Herald of Advanced Information Technology 2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

UDK 004.415.2

Oleksiy B. Kungurtsev?, Candidate of Technical Sciences, Professor of the System Software Department,
E-mail: abkun@te.net.ua, ORCID:; 0000 — 0002 — 3207 — 7315

Nataliia O. Novikova?, Senior Teacher of the Department “Technical Cybernetics and Information
Technology named prof. R. V. Merkt”, E-mail: nataliya.novikova.31@gmail.com,

ORCID: 0000 — 0002 — 6257 — 9703

1 Odessa National Polytechnic University, Avenue Shevchenko, 1, Odessa, Ukraine, 65044

2(Qdessa National Maritime University, Mechnikov str. 34, Odessa, Ukraine, 65029

IDENTIFICATION OF CLASS MODELS IMPERFECTION

Abstract. The analysis of methods for testing models of program classes is carried out. It is shown that in connection with the
increase in the volume of work at the stage of compiling models, the relevance of model verification is increasing. It has been estab-
lished that to test class models obtained as a result of an automated description of use cases, it is necessary to improve the existing
class model and expand the set of checks in comparison with existing solutions. The class model was further developed. The model
has three sections: the class head, class methods, and class attributes. The model improving is to introduce the concept of the pur-
pose of creation and use for the class as a whole, its methods and attributes. Each operation associated with the construction of a
class model is provided with a link to the corresponding use case and its item, which allows, if necessary, the transition from re-
quirements to model description elements (direct trace) and from description elements to requirements (reverse trace). A type system
for model elements has been introduced, which allows, without specifying types at the level of a programming language, to fully rep-
resent the declaration of functions and class attributes. Based on a number of design patterns and refactoring cases, three categories
of situations are identified when the class model should be improved: criticisms on the class as a whole, criticisms on the functions of
the class, criticisms on the attributes of the class. For each category, a set of criticisms on the model is established and solutions for
their identification are proposed. The proposed models and algorithms are implemented in a software solution and have been tested
in terms of the completeness of identifying criticisms on the model and reducing the time for the process of identifying criticisms

compared to traditional technologies for defects detecting in the class models.
Keywords: use cases; class model; scenario, conceptual classes, design patterns

Introduction

The representation of functional requirements
as Use Cases (UC) is commonly used in the devel-
opment of information systems (IS). The first fun-
damental work on determining the application scope,
structure and description rules of UCs appeared at
the beginning of the current century [1-2]. However,
to date, interest in the use of UC has not diminished
[3-4]. In [5], a classification of UCs scenario items
was proposed, which laid the foundation for the au-
tomation of their description. Continuation of re-
search in this direction [6] made it possible to sup-
plement the classification and combine the descrip-
tion of UC with the construction of conceptual clas-
ses of a software product. In [7], an automated tech-
nology for the conceptual class modelling was pro-
posed. In [8], methods for correcting the model of
conceptual classes in connection with changes in the
formulation of various items of scenarios for Use
Cases are proposed and tracing of each item of the
Use Case scenario in conceptual classes and their
methods and attributes. Given the significant in-
crease in the volume of work on a class modelling
within the total amount of work on a software pro-
ject, the task of automating the analysis and improv-
ing the quality of class models has become urgent.

© Kungurtsev, O. B., Novikova, N. O., 2020

Analysis of known solutions

One of the most well-known methods of ana-
lyzing class models is the compilation of CRC
(class-responsibility-collaboration) cards [9]. Such
cards allow to check the distribution of responsibili-
ties between classes at the level of the aggregative
functions of the software product being designed,
therefore they are mainly used in the process of
brainstorming. The task of improving the quality of
models is directly related to the identification of
metrics that determine quality. In [10], an attempt
was made to determine the basic metrics that deter-
mine the quality of object-oriented software.

In relation to class models, it is of interest to
implement the following metrics:

— Weighted Methods per Class (WMC); deter-
mines the number and complexity of methods im-
plemented in the class;

— Lack of Cohesion of Methods (LCOM); de-
fines the relationship between methods by parame-
ters and attributes;

— Coupling between Object Classes (CBO); de-
termines the number of other classes that this class is
associated with.

In [11], based on a statistical study of multiple
projects, conclusions were drawn about the frequen-

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 13

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

cy of occurrence of defects of various types in soft
ware models, which allows prioritizing the functions
of class models. In [12], it is proposed to take into
account in complexity metrics frequency and density
of software module failures.

In [13], it was proposed to introduce 3 levels of
metrics to determine the quality of object-oriented
software:

— Package level matrics;

— Class level matrics;

— Method level matrics.

From the point of view of model analysis, series
of class and method level metrics are of interest: the
length of the attribute and method name, the number
of lines of code in the class, the number of methods
and attributes in the class, the number of parameters
in the method.

In [14], a quality model for new design patterns
was proposed. The proposed description properties
and corresponding metrics (utility, completeness,
consistency, and compre-hensibility) are looking
promising.

The study [15] analyzed the most popular of the
existing approaches to verification of the most
commonly used UML diagrams — class diagrams. It
is shown that the method based on the creation of
the driver, the pattern-based method, the method of
constructing an identity graph and the method of
representing classes in the form of sets allow solving
only specific problems of analyzing the quality of
models. It is shown how to comprehensively use
these methods. In furtherance of the proposed meth-
od, a new language of block simulation has been
created [16], which allows combining inductive and
deductive approaches to creating simulation models
in one model. The proposed methods and language
do not allow testing all the components of class
models built on the basis of UC, but they can be use-
ful in assessing the completeness of the model con-
sidered in this paper.

