300padcenusi. 30ecb Mbl npeonazaem MHO203A0AYHbI NOOX00 K ceemenmayuu obnaxos. B
OONONIHEHUe K MOOeNU Ce2MEHMayull, Mbl 6600UM OMOENbHYIL KIACCUDUKAMOP, KOMOPBIU UCNONb3Yem NPUSHAKU C CPEOHE20 YPOBHS.
mooenu ceemenmayuu. IIpedcmasnennviti Memoo MOMcem UCNONb308aMb 2pydble, HeposHble U nepecekaiowuecs Memku O
061akos. Hcxo0s u3 pe3ynomamog 3KCREPUMEHNO8, NPeONIONCEHHbIN MEMoO OeMOHCIMPUpYem cmabuibHble pe3yibmanmsl U uyuaen,
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uzenexaem oowue XAPAKMEPUCIMUKY C 3AUWYMICHHBIX OaHHbIX. Kax Mbl HAOIIOO0AAU 60 6PEMs DKCNEPUMEHNMOS, HAULA MOOelb
npasuibHo Haxooum obnaxa, komopwvle HE annomupogantvle na uzodpasicenusx. Ipeonoscennuiii memod eéxooum ¢ mon 3 % cpeou
KOHKYpUpyouux memoooe Ha nabope danuvix Understanding Clouds from Satellite Images.

Knrouesvie cnosa: 2nyboxoe obyueHue; Cnymiuko8das CoeMKd; 2Iy00Kue C6epXmounbvle HeUpoHHble Cemu; MHO20Y3A0auHOe
obyuenue; kiaccugurayus oonaunvix oopasosanuil; Kaggle; memeoponozcus
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