Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

DOI: 10.15276/hait 03.2020.1
UDK 004.021

Reducing the search area of genetic algorithm using neural
network autoencoder

Oleksandr V. Komarov
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0001-7651-6300

ABSTRACT

The article discusses the problem of developing a genetic representation for solving optimization problems by means of genetic
algorithms. Traditionally, a genotype representation is a set of N features that defines an N-dimensional genotype space in which
algorithm performs a search for the solution. Due to the non-optimal choice of features, the genotype space becomes redundant, the
search area for a solution unnecessary increases, which slows down the convergence to the optimum, and leads to the generation of
infeasible candidates for the constraints of the problem. The reason for this is the desire to cover all legal candidates for solution of
the problem by the search area, since the optimum is feasible by the conditions of the problem. In constrained optimization problems,
to find the optimum, it would be sufficient to cover only the area of feasible candidates that fall within the constraints specified by
the problem. Since the set of feasible candidates is smaller than the set of all legal candidates, the search area may be narrower. The
search area can be reduced by obtaining a more efficient set of features that is representative of the set of feasible solutions. But in
the case of a small amount of domain knowledge, developing of an optimal feature set can be a nontrivial task. In this paper, we
propose the use of feature learning methods from a sample of feasible solutions that fall under the constraints of the optimization
problem. A neural network autoencoder is used as such a method. It is shown that the use of the preparatory stage of learning a set of
features for constructing an optimal genotype representation allows to significantly accelerate the convergence of the genetic process

to the optimum, making it possible to find candidates of high fitness for a smaller number of iterations of the algorithm.
Keywords: genetic algorithm; feature engineering; neural network autocoder; search area; optimization problem

For citation: Komarov O. V. Reducing the search area of genetic algorithm using neural network autoencoder. Herald of Advanced
Information Technology. 2020; Vol.3 No.3: 113-124. DOI: 10.15276/hait 03.2020.1

INTRODUCTION

Genetic algorithms have proven to be effective
optimization methods that provide directed random
search on complex surfaces. By combining elements
of directed and random search, genetic algorithms
offer a good balance between exploration and
exploitation of the search area.

However, it was shown that genetic algorithms
demonstrate a low convergence rate in combinatorial
optimization problems [1]. The resource intensity of
genetic algorithms strongly depends on the size of
the solution search area [2-3]. For a number of
problems, the search area in genetic algorithms
increases critically with an increase in the size of the
input data, up to exponential growth [4].

Genetic methods work simultaneously in the
genotype and phenotype spaces. The phenotype is
the desired type of solution, and the genotype is its
encoded representation. The search for solutions and
their transformations are performed in the genotype
space, whereas the assessment and selection of the
obtained solutions are performed in the phenotype

© Komarov O. V., 2020

space. Genotype to phenotype mapping is performed
using the decoding operation.

The phenotype space can be basically divided
into areas of legal and illegal solutions. Any object
of the phenotype space that can be considered as a
solution to the problem is considered a legal
solution.

Within the area of legal solutions the area of
feasible solutions can be distinguished. In
constrained optimization problems this area is
defined by the constraints of the problem. The
desired optimal solution is located within this area
(Fig. 1).

Although fitness function can be determined on
the genotype space, it usually can be calculated only
in the phenotype space. In constrained optimization
problems, the domain of definition of a fitness
function is most often the domain of feasible
solutions, and the constraints of the problem
determine either the coefficients of the fitness
function or additional terms that define the domain
of feasible solutions.

When using genetic approaches, the choice of
the search area is one of the important problems,
along with other aspects, such as the choice of the
selection strategy, the constitution of the initial state

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science, 113
programming and data analysis

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

and size of the population, the mutation chance etc.
A badly selected search area leads to the following
problems: the appearance of illegal, infeasible, or
equivalent genotypes that map to the same
phenotypes.

In genetic algorithms, the main resource costs
are the resource costs of calculating the fitness
function [5]. Therefore, when developing genetic
methods, it is efficient to aim to reduce the number
of algorithm iterations, thus reducing the number of
estimations of the fitness function. The presence of a
large number of infeasible and equivalent genotypes
significantly inhibits convergence, ‘“stretching” it
over a large number of iterations of the algorithm.
Thus, to enhance the performance of the genetic
algorithm, it is crucial to pay special attention to the
choice of the solution search area.

LITERATURE REVIEW

There is a large number of works devoted to the
problem of choosing a search area. The approaches
used in them notably differ, but some general
outlines can be pointed out: heuristic methods
(elimination of infeasible solutions) [6-7], the
development of new genetic operators [8-9], the
development of selection and crossover strategies
based on systems of penalties and rewards [10-11].