An analysis of known solutions shows that exist-
ing technologies for analyzing class models do not
cover all aspects of model testing or are not suffi-
ciently automated. This leads to the retention of a sig-
nificant share of “manual labour” in the analysis.
Thus, the problem is to reduce the time it takes to
analyze class models. To solve the problem, it is pro-
posed to develop a method for identifying defects in
models constructed as a result of the application of

technology for the automated creation of class models
in accordance with the description of the UC.

Study objectives

To solve the problem described, the following
research objectives are outlined:

— improvement of the class model to expand its
testing capabilities;

— identification of class mismatch with the basic
design patterns;

— identification of the discrepancy between the
methods of the class model and the requirements for
the methods of the program class;

— identification of discrepancies of the attributes
of the class model to the requirements for attributes
of the program class.

Conceptual Class Model (CCM)

The model below differs from the model pro-
posed in [7] in the following significant changes:

— the structural elements (head, methods, attrib-
utes) are distinguished in the model;

— the concept of the purpose of using the class
is introduced, which allows to simplify the search
for the desired class and apply design patterns to it;

— the concept of the purpose of using the class
method is introduced;

— the concept of the purpose of creating a class
attribute is introduced;

— such attribute characteristics as the minimum
and maximum values that can be obtained in the
general data packet when testing the modules are
removed;

— the universal data types for class attributes,
arguments and return values of methods are intro-
duced.

All classes included in the CCM are represented
by the set:

Mc ={c}, (1)
Each class (prototype) is represented by a tuple
¢ =< cHead, mMeth , mAttr >, (2)

where: cHead is the class head;
—mMeth is the set of class functions (methods);
—maAttr is the set of class attributes.
The head of class
The head of class is represented by a tuple

cHead =< cName, tC, location,
uName,nP, mPurp >
where: cName is the name of class;

14 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

— tC ="class"|" prototype" is the type of class;

— location ="u"|"s" is the lifetime of the class
objects (either during the execution of the use case —
U, or during the operation of the system — s);

— uNamenP are the name of the use case (UC)
and the number of the point where the class (proto-
type) was created;

— mPurp ={<uName, purpose >}is a list of

class usage goals.

Class functions

The set of class functions mMeth contains
functions (methods) of the form:

func =< fName mPurp, mArgs, returnVal,
mRsArgs, mNewValAtt, (3)
mCalcAttr,mRfFunc> ,
where: fName is the name of function,

— mPurp ={<uName, purpose >} is a list of
purposes of using the function;

— mArgs ={ <id,argType,arg Purp > } is a list
of function arguments (each argument is represented
by an identifierid , type argType and purpose of
use argPurp);

— returnVal =< retType, purpose > is the value

returned by the function (represented by the type of
the returned value and the purpose of use);

— mRsArgs is a set of method arguments used
as a result of the calculation;

— mNewValAtt r is a set of attributes that take
on new values as a result of function execution;

— mCalcAttr is a set of class attributes used in
calculations of this function;

— mRfFunc is a set of references to external
functions (methods of other classes) used in this
method. Each element of the set mRfFunc is repre-

sented by a tuple:

mRfFung =< cName;, fName>,
where: cName; is the class to which the external
function belongs (in the general case, several exter-
nal functions may belong to the same class); fName

is the name of the external function.

Class attributes

The set of class attributes contains attributes of
the form:

mAttr ={< attrName, purpose,
attrType, mAttrRf >},

where: attrName is the name of attribute;
—purpose— is the purpose of attribute use;
—attrType is the type of attribute;
— mAttrRf ={< fName,uName,nP >} is a set of

references to functions (methods) that use the attribute.

Data types

Class attributes, method arguments, and method
return values must be typified. However, the class
model does not provide a specific language for its
implementation. As a result of the analysis of the
general approach to data typify [19] it was proposed
to use the following data types in the model:

« List — a list (can represent a linear list, an ar-
ray, a set, etc.);

« Struct — a structure (in the general case, con-
tains fields of various types), must contain the num-
bering of the fields;

» Text — any text;

* Numb — any number format;

» Bool — Boolean value;

« Void — the function does not return a value;

» PClass — a reference to a class object corre-
sponds to the class hame cName ;

The Void type isn't used forargType . The type

PClass isn't used for retType.

Cases when a class model should be im-
proved

Based on the analysis of the information pre-
sented in the class model, the previously considered
metrics, well-known design patterns [17] and refac-
toring cases [18], the following options (criticisms)
are proposed for the analysis of the class model with
respect to its structural elements.

Criticisms of class in general:

— the class has many different purposes of use
(mismatch with the High Cohesion pattern); the
class is difficult to understand and maintain;

— the class has many references to other classes
(mismatch with the Low Coupling pattern); the class
is difficult to understand and maintain;

— the class has few functions differing of get ...
() and set ... (); perhaps there is a need to add func-
tionality to the class, or combine it with another
class;

— a very large class; perhaps there is a need to
split the class into several classes;

(4)

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 15

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

— it makes sense to present a class as derived
from a base class; if two or more classes have a num-
ber of identical attributes and methods, then it makes
sense to create some parent class, and present the
classes in question as being derived from that one.

