Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

DOI: 10.15276/hait.03.2020.5
UDK 004.75

Comparison of authorization protocols for large requests in the
operation queue environment

Sergii S. Surkov
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: http://orcid.org/0000-0001-9224-7526

ABSTRACT

Authorization protocols play a foundation role in web security. There is a risk that the data may be changed in places where it is
transmitted in the unencrypted form, for example, in a proxy server. The vulnerabilities of payload spoofing aren't thoroughly re-
searched. Existing authorization protocols for large payload implement the “Filling the Buffer” method and its subtype “Buffering to
File”. Through simulation, it was found that the second subtype “Buffering to Memory” is not ideal for requests with large payloads.
In previous papers, a “chunking” method was developed for authorizing HTTP requests with efficient payload verification. However,
it was found that in an operation queue environment, the system is prone to falling into the critical mode, which became a subject of
further study. This paper aims to reduce the harmful effect of critical modes. Analysis of signing methods for authorization using a
parallel architecture based on queuing theory has shown that the “chunking” method is the most promising. The developed methods
for ranking authorization protocols for large requests and identifying critical modes made it possible to experimentally determine the
conditions for the manifestation of the advantages of the studied methods of signing the payload in different modes and to study the
effect of the intensity of the incoming data on the transition of the system to the critical mode. Conducting a computer experiment,
the dependencies of the multithreaded write speed on the number of threads for the “chunking” and “buffering to file” methods were
obtained depending on the number of threads and the data transfer rate. The parallel processing of the digital signatures of requests
has improved the performance of the system, keeping the sequential processing of data. The study of the influence of the intensity of
the incoming data on the transition of the system to the critical mode makes it possible to calculate the limitation of the system load.
Thus, the goal of reducing the harmful effect of critical modes and ensuring greater reliability and speed of the system is achieved.

Keywords: digital signature; authorization; large payload; operation queues; network requests; verification

For citation: Surkov S. S. Comparison of authorization protocols for large requests in the operation queue environment. Herald of Advanced
Information Technology . 2020;Vol.3, No.3: 163-173. DOI: 10.15276/hait.03.2020.5

INTRODUCTION TLS certificates of the web sites for the user [3; 7—
8]. The modern version of the proxy implementation
in such corporations is a “transparent” proxy [9].
Also, web services often use “reverse proxy”
[10-11], after which the data is transmitted in
unencrypted form in the data center. Both of these
cases may happen together. Even though proxy
servers are considered trusted by users in these
situations, they are the most vulnerable point in the
system. At these points, the payload of the request
may be changed, which makes the system vulnerable
to MITM (Man in the Middle) attacks [12—15].
LITERATURE REVIEW Payload spoofing situations at vulnerable points
aren't well researched. Most of the protocols [16-22]

ly authorize the headers, not the payload of the
transfer. The generally used protocols for on . o
communication between clients and servers are the cquest itself. The HMAC method [23], which is

HTTP and HTTP/2 [3-4], which are widely used not implemented by many authorization protocols, is

only in the web browsers because of their simple and usgd o prevent the mOd'f'CEf‘t'O':' of the payload.
obvious structure. The general solution for Existing HMAC-based authorization protocols such

maintaining data encryption and integrity is the TLS as OAuth 1.0a .[2.4_?6] and HAWK [25; 27_28]. are
protocol [5-6]. great for verlflcatlon_ _of_small p_ayload sizes.

However there are cases when data is According to our classification, they implement the
decrypted during its transfer. The most common . .Filing the Buffer” ‘method and its subtype

: : “Buffering to Memory”. Through simulation, it was
case is proxy servers of corporations that replace . . L
proxy P P found that “Buffering to Memory” is not ideal for

Authorization protocols play a foundation role
in web security. Modern information systems are
characterized by large payload sizes. However, not
all protocols guarantee data immutability during
transmission [1]. Moreover, for authorizing large
payload size, there are no feasible protocols that
verify the payload, which is critically important for
video streaming, document storage, database
services with a complex datacenter infrastructure[2],
etc...

Payload integrity problems arise during data

© Surkov S. S., 2020 requests with large payloads.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)
ISSN 2663-0176 (Print) Information technologies and computer systems 163

ISSN 2663-7731 (Online)

http://orcid.org/0000-0003-2366-1920

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

A second subtype is the “Buffering to File”
method, which is a general solution for handling
large payloads. The disadvantage of this method is
that the payload is read after uploading again. Due to
the caching of files by the operating system into
RAM, this drawback is only noticeable when the
large payloads are transmitted.

In previous papers, a “chunking” method was
developed [29-30] for efficient authorization of
payload of HTTP requests [3-4], which seems to be
the most promising.

All the described processes are implemented in
the operation queues [31-32]. At the same time, the
possible transition of the system to a critical mode
poses a particular threat, and these issues are little
studied. It occurs when operations in the queue
accumulate and have no time to be processed. This
may cause an instability and termination of the
Server process.

Thus, the study of critical modes for
authorization protocols for large payloads is an
actual problem.

THE PURPOSE OF THE ARTICLE

The aim is to research authorization protocols
for requests with a large payload, as a result of
which is a reduction in the harmful effect of critical
modes. In this paper, new methods are developed for
ranking authorization protocols for large requests
and identifying critical modes based on multi-
threaded simulation in an operation queue
environment to achieve better reliability and
performance.

To achieve the goal, the following tasks have
been identified.

1) Analyze the scope, advantages, disadvan-
tages of payload signing methods.

2) Develop methods for ranking payload
signing implementations and detecting critical
modes.

3) Experimentally determine the conditions of
manifestation of the advantages of the studied
methods of signing the payload.

4) Investigate the impact of the incoming data
rate on the transition of the system to the critical
mode.

MAIN PART. THE METHODS OF
SIGNING THE PAYLOAD OF THE REQUEST

In our previous papers [29; 33], it was pointed
out that implementations of the method “filling
buffer do buffer the whole payload of the request to
RAM and then authorize it. It works well with small
payload sizes, the exact content of which will be
neither stored nor used in the future.