The main goal of such methods is the so-called
feasibility preservation, an approach according to
which, once the algorithm reached the area of
feasible solutions; it must continue the search within
it, avoiding generation of infeasible solutions. Such
methods show good results, but they do not perform
any operations on the search area itself. Thus, the
risk of generation of the infeasible solutions
remains.

There are methods that rely on preliminary

Genotypes

Search area

feasible

investigation of the search area and the exclusion of
knowingly infeasible areas [12]. Such techniques
can be combined with heuristics and specific genetic
strategies to improve performance. To limit such
negativistic behaviour, the method has to retain any
areas that have a chance of containing the optimum,
or risk the elimination of it.

Much more popular is the opposite approach,
which could be called positive. It focuses on
exploring the area of feasible solutions in order to
build a search area in it. This is usually
accomplished by creating a new genetic
representation.

It is shown that efficiency can be improved not
only with the help of genetic operators, but also with
the help of representations [13].

Traditionally, the search area is an N-
dimensional space, where N is the number of
features with which the genotype of the solution is
encoded. An arbitrary vector in this space is
considered as the genotype of the some solution.
Non-optimal coding thus leads to unnecessary
expansion of the search area.

The main method of genotype coding is the
binary representation of the phenotype [14], but it
has been shown that this method has a number of
significant disadvantages [1]. The direction of
research in this area concentrates on the search for a
shorter set of features that are significant only for
legal and feasible solutions. By constructing such a
set of features, it is possible to reduce the search area
to a set that excludes illegal and infeasible solutions,
and also to close genetic operators on the desired
subset of solutions.

The extraction of features can face many
difficulties caused by the existence of hidden
internal connections in these solution sets. An
effective way to overcome this problem is to build
knowledge-rich representations [15-16].

Phenotypes

decoding

>

Fig. 1. Mapping between from genotype to phenotype spaces

114

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

This problem is successfully solved for special
cases by developing specialized feasible
representations [5-6; 17-22]. Such representations
may differ in structure and may require the use of
unique genetic operators [9], which does not allow
to design a general approach.

An attempt to propose a universal
representation in a restricted domain was made in
[23]. However, this method still assumes possession
of knowledge about the feasible solution area.

The use of domain-dependent knowledge is a
significant disadvantage of all these methods, since
it implies the need of involving experts, which can
be expensive, or even impossible for some cases.
There is a need for domain-independent methods for
engineering an optimal set of solution features.

FORMULATION OF THE PROBLEM

A solution representation (or genotype
representation) is a set of N features. This set defines
the N-dimensional space of genotypes, which is
mapped into the space of phenotypes using some
function. In the classical genetic algorithm, the
solution search area for is the entire genotype space.

A good genotypic representation can be
characterized by five main properties:
nonredundancy, legality, completeness, Lamarckian
property and causality [1].

Three of these properties have a direct impact
on the size of the search area: nonredundancy,
legality and completeness. Nonredundancy requires
the absence of equivalent genotypes (genotypes that
map to the object in the phenotype space) in the
search area. Legality requires that any genotype
could mapped to a phenotype that can be solution of
the problem. The completeness property requires
that for every possible solution of the problem there
is a corresponding genotype.

Although a legality and completeness property
doesn’t formally contradict each other, representation
development usually faces a conflict between them.
Usually, especially in the absence of domain
knowledge, the developer prefers completeness in
order to provide a search across the entire set of
possible solutions. Representations build in this way
often violate the legality and nonredundancy
requirements. It is this problem that developers usually
try to overcome by designing new operators, strategies
and heuristic improvements of the genetic process.

Note that if the illegality and redundancy of
genotypes is a consequence of a redundant set of
features, the nature of infeasibility originates in
constraints of the optimization problem [1]. Note also
that the desired optimum, by definition, is contained in

the area of feasible solutions. Therefore, we can
replace the completeness property with the weaker
requirement of feasible completeness, which states that
there is a genotype for every feasible solution. Having
designed a new representation based on the weakened
requirement, we can narrow the search area around the
set of feasible solutions, and also ensure the closure of
genetic operators in the area of legal (and ideally,
feasible) solutions (Fig. 2).

To build such a representation without domain-
dependent knowledge, it is necessary to apply the
methods of feature learning.

One of the most popular feature learning
methods is a neural network autoencoder. Neural
networks built on such architecture are capable of
non-supervised training, extracting only the most
essential properties from the input data [24-28]. It is
shown that the neural network autoencoder
effectively solves the problem of learning features
[29-30], and it is successfully used for a number of
practical problems [31]. Applying a neural network
autoencoder on a representative set of feasible
solutions, we can learn some important features of
solutions in this area, and use them to build a
genotype representation.