Criticisms of class methods:

— the method has many arguments; this makes it
difficult to understand the method; perhaps there is a
need to split the method into several ones;

— the method returns more than one value; if the
method returns more than one value through attrib
utes, or through a name and attributes simultaneous-
ly, then it makes the program difficult to understand
and could be a source of errors;

— several methods of the same class have the
same name; this makes it difficult to understand the
program and could be a source of errors; perhaps the
method should be renamed;

— the method uses many references to methods
of other classes; it might make sense to transfer the
method to another class;

Criticisms of class attributes:

— attribute values are set by methods of other
classes (via set ... () methods of this class); it is al-
lowed to use of the set ... () method when initializing
the object; reuse often indicates that attribute value
manipulations come from other classes;

— the attribute is duplicated in other classes;
there are problems with maintaining the current val-
ue of the attribute; perhaps there is a need to place
this attribute in only one class;

— the attribute is used by other classes through
the get ... () method, i.e. without processing in its
own class;

— the attribute is often used in other classes and
rarely in its class; perhaps there is a need to transfer
the attribute to another class.

Identification of cases requiring improve-
ment of the class model as a whole

Inconsistency with the High Cohesion pattern.
The set of purposes of class use should be analyzed.
Analysis automation involves creating a set of pur-
poses for a class by removing duplicated ones:

mPurp’ ={purpose}. (5)

To make a decision on the coincidence of pur-
poses purposg and purpose;, it was proposed to
apply phrase comparison using the multi-word terms
identification method (MWT) [20]. We introduce a

threshold value TPurMax (for example, 2), the ex-
cess of which should attract the attention of the re-
searcher to the class

| mPurp’ [>TPurMax.

Mismatch with the Low Coupling pattern. The
connection of some class with other ones is deter-
mined by the presence of PClass type arguments
among the arguments of the methods of this class, as
well as references mRfFunc to the methods of other

classes from the body of the methods of this class.
The set of references to other classes in method
arguments is defined as:

mArgPClass=

j=n
U{argi | argType, = PClass};i=1,m
j=1

where: m is the number of arguments in i-th meth-
od;

—n is the number of class methods.

The set of references to other classes in the
body of methods is defined as:

j=n
mFuncRf = U{meFunq CcName};i=1p,
j=1

where p is the number of references to external func-
tions in the i-th method.

The number of connections of this class with
other ones is calculated by the formula

mRf = mArgPClass w mFuncRf . (6)

If| mRf |>TCoupMax , where TCoupMax is the

permissible number of connections, then the re-
searcher should pay attention to the class.

There are few functions differing of get ... ()
and set ... (). The analysis consists in determining
the absolute and relative number of functions other
than get ... () and set ... ().

The absolute number of functions

NAFunc=
|[{ func,.Name| func,.Name[1—3] #"set" . (7
() A func,.Namg1—3] #"get"}|

Here, the expression in square brackets defines
the indices of the characters to be compared.
The relative number of functions

16 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

_ NAFunc 8
| mMeth|

If NRFunc > TFuncMax , where TFuncMax -—
is the admissible value of the ratio of functions, then
the researcher should pay attention to the class.

The very large class. Typically, the size of a
class is determined by the number of lines of its
code. When analyzing models, the researcher can be
provided with information on the number of meth-
ods and class attributes. Number of methods:

NRFunc

NMeth =| mMeth |. 9)
Number of attributes:
NAttr =| mAttr |. (20)

In this case, the metrics NMeth and NAttr
contain enough information to estimate the size of
the class.

It makes sense to present a class as being de-
rived from a base class. To identify the “kinship”

between classes c; and C; it is proposed to compare
the lists of purposes of classes using.

We introduce the operation of determining the
set of shared purposes of classes ¢; and c;:

mPurposg ; = mC,.purpose(. mC,; . purpose

based on MWT. If purpose, ; =<, then the assess-

ment of the possible “kinship” of the classes is left
to the discretion of the expert.
If the decision is positive, a list of attributes is

defined that can be shared within classes c; andc; .

mSameAtty; ={c; mAttr,,c;.mAttg |

(c;.mAttr,.purpose = ¢; . mALtg . purpose) A

(c; mAttr, attrType=c; mAttg attrType)},
p=1P; k=LK,

where P and K are the numbers of attributes in the
classes c; and c; respectively, and the coincidence

of purposes for the attributes is determined by the
method of fuzzy string matching (FSM). If
mSameAtty i * &, then the assessment of the possi-

ble “kinship” of the classes is left to the discretion of
the expert.

If there are coincident attributes, then you
should look for methods coincident by purpose of
use:

mSameMeth ; ={c;. mMeth,,c;.mMeth, |
(c;.mMeth, . purpose = ¢;. mMeth, . purpose)}, T
p=1Pk=1K.

He final decision on introducing a class hierar-
chy is determined by the expert after a detailed anal-
ysis of the methods.

Identification of cases requiring improve-
ment of the class methods

The method has many arguments. It makes
sense to determine the value that defines the concept
of a “large” number of arguments. Let it be
TArgsMax , then it is be possible to form and present
to the researcher the set of class methods for which

the number of arguments is equal to or greater than
TArgsMax :

mFuncLArgs={func, |
(| func,.mArgs|> TArgsMax)}

The method returns more than one value. The
researcher should be provided with a set of methods
that return more than one value with the name of the
method or through attributes.

(11)

mFuncLretunVal ={func; |

(| func,. mRsArgs|>2) v

(| func;,. mRsArgs > 1) A
returnVal =#Void)}

Several methods of the same class have the
same name. The researcher should be provided with
a set of methods that have the same name.