Most requests imply that the payload size is not
large, so the “RAM buffering” method is used in

almost all implementations, which gives an
advantage in terms of memory size and relatively
small requirements for computational resources.

The second advantage is that it does not require
the implementation of complex logic and, therefore,
testing is also simpler.

The clear disadvantage of “filling buffer”
method is memory allocation requirement:

O(b) = n, where n is the size of the payload of
the request, which imposes large memory
allocations.

The method of filling the buffer is in Fig. 1.

IMMUTABLE
DATA
CHUNK

FILL
MUTABLE
BUFFER

FINISHED

PROCESS

AUTHORIZE

Fig. 1. The filling buffer method

However, for 10T communication systems [34] to
ensure the integrity of the transmitting data, it's not a
wise choice to store an additional copy of the request
body in RAM.

The problem with allocations of large chunks of
memory is very CPU intensive [2; 35-37] and can
add an unnecessary delay in the handling of the
request. As a result, for an APl which allows large
payload size, implementing such an approach would
make it an easy target for Distributed Denial of
Service (DDoS) attacks.

The “Filling the buffer” method for large and
small payloads implies different implementations.
The usual way to implement this method for small
payloads is to keep the entire buffer in RAM. The
buffer size is always equal to the request payload
size. The “Buffering to Memory” method is shown
in Fig. 2.

Socket Stream RAM Buffer

[= L]

Calculate digital signature From RAM Buffer

RAM Buffer

File Stream

=L =]

Fig. 2. The standard technique of filling
buffer model

164

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

The “Buffering to Memory” method is feasible
for the requests with small content size. A general
solution of modification of the “filling the buffer”
method for HTTP requests with large payload sizes
is to store the request body in persistent storage and
after the upload is finished and compute the digital
signature of the request. The “Buffering to File”
method is in Fig. 3.

Socket Stream File Stream

-0

Calculate digital signature from
File in Persistent storage

Fig. 3. “Buffering to file” method for
signing request payload

In our previous works [29; 33], a “chunking”
method was developed, which is also called the
“method of an efficient authorization for blocking
and non-blocking sockets”. It has the same purpose
as the “buffering to file” method with the difference
that it gradually calculates the digital signature of
incoming data, computing it from incoming chunks.

The “chunking” method uses a small buffer to
store a chunk of data, which must be a multiple of
the hashing algorithm block size. Moreover, the
chunking method frees the developer from the
constraint of keeping the entire request in a buffer.
This provides a possibility to implement streaming
APl with real-time HMAC authentication. The
scheme of processing of the request by the
“chunking” method is shown in Fig. 4.

Socket Stream
(-1

Update digital signature

[L
LI
File Stream

0]

Fig. 4. “Chunking” method for signing
request payload

It’s worth mentioning that the usage of non-
blocking sockets provides surpassing performance
with the same hardware resources. It is especially

significant for transferring large amounts of data
over the network, as well as servicing many
connections.

Using either “Buffering to file” or “Chunking”
methods will release the server from storing the
payload of the request in RAM.

ANALYSIS OF THE OPERATION QUEUE
ENVIRONMENT FOR AUTHORIZATION
METHODS FOR LARGE PAYLOADS

With serving more requests at a time,
multithreading gives an enormous advantage if the
data of the HTTP request is getting archived or
encrypted in the process before used further.
Additionally, for streaming, there’s no need to buffer
an entire payload. Moreover, for modern software,
the operation queue implementation won’t spawn
more threads than available CPU threads.

Operation queues are used to balance the CPU
core, which allows the main thread to focus on
receiving the data from clients.

After the operation is put to the queue, it’s
being taken sequentially for each request. The queue
is working on the First-In-First-Multi-Out paradigm.

The operation queue is in Fig. 5.

OoP

Enqueue

oP

OP

OP

OP

Dequeue
R3 R1
R2

OoP OoP OoP

! L

OoP OoP

|

oP

Fig. 5. Operation Queue

In the Fig. 5, http requests R1, R2, R3 are
processed sequentially, which ensures data integrity.
This situation is typical as the data is saved to the
disk system.

However, queued operations tend to accumulate
if they can't be processed fast enough, which can
lead to a critical mode. Critical mode increases

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online))

Information technologies and computer systems 165

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

memory and leads to

instability.

ANALYTICAL COMPARISON OF THE
EXAMINED METHODS

In the multithreading environment, a common
way to deal with the chunks of data is using
operation queues. The best way to compare the
methods analytically is to create a model based on
the queuing theory. To distinguish “server” as a
process running in the operating system and
“queuing theory server”, they are called server and
QT Server in this paper.

Typically, the weakest point in any system is
the disk drive. The drive has a limited writing speed,
but in the case of SSDs, it reaches several gigabytes
per second.

For the simulation of the behavior of the server,
the following formula is assumed to calculate the
data arrival rate per one thread:

A=A+ A, + 45,

consumption system

where: A, — duration of processing request, seconds;

A,— duration of processing temporary
information of authorization;

As— duration of saving the data to the
server’s drive;

A —the processing duration, seconds.

In the modern server environment, the
read/write workload between processor cores usually
is shared within the single logical drive. The
duration of processing requests (A,) is only
constrained by the processing power of the server.
The duration of saving the data to the server’s drive
(Ag) is divided among active requests. It's also

designated as (D,).

Because the calculation of the digital signature
is required to read the data from the drive after the
upload is complete, the concurrent read duration
(Dcg) is added into the equation for the “Buffering

to drive” method.
Ag = Az + (A, + Der) + Dgy -

Since there is no requirement to access the
chunks after they are received, there is no necessity
for intermediate storage. That is why the
“Chunking” method is constrained only by the
processing power of the CPU.

Ay = Ag + Ay + Dy -
rates are subtracted

Service to compare

methods

AA =A. —Ag =Dy
Worth noting, there may be the case when
storing a request payload to persistent storage is not
necessary. Then it is suitable to keep in RAM only
the chunks that are in the queue to be authorized.
In this case:

Aeo =g + A,
The difference increases even more
Ad, = A —Ag = Dgg + Dgy, -

Despite such a huge difference, because the
drive speed is the slowest element in the system, the
most common use case for authorizing the payload
of the request is uploading a file to a server.

The analysis has clearly shown the advantage of
the “chunking” method. Because the methods can't
be compared experimentally, it's necessary to
compare their implementations. In order to validate
the theory, it is necessary to create new methods for
ranking payload signing implementations and
identifying critical modes.

NEW METHODS FOR RANKING OF
PAYLOAD SIGNING IMPLEMENTATIONS
AND IDENTIFYING CRITICAL MODES

The processing duration (A1) significantly
depends on the number of active clients. Because all
the operations are in the queue, the number of
threads will depend only on CPU hardware.

The proposed method for ranking payload
signing implementations is based on simulation
modeling of authorization processes with large
payloads. It features the parallelized simulation of
payload processing and sampling of comparison
based on runtime criteria, compared to existing ones.
It allows us to improve the performance of the
system by choosing the feasible method of
authorization.

In addition, the method provides the following
features:

1) to estimate in which regimes the system will
go to the critical mode;

2) to compare “Chunking” and “Buffering to
file” methods;

3) to determine how the hardware deals with
the planned workload.

The subsidiary aim is to reuse the parts of the
method for the research of the critical modes in the
operation queue environment.

The method assumes the following steps:

1) choose a payload signing implementation to
study its characteristics;

166 Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

2) initiate the launch of a predetermined
number of connections at the same time;

3) measure the average request processing time
for the chosen method of signing the request
payload,;

4) measure the processing speed per thread and
the total data rate;

5) display the results of the measurement.

Because the regimes in which the system goes
into critical mode have not yet defined and putting
the system into critical mode could cause software
instabilities, the method simulates the “thread per
connection” pattern. However, the determination of
the parameters when the system goes into critical
mode is going to provide start conditions for the
research. Determination of an average concurrent
write speed (Dcw) among a given number of threads
and service rate (i) allows us to do this.

The most important parts of the technique are in
the paper and presented as C++ code. The
BenchmarkChunking and BenchmarkFileBuffering
classes have been implemented to study the
“Chunking” and “Buffering to file” methods of
payload signing (step 1). These classes inherit from
the BenchmarkBase class. A virtual function
“benchmark” needs to be overridden to create an
implementation for a new payload signing method.

For the research of the critical modes in the
operation queue environment, the parts of the
method can be reused. The SHA-512 algorithm was
selected because it consumes the most computing
resources among SHA family algorithms. As a
means of simulation of the data arrival rate (), the
next chunk of data is delayed in case if it has arrived
too soon.

To control the test conditions, the following
constants are defined:

NChunks — number of chunks, should be
defined to have the test running enough time to get
reliable results;

ChunkSize — the size of the chunk, bytes,
should be chosen the low as possible with the best
concurrent write speed;

ClientBandwidth —
client, megabits per second.

The following formula is used to find the data
arrival rate (microseconds): u=1/4.

The result of conversion is in the
ChunkTransmissionTimeMs parameter.

In accordance with step 2, a specified number
of threads are started simultaneously, where each
one processes a defined number of chunks. All the
chunks are processed sequentially. After all the
chunks are processed, statistics are displayed.

The “benchmark” function for the “chunking”

network bandwidth of

method is shown in Fig. 6.

virtual void benchmark() { // For Chunking Method
for (ssize_t i = @; i < NChunks; i++) {
uint8_t* data =
(uint8_t*) malloc(ChunkSize);
ssize_t chunkWrite = benchmarkChunk(data);
updateTotalTime<true>(chunkWrite);

¥

fclose(file);
printStatsForThread();
remove(filePath.c_str());

Fig. 6. Function “benchmark” for the
“chunking” method

According to step 4 to measure average
duration, the test code does the identical calculation
of digital signature and writing to the server's drive
as in production applications. As a means of
measuring the writing service rate for both methods,
the standard C++ “std::chrono” package is used.

The function of measuring the writing data
arrival rate is in Fig. 7.
ssize_t benchmarkChunk(const uint8 t* data) {

auto writeBegin = chr::steady _clock::now();

CC_SHA512 _Update(&ctx, data, ChunkSize);

fwrite(data, ChunkSize, 1, file);

auto writeEnd = chr::steady_clock::now();
return diff us(writeEnd, writeBegin)

Fig. 7. Function of measuring the
data arrival rate

The next important step (3) is to measure the
processing time for the studied method of signing
the request payload. Despite the relative simplicity
of this step, it also adds a delay for the simulation of
the data arrival rate (X). As this step is applied for
the research of the critical modes, where the pause
takes place in a different position, a conditional
compilation is added. The “update total time”
function is in Fig. 8.
template <bool shouldSleep>
void updateTotalTime(ssize_t processTimeMs) {

ssize t timeDiff =

ChunkTransmissionTimeMs - processTimeMs;
if (timeDiff > @) {
if constexpr (shouldSleep) {

sleep_us(timeDiff);
}

totalTimeMs += ChunkTransmissionTimeMs ;
} else {
totalTimeMs += processTimeMs;

}

Fig. 8. Function for updating total time

For the “Buffering to file” method, the
“pbenchmark” function is similar to the one for the
“chunking” method. The digital signature of the
chunk is calculated not in the “benchmarkChunk”
function, but in “calculateBufferHmac”. It's because

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online))

Information technologies and computer systems 167

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

of the calculation of the digital signature is done
while reading the file after its uploading. The
benchmark function for the implementation of
“Buffering to file” method is shown in Fig. 9.

virtual void benchmark() {
for (ssize_t i = @; i < NChunks; i++) {
uint8_t* data = (uint8_t *) mal-
loc(ChunkSize);
ssize_t chunkWrite = benchmarkChunk(data);
free(data);
updateTotalTime<true>(chunkWrite);
}
calculateBufferHmac();
printStatsForThread();
fclose(file);
remove(filePath.c_str());