(12)

mFuncSameNames ={ func; |
(func,. fName= func;.fName)}, (13)
i=1Ln-1 j=i+1n

where n is the number of methods within the class.
The method uses many references to methods of

other classes. It makes sense to determine the value

that defines the concept of a “large” number of ref-

erences. Let it be TRfMax , then it is possible to form

and present to the researcher the set of class methods
for which the number of links is equal to or greater
than TRfMax :

mLRfFunc={func, |

(| fung. mRfFunc> TRfMax)}’ 1)

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 17

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

Identification of cases requiring improve-
ment of the class attributes

Attribute values are set by methods of other
classes (via set ... () methods of this class). It makes
sense to determine the value that defines the concept
of a “large” number of calls to the set ... () method.
Let it isTSetMax , then it is possible to form and pre-
sent to the researcher a set of attributes for which the
number of calls to the set ... () method exceeds the
value TSetMax .

Define the number of references to the set... ()
method for each attribute

NSet, = {mALtrRf, |
MALtrRf. fNamg1—3] ="set'}|

Define a set of attributes for which the number
of links exceeds TSetMax

mAttr’ ={mAttr |
mALttr.NSet > TSetMax}

The attribute is duplicated in other classes. To
determine duplicate attributes, it is necessary to
compare the attributes of different classes by name,
purpose of use and type. To compare attributes, it
was proposed to use fuzzy string matching methods
[21-22]. In addition, it makes no sense to consider
classes with a local lifetime (location ="u"), since
for objects of these classes temporary duplication of
attributes can be allowed. To help the analyst, we
will form a set of attributes that can be considered as
duplicating each other.

(15)

mSameAttr={c; mAttr,,c; mAtt |
(c;-mALttr,.purpose = c; mALttK . purpose)

A (c;.mAttr, attrType=c; mAttr attrType) (16)

A (c;location ="s") A (c; location="s")} ,
i=19-1 j=i+1q,
where q is the number of classes.

The attribute is used by other classes through
the get ... () method, i.e. without processing in its
own class. It makes sense to determine the value that
defines the concept of a “large” number of calls to
the get ... () method. Let it be TGetMax , then it is
possible to form and present to the researcher a set
of attributes for which the number of calls to the
get... () method exceeds the value TGetMax .

Define the number of references to the get ... ()
method for each attribute

NGet =[{mAttrRf, |
mALttrRf.. fNamg1-3] ="get'}|’

Define a set of attributes for which the number
of references exceeds TGetMax

mAttr’ ={mAttr |
mAttr.NGet, > TGetMax}

The attribute is often used in other classes and
rarely in its class. It is necessary to determine for
each attribute the number of references to the get ...
() method and other methods, as well as the ratio of
these values.

Define the number of references to other meth-
ods for each attribute

NOtherFung = {mAttrRf,}| —NGet;

(17

(NGet / NOtherFunc),

if NOtherFunc=0

RCoeff; = 0 (18)

if NOtherFunc=0

The value RCoeff; =0 indicates that the attrib-
ute attrNamei is not used in its class.

Testing the results of the study

To analyze the models, the Model Analysis
software product was created using three specialized
classes: the General AnalysisClass class for identify-
ing cases requiring improvement of the class model
as a whole, the MethodAnalysisClass class for iden-
tifying cases requiring improvement of the class
model methods, and the AttributeAnalysisClass
class for identifying cases requiring improved class
model attributes.

The usage of the UseCaseEditorV3 software
product [7] to create the models under study turned
out to be irrational since the model obtained as a
result of the automated description of the UC con-
tained a very small and unpredictable amount of in-
accuracies. Therefore, the model was represented by
the Abstract ConceptualClass, which attribute area
contains the head of the class model (head), class
model methods (metList) and class model attributes
(attrList). To create models, we used its subclass
WorkingConceptClass, which contains a dialogue
constructor and the showAll() method to demon-
strate the contents of the model (Fig. 1). Objects of
the WorkingConceptClass class were created with

18 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; Vol.3 No.2: 13-22
Mathematical Foundations of IT

predefined inaccuracies that were to be detected in models. To determine the time advantage when ap-
experiments. The use of the software product Mod- plying ModelAnalysis, an experiment was conduct-
elAnalysis revealed all cases of deterioration of ed with 12 students.

Abstract Class The Class Class Objects
representing a Model that implements the Maodel WorkingConceptClass
Coneeptual Class WorkingConceptClass ol: ol0:

HeadingClass head, HeadingClass head;
ArrayList<Method> metList; ArrayList<Method> metList;
ArrayList<Atirib> attrList; ArrayList<Attrib> attrList;
WorkingConceptClass ()
showaAll ()

rrr 9

GeneralAnalysisClass Attribute AnalysisClass MethodAnalysisClass

Attribute AnalysisClass{) MethodAnalysisClass()
Sllﬂ\'-"h‘[ﬂllj:’f; etAtt () showhanyArghMethod()
Sh':'“'_D“l]h“?tP dattr () showManyRetmnsValMethod()
showhManyGetAttr () showldenticalNameshethod()
showRarelyUsedAttr () show©hanyReferenceshlethod()

GeneralAnalysisClass ()
showCohesion ()
showCoupling ()
showGetSet ()
showBigClass ()

Clas: ‘g Z . .] .
“lass for general Class for analyzing Class for analyzing

Model analysis Model attributes Model methods

Fig. 1. Structure of classes implementing model analysis
For research, 5 and 10 models of classes related fect detection time was fixed and averaged for all
by reciprocal references were proposed. Respond- respondents. The experimental data are summarized
ents were asked to identify defects in the model. De- in Table 1.