}
Fig. 9. Function “benchmark” for the
“Buffering to file” method
After uploading, the file is read sequentially
and the digital signature is calculated. For

“Buffering to File” method, the purpose of this
function is to measure the speed of parallel reading,
since the test is performed in a multithreaded
environment.
The function for measuring the concurrent read
speed is in Fig. 10.
void calculateBufferSignature() {
fseek(file, ©, SEEK_SET);
char *readChunk = (char *) malloc(ChunkSize);
while (!feof(file)) {
auto readBegin = chr::steady_clock::now();
ssize_t readBytes =
fread(readChunk, ChunkSize, 1, file);
CC_SHA512 Update(&ctx, readChunk, readBytes);
auto readEnd = chr::steady clock::now();
readChunks += 1;

totalReadTimeMs +=
diff_us(readEnd, readBegin);

¥
free(readChunk);

}

Fig. 10. Function for measuring the
concurrent read speed

Since the system uses operation queues, it is
prone to falling to critical mode. It happens because
operations accumulate in the RAM, and the system
does not have time to process them. There is a
possibility of system instability and abnormal
termination of the server process.

A method was developed based on the payload
signing implementations ranking method to identify
critical modes. It is distinguished by optimal criteria
that determine the transition of the system to the
critical mode. It allows for increasing the speed and
reliability of the system by choosing real equipment
when designing the system.

The new method for identifying critical modes
can be used in practice to select the optimal
equipment load. The system load can be regulated

using our method of migration from a single server
to a server cluster [2]. With the new method, the
probability of the system going into critical mode is
decreased. It affects an increase in the reliability and
speed of the system.

To investigate the states in which the system
goes into a critical mode, one needs to conduct a
series of experiments in which:

1) define the client bandwidth parameter
according to the needs of the experiment;

2) in each experiment measure: the total write
speed and the average write speed;

3) gradually increase the number of connections
while the change of the result write bandwidth is
significant.

After the methods were established, it is time to
get experimental data in order to fulfill the aims.

EXPERIMENTAL DETERMINATION OF
THE CONDITIONS OF MANIFESTATION OF
THE ADVANTAGES OF THE STUDIED
METHODS OF SIGNING THE PAYLOAD

To compare the methods, a series of
experiments is required. They measure the total
duration for the investigated implementation of
payload signing method, in accordance with the
payload signing implementation ranking method
described in the previous section. The advantage of
the chunking method is that the payload is not read
from the buffer the second time.

For all tests conducted in the paper, the chunk
size is 1 megabyte. In the production environment,
it's a parameter that the user sets up to get the
maximum writing performance.

For the test, the following hardware is used:
OS: Ubuntu 18.04 LTS

CPU: Core i7 8700K

RAM: 32G

SSD: Samsung 960 Evo 512G

It is crucial that modern operating systems
cache recently used files into RAM. That makes the
“Buffering to file” method feasible in the case when
payload size is smaller than RAM size, or the server
is not loaded heavily. The calculation of the gain of
the “chunking” method is carried out according to
the following formula:

— ﬂ’C
Ao+ AL
where: G — the percentage gain of the chunking

method:;
Ao — processing time for the chunking method,
A — the difference in processing time between

the “chunking” method and the “buffering to file”
method.

168

Information technologies and computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

For 100 Mbps, the optimal configuration is 16
threads and payload size per thread from 100MB to
1000 MB.

The measured payload processing times for the
two methods are in Table 1.

Table 1. Comparison of the processing time of the
payload by different methods for 100 Mbps/client

Size Ao AL G
(Mb)

100 10071226 | 89685 0.882647
250 23591242 | 77614 0.327916
350 30965550 | 45644 0.147186
500 40738723 | 207820 0.50754
750 62815039 [9125822 [12.6852
1000 85070208 [12898829 | 11.9905

For small payload sizes, the advantage is not
significant and is about 0.5 %. But when the total
payload size is more than 12 Gigabytes, then the
advantage is 12 %.

For 1Gbps, the optimal configuration is 4
threads and payload size per thread from 250
Megabytes to 4000 Megabytes.

The measured payload processing times for
the two methods are in Table 2.

Table 2. Comparison of the processing time of the
payload by different methods for 1 Gbps/client

Size) AL G
(Mb) °

250 2199525 | 30617 1.37287
500 5595948 | 57185 1.01156
1000 | 10565035 | 122192 1.14335
2000 | 23621152 | 242193 1.01492
3000 | 29601724 | 8832594 [22.981

4000 | 50147151 | 10535229 | 17.3613

The same can be seen for 1Gbps, where the
advantage is 20 % in case the total payload size is
more than 12 Gigabytes.

It can be concluded that the “Chunking”
method shows the advantage in the range of 10-22 %
when there's not enough memory for the total
payload size.

STUDY OF THE INFLUENCE OF THE

INTENSITY OF THE INCOMING DATA ON

THE FALLING OF THE SYSTEM INTO THE
CRITICAL MODE

According to the critical mode identification
method, the total write speed and the average write
speed are measured in each experiment. At the same
time, in the next experiment, the number of
connections is gradually increased, provided that the
overall write speed changes significantly.

For the first series of experiments, the usual
upload bandwidth for the 2020 year of 100 Mbps is
chosen. The results are in Table 3.

The following symbols are used in the table:

#t — number of connections / threads;

Rcw - average processing rate per thread;

>Rew Is the total data processing rate of all
threads.

Table 3. Concurrent write speed for
100 Mbps/client

| Rcw(MBIs) > Row (MB/s)
32 10.107 323.446
34 10.327 351.125
36 10.235 368.478
38 9.872 375.172
40 9.780 391.210
42 9.504 402.975
44 9.004 396.178
46 8.850 407.1

The histogram representation of the table is in
the Fig. 11. Each pair in the chart represents:
average concurrent write speed and the sum of
concurrent write speeds.