Table 1. The results of defects detection experiments in models

No. Type of defects Average time

defect detection

in minutes
(5 classes) (10 classes)
1 Class has many different purposes 2 4
2 The class has many references to other classes 10 25
3 The class has some functions differing of get ... () and set ... () 2 5
4 Very large class 1 2
5 It makes sense to present the class as being derived from the base 9 22
one

6 The method has many arguments 1 2
7 The method returns more than one value 3 7
8 Several methods of the same class have the same name 1 2
9 The method uses many references to methods of other classes 6 17
10 | Attribute values are set by methods of other classes 5 13
11 | The attribute is duplicated in other classes 6 14
12 | The attribute is used by other classes through the get ... () method 6 15
13 | The attribute is often used in other classes and rarely in its own 5 12
ISSN 2663-0176 (Print) Information technologies and computer systems 19

ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

The experiment showed that the detection of de-
fects in the model in manual mode in some cases re-
quires considerable time, while the automation of this
process reduces the analysis time to fractions of a
second. If we assume that the same time is spent on
these stages in debugging, the proposed method al-
lows reducing the debugging time by 50 %.

Conclusion. An improvement of the class mod-
el used in the UC automated description technology
is proposed by introducing the concept of the pur-
pose of use for a class, method, and attribute, which
allows evaluating the quality of the distribution of
responsibilities and data between classes. A list of
possible data types for the model is developed,
which allows checking the consistency of model
description elements. Mechanisms have been devel-
oped for the automated detection of class discrepan-
cy with basic design patterns; class model methods
discrepancy with the requirements for program class
methods, class model attributes discrepancy with the
requirements for program class attributes. The soft-
ware module has been created that allows class
models testing. The experiments showed the effec-
tiveness of the proposed solutions in terms of identi-
fying defects and reducing the time to analyze class
models.

References

1. Cockburn, Alistair. (October 15, 2000).
“Writing Effective Use Cases. Crystal Series for
Software Development 1st Edition”, Addison-Wesley
Professional, 294 p.

2. Leffingwell, Dean & Widrig, Don. (May 15,
2003). “Managing Software Requirements. A Use Case
Approach. 2 edition”, Addison-Wesley Professional,
544 p.

3. Skorikov, Eugene. (20.09.2019). “The
strengthening of UseCase methodic (by the origins
of Alistair Cockburn)” [Electronic Resource]. —
Access mode: URL:
https://habr.com/ru/post/468267/. — Active link —
20.09.2019 (in Russian).

4. Brandi, Denis. (Oct 16, 2019).”Why you
need Use Cases/Interactors” [Electronic Resource].
- Access mode: URL:
https://proandroiddev.com/why-you-need-use-cases-
interactors-142e8a6fe576. — Active link -
16.10.20109.

5. Vozovikov, Yu. N., Kungurtsev, A. B. &
Novikova, N. A. (2017). “Informacionnaya
tekhnologiya avtomatizirovannogo sostavleniya

variantov ispol'zovaniya”, [Information technology
for automated wuse cases], Naukovi praci
Donec'kogo nacional'nogo tekhnichnogo universite-
tu, Pokrovs'k, Ukraine, No. 1(30), 46-59 p. (in Rus-
sian).

6. Kungurtsev, A. B., Novikova, N. A., Resh-
etnyak, M. U. & Cherepinina, Y. V. (2018).
“Utochnenie klassifikatsii i modeley punktov tsena-
riev variatov ispolzovaniya” [Clarification of classi-
fication and models of scenario items of use cases],
Tehnichni nauki ta tehnologiyi, Chernigiv, Ukraine,
No. 1 (11), pp. 79-89 (in Russian).

7. Kungurtsev, Oleksii, Novikova, Nataliia,
Reshetnyak, Maria, Cherepinina, Yana,
Gromaszek, Konrad & Jarykbassov, Daniyar.
(2019). “Method for defining conceptual classes in
the description of use cases”, Proc. SPIE 11176,
Photonics Applications in Astronomy, Communica-
tions, Industry, and High-Energy Physics Experi-
ments 2019, 1117624 (6 November 2019). DOI:
10.1117/12.2537070.

8. _Novikova, Nataliia. (2020). “Changing and
tracing of software requirements at level of concep-
tual classes”, Applied Aspects of Information Tech-
nology, Vol. 3, No. 1, Odessa, Ukraine, Publ.
Science and Technica.
10.15276/aait.01.2020.2.

9. Stoletoff, Dmitry. (17 Mar 2016). “CRC-
cards — the project's everydayness” [Electronic
Resource]. - Access mode: URL:
https://imega.club/2016/03/17/crc-cards/ — Active
link —17.03.2016.

10. Parthasarathy, S & Neelamegam, Anba-
zhagan. (June 2006). “Analyzing the Software Qual-
ity Metrics for Object Oriented Technology. “ In-
formation Technology Journal 5(6). DOI:
10.3923/itj.2006.1053.1057
[Electronic Resource]. — Access mode: URL:
https://www.researchgate.net/publication/45949604
Analyz-
ing_the_Software_Quality_Metrics_for_Object_Ori
ented_Technology.

11. Zhiyi, Ma. (June 2017). “An approach to
improve the quality of object-oriented models from
novice modelers through project practice”, Fron-
tiers of Computer Science, Vol. 11, Issue 3, pp.
485-498. DOI: 10.1007/s11704-016-5164.

12. Jabbar, Abdul & Sarala, Subramani (June
2011). “Advanced Program Complexity Metrics and
Measurement”, International Journal of Computer
Applications, 23(2), pp. 29-33. DOl:
10.5120/2860-3679 [Electronic Resource]. — Access
mode: URL:

DOl:

20 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

https://habr.com/ru/users/EugeneSkorikov/
https://habr.com/ru/post/468267/
https://proandroiddev.com/@dnsbrnd?source=post_page-----142e8a6fe576----------------------
../../../../../../../../Documents%20and%20Settings/Admin/Мои%20документы/Downloads/Oct%2016,%202019
https://proandroiddev.com/why-you-need-use-cases-interactors-142e8a6fe576
https://proandroiddev.com/why-you-need-use-cases-interactors-142e8a6fe576
https://www.spiedigitallibrary.org/profile/notfound?author=Oleksii_Kungurtsev
https://www.spiedigitallibrary.org/profile/notfound?author=Nataliia_Novikova
https://www.spiedigitallibrary.org/profile/notfound?author=Maria_Reshetnyak
https://www.spiedigitallibrary.org/profile/notfound?author=Maria_Reshetnyak
https://www.spiedigitallibrary.org/profile/notfound?author=Yana_Cherepinina
https://www.spiedigitallibrary.org/profile/Konrad.Gromaszek-6449
https://www.spiedigitallibrary.org/profile/Konrad.Gromaszek-6449
https://www.spiedigitallibrary.org/profile/Daniyar%20.Jarykbassov-4146738
https://www.spiedigitallibrary.org/profile/notfound?author=Nataliia_Novikova
https://imega.club/2016/03/17/crc-cards/
https://www.researchgate.net/scientific-contributions/70376971_Parthasarathy_S
https://www.researchgate.net/profile/Neelamegam_Anbazhagan
https://www.researchgate.net/profile/Neelamegam_Anbazhagan
https://www.researchgate.net/journal/1812-5638_Information_Technology_Journal
https://www.researchgate.net/journal/1812-5638_Information_Technology_Journal
https://www.researchgate.net/publication/45949604_Analyzing_the_Software_Quality_Metrics_for_Object_Oriented_Technology
https://www.researchgate.net/publication/45949604_Analyzing_the_Software_Quality_Metrics_for_Object_Oriented_Technology
https://www.researchgate.net/publication/45949604_Analyzing_the_Software_Quality_Metrics_for_Object_Oriented_Technology
https://www.researchgate.net/publication/45949604_Analyzing_the_Software_Quality_Metrics_for_Object_Oriented_Technology
https://link.springer.com/journal/11704
https://link.springer.com/journal/11704
https://link.springer.com/journal/11704/11/3/page/1
https://www.researchgate.net/journal/0975-8887_International_Journal_of_Computer_Applications
https://www.researchgate.net/journal/0975-8887_International_Journal_of_Computer_Applications

Herald of Advanced Information Technology

2020; Vol.3 No.2: 13-22

Mathematical Foundations of IT

https://www.researchgate.net/publication/269670226
_Advanced_Program_Complexity_Metrics_and_Me
asurement.

13. Saeed, Mustafa Ghanem, Alasaady, Maher
Talal, Malallah, Fahad Layth & Faraj, Kamaran
HamaAli. (2018). “Three Levels Quality Analysis
Tool for Object Oriented Program-ming”, Interna-
tional Journal of Advanced Computer Science and
Applications, Vol. 9, No. 11 [Electronic Resource].
— Access mode: URL:
https://thesai.org/Downloads/\VVolume9Noll/Paper
73Three_Levels_Quality_Analysis_Tool.pdf.

14. Pattiyanon, Charnon & Senivongse, Twit-
tie. (2017). “Quality model for assessing object-
oriented design patterns under development”, 18th
IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD) [Electronic
Resource]. — Access mode: URL:
https://ieeexplore.ieee.org/document/8022749,

DOI: 10.1109/SNPD.2017.8022749.

15. Litvinov, V. V. & Bogdan, 1. V. (2012).
“Testirovanie modeley obektno-orientirovan-nogo
programmnogo obespecheniya” [Testing object-
oriented software models], Matematichnl mashini |
sistemi, No. 2 (in Russian).

16. Litvinov, V. V., Zadorozhniy, A. A. &
Bogdan, I. V. (2017). “Yazyik blochnogo imitatsion-
nogo modelirovaniya na baze maodifitsirovannyh
diagramm deyatelnosti uml” [Language of block
imitation modeling on the basis of modified dia-
grams of ump activity], Matematichsh mashini i sis-
temi, No. 4.

17. Freeman, Eric, Freeman, Elisabeth, Robson,
Elisabeth, Sierra, Kathy & Bates, Bert. (2004).

VJIK 004.415.2

“Head First Design Patterns”, O'Reilly Media, Inc.,
638 p.

18. Fowler, Martin. (November 30, 2018).
“Refactoring: Improving the Design of Existing Code
(2nd Edition)”. Addison-Wesley Professional;

2 editions, 448 p.