500

N w
[33] <
o o

Megabytes per second
N
(9)]

32 34 36 38 40 42 44 46
Number of Threads

Fig. 11. Concurrent write speed for
100 Mbps/client

For 100 Mbps per client, the decrease of
average concurrent write speed starts from 38
threads. That is where the critical mode is likely to
happen in the operation queue environment.

In the next experiment, it’s assumed that client
has a premium internet connection of 1 Gbps. The
maximum number of threads is limited to 12. The
results are in Table 4.

And the histogram representation of the table is
in Fig. 12.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online))

Information technologies and computer systems

169

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

Table 4. Concurrent write speed for drive concurrent writing speed. As a note, the
1Gbps/client maximum concurrent write speed (546MB/s) is not
the maximum sequential drive write speed (1500
| Rcw(MBIs) 2Rew (MB/s) | MBJs) for this drive.
1 115.838 115.838 The obtained results can serve as a starting
5 119.2 238.817 point_ for stL_deing the critical _mc_)des themselves. In
practice, this allows us to limit the load on the
3 112.012 336.036 system using our method of migration from a single
4 116.159 464.636 server to a server cluster[2]. It can also be used to
5 83,2644 416.322 select the optimal equipment.
6 75.4237 452,542 CONCLUSION
7 72.5202 507.641 The modern methods of signing the payload of
the request were reviewed and compared.
8 68.2824 546.259 Comparing the “Buffering to file” and the
9 52.794 475.146 “Chunking” method, it was found that the
10 493414 510.456 “Buffering to file” method introduces “Concurrent
Read Time” to the processing of the request.
11 46.3804 517.243 Functionally, for the case of uploading files to the
12 39.6218 486.632 server, these methods are equivalent. For streaming
audio and video tasks, and so on, where file storage
600 on the server is not required, the “chunking" method
- has the advantage of saving disk space.
v The developed methods for ranking of
g 450 payload signing implementations and identifying
3 ' critical modes made it possible to experimentally
b | determine the conditions for the manifestation of the
S 300 | advantages of the studied methods of signing the
=3 \ | payload and to study the influence of the incoming
-§0 | ‘ data rate on the falling of the system to the critical
ﬁ 150 1 | mode.
‘ Nall | The “Chunking” method showed the
I I I I I I l l | advantage of 22 % for 100 Mbps and 13 % for
" ‘ ‘ ‘ ‘ 1Gbps client speeds when OS has no available
1 23458678 94101112 memory tc_) cach_e the data. However, when OS can
cache the incoming data, the advantage drops to the
Number of Threads value of about 1 %.
Fig. 12. Concurrent write speed for _ The influence of the incoming data rate on the
1 Gbps/client falling of the system to the critical mode is studied.

L It makes it possible to limit the load of the system.
The total speed doesn't increase after 4 Thys the goal of reducing the harmful effect of

connections, after that the critical mode is going to critical modes and providing better reliability and
be. That's because input bandwidth is more than the gpeed of the system is achieved.

REFERENCES

1. Kizza, J. M. “Computer Network Security and Cyber Ethics Fourth Edition”. Publ. McFarland.
Jefferson. NC, United States: 2014. 240 p.

2. Surkov, S. & Martynyuk, O. “Method of Migration from Single Server System to Server Cluster”. In
Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS’2015). Warsaw, Poland: 2015. DOI:
10.1109/IDAACS.2015.7341415.

3. Fielding, R. & Reschke, J. (2015). “ Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing, IETF RFC 7230”. Available from: https://tools.ietf.org/html/rfc7230. [Accessed 12th August 2020].

170 Information technologies and computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

https://tools.ietf.org/html/rfc7230

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

4. Belshe, M. & Peon, R. (2015). “Hypertext Transfer Protocol Version 2 (HTTP/2), IETF RFC 7540”.
Available from: https://tools.ietf.org/html/rfc7540. [Accessed 12th August 2020].

5. Sanae, H. “Security Requirements and Model for Mobile Agent Authentication”. Smart Network
Inspired Paradigm and Approaches in 10T Applications. Republic of Singapore. Singapore: 2019. p. 179-
189. DOI: 10.1007/978-981-13-8614-5_11.

6. Liu, Q., Zhang, L. & Fan, A. “Scheme to authenticate requests for online banking based on identity-
based mediated RSA”. Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and
Technology (Natural Science Edition). Beijing, China: 2015; Vol.16: 29-33. DOI: 10.7666/j.issn.1009-
3443.20140929001.

7. Saini, K. “Squid Proxy Server 3.1: Beginner's Guide Paperback”. Publ. Packt Publishing.
Birmingham, United Kingdom: 2011. 332 p.

8. Wessels, D.“Squid: The Definitive Guide”. Sebastopol, CA, United States: Publ. O'Reilly Media.
2010. 472 p.

9. Rash, M. “Linux Firewalls: Attack Detection and Response with iptables, psad, and fwsnort”. San
Francisco, CA, United States: Publ. No Starch Press. 2007. 336 p.

10. Fjordvald, M. & Nedelcu, C. “Nginx HTTP Server — Fourth Edition: Harness the power of Nginx to
make the most of your infrastructure and serve pages faster than ever before”. Birmingham, United
Kingdom: Publ. Packt Publishing. 2018. 400 p.

11. Blokdyk, G. “Apache Web Server A Complete Guide — 2020 Edition”. Brishane, Australia: Publ.
5STARCooks. 2020. 238 p.

12. Eugene, F., John, O. R. & Kevin, C. “Security evaluation of the OAuth 2.0 framework”. Information
and Computer Security. 2015; Vol. 23(1): 73-101. DOI: 10.1108/ICS-12-2013-0089.

13. Cheol-Joo, Chae Ki-Bong & Han-Jin Cho. “A study on secure user authentication and
authorization in OAuth protocol”. Springer Cluster Computing. 2019; Vol. 22(2). DOI: 10.1007/s10586-017-
1119-6.

14. Farooqi, S., Zaffar, F., Leontiadis, N., et al. “Measuring and mitigating OAuth access token abuse
by collusion networks”. In Communications of the ACM. New York, NY, United States: 2020. p. 103-111.
DOI: 10.1145/3387720.

15. Feng, Y. & Sathiamoorthy, M. “A security analysis of the OAuth protocol”. In IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing (PACRIM). Victoria, BC, Canada: 2013.
p. 271-276. DOI: 10.1109/PACRIM.2013.6625487.

16. Seung, J. S., J. “Personal OAuth authorization server and push OAuth for Internet of Things”.
International Journal of Distributed Sensor Networks. Thousand Oaks, CA, United States: 2017; Vol. 13.
DOI: 10.1177/1550147717712627.

17. Se-Ra, O. & Young-Gab, K. “AFaaS: Authorization framework as a service for Internet of Things
based on interoperable OAuth”. International Journal of Distributed Sensor Networks. Thousand Oaks, CA,
United States: 2020; Vol. 16(2): 1-15. DOI: 10.1177/1550147720906388.

18. Hossain, N., Hossain, M.A., Hossain, M., et al. “OAuth-SSO: A Framework to Secure the OAuth-
based SSO Service for Packaged Web Applications”. In Proc. of 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE). New York, NY, United States: 2018.
p. 1575-1578. DOI: 10.1109/TrustCom/BigDataSE.2018.00227.

19. El-hajj, M., Fadlallah, A., Maroun, C., et al. “A Survey of Internet of Things (IoT) Authentication
Schemes”. Sensors — Open Access Journal. Basel, Switzerland. 2019; Vol. 19: 1-17. DOIL:
10.3390/519051141.

20. Hardt, D. “The OAuth 2.0 Authorization Framework, IETF RFC 6749”. Available from:
https://tools.ietf.org/html/rfc6749. [Accessed 26th Jule 2020].

21. Jones, M. & Bradley, J. “JSON Web Token (JWT) IETF RFC 7519”. Available from:
https://tools.ietf.org/html/rfc7519. [Accessed 18th Jule 2020].

22. Richer, J. “User Authentication with OAuth 2.0”. Available from:
https://oauth.net/articles/authentication/. [Accessed 17th Jule 2020].

23. Krawczyk, H. & Bellare, M. “HMAC: Keyed-Hashing for Message Authentication”. Available
from: https://tools.ietf.org/html/rfc2104. [Accessed 02th Jule 2020].

24. Leiba, B.. “OAuth Web Authorization Protocol”. IEEE Internet Computing. Nicosia, Cyprus: 2012;
Vol. 16: 74-77. DOI: 10.1109/MIC.2012.11.

ISSN 2663-0176 (Print) Information technologies and computer systems 1
ISSN 2663-7731 (Online))

https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7519
https://oauth.net/articles/authentication/
https://tools.ietf.org/html/rfc2104

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

25. Hammer-Lahav, E. (2010). “The OAuth 1.0 Protocol. IETF RFC 5849”. Available from:
http://tools.ietf.org/html/rfc5849. [Accessed 15th August 2020].

26. Frost, M. “Integrating Web Services with OAuth and PHP ”. Alexandria, VA, United States: Publ.
musketeers.me. 2016. 116 p.

27. Hammer, E. “OAuth 2.0 and the Road to Hell”. Available from:
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/. [Accessed 29th June 2020].

28. Hammer, E. “HAWK / HTTP Holder-Of-Key Authentication Scheme”. Available from:
https://github.com/hueniverse/hawk. [Accessed 14th August 2020].

29. Surkov, S. S. “Model and method of chunk processing of payload for HTTP authorization
protocols”. Proceedings of 2020 IEEE 15th International Conference on Advanced Trends in
Radioelectronics, Telecommunications and Computer Engineering (TCSET). Slavske, Ukraine: 2020.
p. 317-321. DOI: 10.1109/TCSET49122.2020.235447.

30. Surkov, S. S. & Martynyuk, O. M.. “Improvement of security for web services by research and
development of OAuth server”. Electrotechnic and Computer Systems. Odesa, Ukraine: 2016; Vol. 23(99):
99-105. DOI: 10.15276/eltecs.23.99.2016.16.

31. Apple Inc. “Grand Central Dispatch”. Available from: https://github.com/apple/swift-corelibs-
libdispatch. [Accessed 27th June 2020].

32. Grosch, S. “Concurrency by Tutorials (Second Edition): Multithreading in Swift with GCD and
Operations”. McGaheysville. VA, United States. Publ. Razeware LLC. 2020.100 p.

33. Surkov, S. S., Martynyuk, O. M. & Mileiko, I. G. “Moadification of open authorization protocol for
verification of request“. Electrotechnic and Computer systems. Odesa, Ukraine: 2015; Vol. 19(95): 178-181
(in Russian).

34. Mukherjee, A. “Physical-Layer Security in the Internet of Things: Sensing and Communication
Confidentiality Under Resource Constraints”. Proceedings of the IEEE. 2015; Vol. 103: 1747-1761. DOI:
10.1109/JPROC.2015.2466548.

35. Drozd, O., Kharchenko, V., Rucinski, A., et al. “Development of Models in Resilient Computing”.
In Proc. of 10th IEEE International Conference on Dependable Systems. Services and Technologies
(DESSERT’2019). Leeds, UK. DOI: 10.1109/DESSERT.2019.8770035.

36.. Drozd, O., Kuznietsov, M., Martynyuk, O., et al. “A method of the hidden faults elimination in
FPGA projects for the critical applications”. In Proc. of 9th IEEE International Conference on Dependable
Systems, Services and Technologies (DESSERT’2018). Kyiv, Ukraine: 2018. p. 231-234. DOI:
10.1109/DESSERT.2018.8409131.

37. Drozd, A., Antoshchuk, S., Drozd, J., et al. “Checkable FPGA Design: Energy Consumption,
Throughput and Trustworthiness”. In Green IT Engineering: Social, Business and Industrial Applications,
Studies in Systems, Decision and Contro., Warsaw, Poland: 2018. p. 73-94. DOI: 10.1007/978-3-030-00253-
4 4.