19. Chauhan, Charad. (2013). “Prog-ramming
Languages — Design and Const-ructs”, Laxmi
Publications, 280 p.

20. Kungurtsev, O., Zinovatnaya, S., Potochniak,
la. & Kutasevych, M. (2018). “Development of
information technology of term extraction from doc-
uments in natural language”, Eastern-European
Journal of Enterprise Technologies, Vol. 6, No. 2
(96), pp. 44-51. DOl
10.15587/1729-4061.2018.147978.

21. Kalyanathaya, Krishna Prakash. (2019). “A
Fuzzy Approach to Approximate String Matching for
Text Retrieval in NLP”, Journal of Computational
Information Systems, pp. 26-32 [Electronic
Resource]. — Access mode: URL:
https://www.researchgate.net/publication/333249900
_A _Fuzzy Approach_to_ Approximate_String_Matc
hing_for_Text Retrieval_in_NLP.

22. Julien Tregoat. (Jan 9, 2018). “An
Introduction to Fuzzy String Matching” [Electronic
Resource]. — Access mode: URL: https://medium.com/
@julientregoat/an-introductionto-fuzzy-string-
matching-178805cca2ab. — Active link —9.01.2018.

Received 11.05.2020
Received after revision 03.06. 2020
Accepted 12.06. 2020

'Kynrypues, Ouexkciii Bopucosuy, kan. Texniu. Hayk, npodecop, npopecop kad. «CucTeMHE MPOrpaMHe
3a0e3neuennsy, E-mail: abkun@te.net.ua, ORCID: 0000 — 0002 — 3207 - 7315

’HosikoBa, Haraaist OaekciiBua, cr. Buknanay kad. « Texuiuna kiGepHeTrka i ingopmariiini Texsosorii
im. ipo¢. P.B. Mepkra», E-mail: nataliya.novikova.31@gmail.com,

ORCID: http:// orcid.org/0000 — 0002 — 6257 — 9703

! Opecrxuii HanioHanbHMI noNiTexHiuAKMi yHiBepeuter, np. lleuenka, 1, m. Oneca, Ykpaina, 65044
2OpechbKuil HALIOHANBHKIT MOPCHKHUIA yHIBEPCUTET, ByJl. MeunukoBa, 34, M. Oneca, Ykpaina, 65029

BHUSIBJIEHHS HEJJOCKOHAJIOCTI MOJIEJIEN KJIACIB

Anomauia. [Iposedeno ananiz cnocobie mecmysanns mooenel npoepamuux kiacie. Iloxazano, wo 6 36'13Ky 3i 30iNbUEHHAM
obcszy pobim Ha emani cKIAOaHHs Mooeiell, 3p0Cmac akmyaisHicms eepugixayii mooenei. Bemarnoesneno, wo 0ns nepesipku mooe-
Jieti K1acie, OmpUMaHux 6 pe3yibmami agmomMamu308aHo20 ONUCY 6apIaHmMI6 SUKOPUCMAHHS, HeOOXIOHO YOOCKOHANUMU ICHYIOUY
MOOeb KNAcy i po3uupumu Habip nepesipox nopieHsIHo 3 icHyrouumu piwennusmu. Ompumana nooansuiull po3umox Mooeib Kidcy.
Y mooeni npedcmasneni mpu po3oinu: 3a201080K Kiacy, memoou knacy i ampubymu kiacy. Yoockonanenus mooeni noisicae y ege-
OeHHI NOHAMMsL Memu CMEOPEHHsL MA CRPIMYBAHHSL KIACY 8 YLIOMY, 1020 Memodie | ampubymis. Kodicha onepayis, nos'sazana 3 no-
6y006010 MOOeni Kacy, 3a0e3neuyemvpcs NOCULAHHAM HA 8i0N0GIOHUL 8apIaHm UKOPUCTNANHS | 11020 NYHKM, W0 00360JI8€ NPU HeoD-

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technologies and computer systems 21

Herald of Advanced Information Technology 2020; Vol.3 No.2: 13-22
Mathematical Foundations of IT

XiOHOCmi 8UKOHAMU Nepexio 8i0 auMo2 00 eleMeHmi8 Onucy Mooeli (npsame mpacysanns) i 6i0 enemenmis onucy 0o eumoz (360pom-
He mpacyeanis). Beedena cucmema munise ona enemenmis mooeni, ujo 003601s€ be3 KOHKpemu3ayii munie Ha piehi MO8U NPOPAMy-
BAHHSL OOCUMb NOBHO NPEOCMABUMU 020JI0WEHHS PYHKYIL | ampubymig kiacie. Ha niocmagi psady wabioHie npoekmyeanHs i 6unao-
Ki6 peghaxmopinea udineni mpu Kkame2opii cumyayitl, Koau Ci0 NOKpauwyeamu Mooeib KIdcy. 3ay8aiceHHs. 00 KIacy 8 YiloMy, 3d-
V8axceHHs: 00 QYHKYIU K1acy, 3ayeajicenus 0o ampubymie knacy. [ns KojicHol kame2opii 6CmanosieHo Habip 3ayeaniceHb 00 MoOei
ma 3anponoHO8AHO PileHHs ONIA iX 8uAGIeHHA. 3anponoHO6ani MOOeli Mma AneOpUMMU Peani3o8ani 6 NPOSPAMHOMY pilueHHT i npol-
wiau anpobayiio 3 mouku 30py NOGHOMU BUAGIEHHS 3AY8AdlCEHb 00 MOOENi | CKOPOUEHHS YaCy Ha NPpoYecC GUAGIEHHS 3aY8aAdiCeHb Nopi-
BHAHO 3 MPAOUYILIHUMU MEXHONO02IAMU BUABNEHHS 0edheKmi6 8 MOOensax KIdcis.
Kniouogi cnosa: sapianmu GuKopucmanns;, Mooeib Kiacy, cyenapii, KOnyenmyanbi kiacu, wabioHu npoeKmy8ans