DOI: 10.15276/hait.03.2020.5
UDK 004.75

IMopiBHAHHSA NPOTOKOJIIB ABTOPU3ALLil A1 BEJMKHMX 3alIUTIB y
cepeOBUILI Yepr onepaniii

Cepriii C. CypkoB
Opnecbkuii HalliOHANBHUH MOJIiTeXHIYHMi yHiBepceuTeT, Oneca, Ykpaina
ORCID: http://orcid.org/0000-0001-9224-7526

AHOTANIA

[TpoTokonu aBTopH3aLii BiJirparoTh OCHOBHY poJib B BeO-Oe3mneku. IcHye Hebesneka Toro, mo gaHi OyayTh 3MiHEHI B MicCLsX, A€
BOHH IepealoThesl B He3amn()poBaHOMY BHIJISI, HAIPUKIAA IPOKCi cepBepa. CuTyarii miAMiHA KOPUCHOTO HABAaHTaXKeHHsI B ypas-
JIMBUX TOYKAX € MaJOAOCHIIKEHUMH. ICHyI0qi IPOTOKOIM aBTOPH3aIlil BEIUKUX KOPHCHUX HABAHTAXEHb PEealizyloTh METOx «3aro-
BHeHH bydepay i Horo miaeux «bydepusamnis B ¢aitim». 3a 10MOMOT00 iMITAifHOTO MOJEIIOBAHHS OyJIO BHSBIICHO, IO APYTHH
nigsun "Bydepuzaris B mamM'saTe" He € imeaqbHUM AN 3aIMTIB 3 BEIMKAMU KOPHCHIMH HaBaHTAXEHHAMH. Y TIONEpenHiX podorax
0yI10 po3p00IEHO «IOpLiitHKI MeTox, Mpu3HaueHui s aBropu3anii HTTP 3amuTis 3 edexTuBHOT Bepu(ikaii KOpHCHOTO HaBaH-
TakeHHs. OHaK OyIo BUSIBIICHO, 110 B CEPEOBHILI Yep3i oneparliif cucTeMa CXuiibHa 70 Iepexoy B KPUTHYHUM PEXUM, II0 CTAJIO0
IpPEeIMETOM IOJAJBIIOr0 BUBYCHHs. METOI0 TAaHOTO JIOCHIIKSHHS € 3HWKEHHS IIKIUTMBOTO e()eKTy KPUTHYHHUX PEXUMIB. AHaIi3

172 Information technologies and computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

http://tools.ietf.org/html/rfc5849
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
https://github.com/hueniverse/hawk
https://github.com/apple/swift-corelibs-libdispatch
https://github.com/apple/swift-corelibs-libdispatch

Herald of Advanced Information Technology 2020; VVol.3 No.3: 163-173

METOJIB MiANMCAHHsI JUIsl aBTOpU3aLii 3 BAKOPUCTAHHSM MapalielIbHOT apXiTeKTypH Ha OCHOBI Teopii uepr nokasas, 0 «IOpLiiHUI»
METO/]] € HaHOLIbII epCHeKTHBHUM. PO3po0IieHi MeToaM pamKUPyBaHHsI IPOTOKOJIIB aBTOPHU3ALil Ul BEJIMKUX 3alUTIB i BUSBJICHHS
KPUTHYHUX PEKUMIB J03BOJIUIIH EKCIICPUMEHTAIBHO BU3HAYMTH YMOBH MIPOSIBY II€pEBar JOCIIKYBaHHX METO/IB ITiINUCAHHS KOPH-
CHOTO HaBaHTA)XEHHS B PI3HUX PEeXXMMax 1 JOCHIKYBAaTH BIUTUB IHTEHCHBHOCTI BXITHOTO IOTOKY iH(opMalii Ha mepexi CHCTeMH B
KpUTHYHUH pexxuM. [1I1IxoM KOMITIOTEPHOr0 eKCIepUMEHTY OyJIM OTpHMaHi 3aIeKHOCTI MIBHIKOCTI 0araTornoTOKOBOI 3allMCH BiX
KIJIBKOCTI TTOTOKIB JUISI «IOpIiHOTOY 1 «Oydepusanus B Qaitm» METOIIB B 3aJI€KHOCTI BiJl KUTBKOCTI MOTOKIB 1 IMBUKOCTI Iepeadi
nanux. [lapanensHa 06poOka HupPOBOTro MiAMKUCY 3aUTIB MiABUINMIA TPOAYKTUBHICT CUCTEMH, 3a0€3Meuylodr MPH [bOMY HOCITi-
JOBHY 00poOKy MaHuX 3amuty. J[ocmimKeHHs BIUTHB iHTEHCHBHOCTI BXiHOTO MOTOKY iH(popMallii Ha mepexiJ CHCTEMU B KPUTHYHHI
PEXUM A€ MOXKIIMBICTh PO3paxyBaTH OOMEKECHHSI HABAHTa)KCHHS CUCTEMH. TakuM YHHOM JIOCATAETHCS METa 3HIKEHHS LIKIAINBOTO
eeKTy KPUTHIHHUX PEKUMIB 1 3a0e3neueHHst O1Ib1I0T HAMIHHOCTI 1 BUAKOIIT CHCTEMH.
KorouoBi ciroBa: nndpoBuii mianmc; aBTopu3aris; BEIUKHI po3Mip 3aIlUTy; YepTH OIepaliii; MepexeBi 3auTh; Bepudikaris

DOI: 10.15276/hait.03.2020.5
UDK 004.75

CpaBHeHUE NPOTOKOJIOB ABTOPU3ALMU sl 00JIBIIUX 3aMPOCOB B
cpene ouepeseil onepaumi

Cepreii C. CypkoB
Opecckuii HAMOHAIBHBII MOJMUTEXHUYECKHH YHUBepcuTeT, Onecca, YKkpanHa
ORCID: http://orcid.org/0000-0001-9224-7526