YK 004.415.2

Kynrypues, Anekceii bopucoBu4, kana. TexHud. Hayk, npodeccop, mpodeccop kad. «CucTeMHOE MPO-
rpammHOe obecmiedenuey, E-mail: abkun@te.net.ua, ORCID: 0000 — 0002 — 3207 - 7315

’HopuxoBa, HaTtaaus AllekceeBHa, CTapIIuii npenoaasaTens kKageapsl «TexHuueckas KHOEpHETUKA M
nH(pOPMaIIHOHHEIE TeXHoIornK M. TIpod. P.B.Mepkra», E-mail: nataliya.novikova.31@gmail.com, OR-
CID: 0000 — 0002 — 6257 — 9703

! Opecckuit HaMOHANBHBIN NOMMTEXHUIECKUH yHUBepcuTeT, np. lllepuenko, 1, r. Oneca, Yipauna, 65044
2 Opmecckuii HAMOHAIIBHBINA MOPCKOI YHUBEpCHUTET, yi. MeunukoBa, 34. 1. Onecca, Ykpauna, 65029

BBISIBJIEHUE HECOBEPIIEHCTBA MOJEJIEH KJIACCOB

Annomauus. IIposeden ananus cnoco608 mecmuposanus, Mooeneti nPoSPaAMMHBIX Kiaccos. ITokasaro, umo 6 céssu ¢ yeenude-
Huem 0bvema pabom Ha 3mane coOCmasieHus Mooeel, 603pacmaem aKmyaibHOCMy 8epudurayuu mooeneil. YcmanoeieHo, 4ymo ois
npogepKu Mooenell Kiaccos, NOLYYeHHbIX 8 pe3yIbmame agmoMamusupO8aHHO20 ONUCAHUA 6APUAHIMOS UCNOTb308AHUS, HEODXOOUMO
VCOBEPUIEHCIBOBAMb CYWECMBYIOUYIO MOOETb KIACCA U PACUUPUMb HAOOP NPOBEPOK CPASHUMENLHO C CYUWECMEYIOWUMU DeleHs-
mu. Tlonyuuna oanvretiwee passumue mooens kiacca. B mooenu npeocmasnensl mpu pazoena: 3a201080K K1accd, Menmoosl Kiacca u
ampubymol Knacca. Ycosepuencmseosanue MoOenu 3aKn0Uaencs 6 66e0eHUU NOHAMUA Yeau cO30arUus U UCNONb3068AHUA OJis KIAccd
8 Yeiom, e2o Memooos u ampubymos. Kaxcoas onepayus, ces13aHHASL ¢ NOCMPOEHUEM MOOEIU KIACCA, CHAOHCAEMC S CCbLIKOU HA
COOMBEMCMBYIOWUIL 8aPUAHIN UCNOTb308AHUS U €20 NYHKN, 4MO NO380AEm NPu HeOOXOOUMOCHU 8bINOIHUNL NEPEXo0 om mpebo-
BAHULL K 9TE€MEHMAM ONUCAHUA MOOeNU (NPAMAS MPACCUPOBKA) U O eMEHMO8 ONUCAHUA K mMpebo8anuam (00pamuas mpaccupos-
Ka). Beedena cucmema munog Onsi S1eMeHNMO8 MOOenU, NO360A0WAA Oe3 KOHKPEmU3ayuu munos Ha yposHe A3blKa Npocpammupo-
6aHUSL OOCMAMOYHO NOJIHO NPeOCmagums 00vs6IeHUe PyHKyuil u ampubymoe kiaccos. Ha ocnosanuu psda wiabnonoe npoekmup o-
6aHUs U Clyuaes peaKmopunea 6bl0eieHbl mpu Kame2opuu cumyayuil, Ko2oa credyem Yayuuiams Mo0elb KIAccd: 3amedanis K
KIACCY 8 YenoM, 3aMedanus K QYHKYusM Kiacca, 3amedanus. Kk ampuoymam xkuacca. s kaxcoou Kkamezopuu ycmanosnen Habop
3amedanuti K MOOenU U npeonodcenbl peutenus Ois ux eviagienus. [Ipeonosicennvie MOOeU U ANOPUMMbL PeANU308aHbl 8 NPO-
SPAMMHOM peuleHuU U NPOWLIY anpobayuio ¢ MOYKYU 3PEHUs NOTHOMbL GbIAGIEHUA 3AMEYAHUI K MOOeU U COKPAWEHUs. BDeMEHU Ha
npoyecc 8blABNEHUs 3AMEUAHUL CDABHUMETLHO ¢ MPAOUYUOHHBIMU MEXHOLOSUAMU BbIAGIEHUS OeheKmMO8 8 MOOEIIAX KILACCOB.

Knroueewie cnosa: sapuanmol Ucnonb308aHus; MOOelb KIACCA; CYEHAPUL, KOHYENnMYyaibHble KIACChl, WAabIOHbI NPOSKMUpOsa-

HUs

Kungurtsev, Oleksiy B.
Research field: Automation of Information Systems Design,
Computer word processing techniques

Novikova, Nataliia O.
Research field: Automation of Information Systems Design

22 Information technologies and computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