AHHOTAIMUA

[IpoToKOBI aBTOPH3ALUK UTPAIOT OCHOBOIIOJATAIOIIYI0 poiib B BeO-0e3omacHocTH. CyIecTBYeT OMacHOCTh TOTO, YTO JaHHBIE Oy-
IIyT U3MEHEHBI B MECTaX, Te OHH IIePefaroTCs B He3aln(poBaHHOM BHJE, HAIPHMEDP MIPOKCHU CepBepa.
CuTyain HoAMEHBI ONE3HOH HArpy3KH B YSA3BUMBIX TOUKaX SBIISIOTCS MalTOHUCCIeAOBaHHBIMU. CyIIeCTBYIONINE IPOTOKOIBI aBTO-
pu3anuy OOJNBLIMX TOJIE3HBIX HArpy30K peanu3yroT MeTon «3amonHenue bydepa» u ero monsua «bydepuszanus B ¢ain». C momo-
IIBI0 UMUTAIIMOHHOTO MOJIENIMPOBaHMs ObUIO0 0OHAPYKEHO, YTO BTOPOil moasun «bydepusanys B mamMaTh» He SBIIETCS UAeaIbHBIM
JUTSL 3aIIPOCOB C OOJNBIIMMH TIOJIE3HBIMH Harpy3kaMu. B nmpexpiaymmx paborax ObuT pa3paboTaH «ITOPIHUOHHBIN METOM, IpeIHa3Ha-
4yeHHbIH i aBTopu3anun HTTP 3anpocos ¢ 3¢ dextuBHON BepuduKanyy moie3Hoi Harpy3ku. OnHako ObI0 0OHApYKEHO, YTO B
cpezie oYepear ONepari CHCTeMa CKIOHHA K Iepexoay B KPUTHYECKUI PeXXHMM, YTO CTAJIO MPEIMETOM JalbHEHIIEero M3ydeHUs..
Llenpio JaHHOTO MCCIENOBAHUS SIBISIETCS CHIDKEHHE BPEIHOTO 3(eKTa KpUTUIECKUX PEKUMOB. AHAIN3 METOJOB MOAMUCAHUS IS
aBTOPHU3ALMH C UCIIOIb30BAHMEM MApAIENbHOI apXUTEKTypsl HA OCHOBE TEOPHM Ouepenell MoKas3al, YTO «ITOPIHUOHHBIN) METO]
MIPe/ICTaBIsACTCS] Hanboiee MepCIeKTUBHBIM. Pa3paboTaHHBIE METOABI PAHXKHPOBAHUS NMIPOTOKOJIOB aBTOPH3AIMH Ul OOIBIINX 3a-
IIPOCOB ¥ BBISBICHUSI KPUTHIECKHX PEXKUMOB MO3BOIHMIN IKCIIEPUMEHTANBHO ONPEIEIUTh YCIOBHUS MPOSBICHUS MPEHMYIECTB HC-
CJIelyeMbIX METOJOB IOJIMCAHMs ITOJIC3HOW HAarpy3KH B Pa3HBIX PEKMMax U HCCIEAOBATH BIWSHHAE WHTECHCHBHOCTH BXOJIIECTO
MOTOKa MH(OPMAIMU Ha IEePeX0]] CUCTEMBI B KPUTHYECKHH pexuM. [lyTeM KOMIBIOTEPHOTO SKCIIEPUMEHTa OBUTH IOJTy4eHBI 3aBH-
CHMOCTH CKOPOCTH MHOTOIIOTOYHOM 3aIKCH OT KOJIMYECTBA MOTOKOB IS «IOPLHOHHOTO» U «Oydepusanus B daiia» MeToqoB B 3a-
BHCHMOCTH OT KOJIMUECTBA ITOTOKOB M CKOPOCTH Iepenadyn AaHHEIX. [lapasensHas o6paboTka 1@ poBoi NOAIKMCH 3aIIPOCOB MOBbI-
CHJIa TIPOHU3BOIUTENBHOCTh CHCTEMBI, 00ECTIeunBast IPH 3TOM IOCJIeJOBATENIFHYI0 00paboTKy JaHHBIX 3ampoca. MccnenoBanne Bim-
STHUEe MTHTEHCHBHOCTHU BXOMAIIETO MOTOKA HH(OPMAIIH HA MEPEX0/ CUCTEMbI B KPHTHIECKHH PEXUM JaeT BO3MOXXHOCTb PACCUUTATh
OTpaHMYEHHE Harpy3KH CHCTEMBI. TakuM 00pa3oM, JOCTUTAETCS Helb CHIKEHHS BpeTHOTO 3 dexTa KpUTHIECKHX PEXKUMOB 1 obec-
nedeHust OoIbIIel Hale)KHOCTH U OBICTPOICHCTBHUS CHCTEMBI.

KnrodeBble cioBa: mudposast MOAIICEH, aBTOpU3anys; OONBIION pa3Mep 3arprioca; ouepe I ONepaliii; CEeTeBbIe 3apOCkl; Be-
pudukanus

ABOUT THE AUTHORS
Sergii S. Surkov — PhD Student of Computer Intellectual
’ I \ Sytems and Networks Department, Odessa National Polytechnic University, Odessa, Ukraine

= = k1xOr@ukr.net

Cepriii C. CypkoB — acnipanT Kad. KOMIT'IOTEDHHX IHTEJEKTYalbHAX CHUCTEM i MEPEXK,

: OpecbKuil HalllOHANBHUHN MOJITeXHIYHUHN yHiBepcuTeT, Oneca, Ykpaina
S
Cepreii C. CypkoB — acrmpaHT kadeapbl KOMIIBIOTEPHBIX HHTEIUICKTYAIbHBIX CHCTEM U
cereit, Ofiecckuil HalMOHANBHBIN ONUTEXHUYECKUH yHUBepcHTeT Oniecca, YKpanHa
Received 03.08.2020
Received after revision 15.09.2020
Accepted 21.09.2020
ISSN 2663-0176 (Print) Information technologies and computer systems 173

ISSN 2663-7731 (Online))