Therefore, the goal of our study is to develop a
genetic method for solving an optimization problem
on a reduced search space generated by a set of
features extracted from a sample of feasible
solutions using a neural network autoencoder.

MAIN PART. METHOD DESCRIPTION

The proposed method consists of two stages. At
the first stage, the solution features of the desired set
are extracted. This stage involves the use of a neural
network autoencoder with a narrow central layer, on
which a set of genotype features will be learned
during training. This is a preparatory step that is
performed once for each given search area. At the
second stage, the genetic algorithm is launched to
solve the optimization problem.

A neural network autoencoder is an artificial
neural network of symmetric architecture that learns
to reproduce the data from the input layer on the
output layer [24]. With a special layer called the
central layer, the structure of the autoencoder is
divided into two parts, an encoder and a decoder. By
changing the size of the central layer, a more
redundant or less redundant image of the input data
can be obtained on it.

Figure 3 shows an example of an autoencoder
with an input and output layers that consist of 4 X and
4 X' nodes and a centre layer of 2 Y nodes. Nodes Z
and Z' constitute the internal hidden layers.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

115

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

i
Genotype space with !

completness \ area

Phenotypes

Genotype space with !
feasible completness \

Phenotypes

Y

Fig. 2. Mapping of the search area into the phenotype space from the genotype space of high
dimensionality with completeness (top) and the genotype space of low dimensionality with feasible
completeness (bottom)

Using of additional internal layers, along with the
central one, has a positive effect on the training of the
autoencoder: it provides better data compression and
allows decreasing the amount of training data needed
[24].

During the training of the autoencoder, all
network nodes, except for the input layer X, are
neurons, which are nonlinear functions f of the sum %
of the set of input signals x; weighted by the weights w;
(Fig. 4) [24]. However, after training, the network is
disunites, and two new networks are formed from the
trained layers: an encoder and a decoder.

The subnet from nodes X to nodes Y is an
encoder. It can produce a compressed image of the
input data. In the architecture of the autoencoder and in
the architecture of the encoder derived from it, the
nodes Y are neurons, the activation function of which
is usually chosen depending on the desired type of
output data image. For example, a sigmoidal activation
function (followed by rounding) can be used to
generate a binary vector image.

The subnet from nodes Y to nodes X' forms the
decoder. In the decoder, the layer of Y nodes is not a
layer of neurons, but instead replaced by an input layer.
Due to this, the decoder is able to restore the original

form of the input data image, or to obtain a vector close
to it. In this regard, the activation function of layer X' is
also selected in such a way as to best cover the range of
values of the original dataset, which came to layer X
during training of the autoencoder.

Reducing the redundancy of information on the
input layer using architecture with a narrow central
layer is achieved by identifying non-obvious structural
relationships in the input data of the training set. Thus,
the training sample should be representative of some
class of solutions in which we want to find such
connections.

We assume that in the legal (or feasible) area of
solutions unites solutions of a certain type, the
connection between which is not obvious. In order to
correctly extract a set of features, we need a
representative sample of legal (or feasible) solutions.

A training sample for a neural network
autoencoder can be obtained using the binary
representation of a set of feasible phenotypes. Now,
having trained the autoencoder with a narrow center
layer on this sample, we can use the center layer as a
genotype representation, which is a binary feature
vector. This feature vector as well as the trained
encoder and decoder are the results of the first stage.

116

Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

‘

Encoder

Fig. 4. Artificial neuron model:
X; — input values; w; — their weight coefficients,
summator X, activation function f and
output value y

At the second stage, a direct genetic search for a
solution is performed. Upon initialization of the
algorithm in the search area, defined as the space
generated from learned features, a generation of
random individuals is created. The population is
projected into the phenotype space by a decoder to
evaluate individuals using the fitness function. Each
individual gets a fitness rating, and all subsequent
genetic operations (selection, crossover, mutation) are
performed in the genotype space. The process repeats
until a solution with the desired fitness value appears at
the decoder. The chosen approach of representing
solutions allows application of any classical genetic
operators.

The overall flowchart of the algorithm is shown in
Fig. 5.

The first and main limitation of this method is the
need for a representative sample of the set of legal
(feasible) solutions. This condition cannot be met for
some tasks. Nevertheless, there are a number of tasks
for which it seems possible to form such a sample.

Iapoda(

Another drawback of this method is the duration
of the preliminary first stage of training, which in
some cases may be comparable to the duration of the
second stage. Here we note that this problem is most
relevant for situations where the search for a solution
must be carried out once for a given fitness function
and a given legal (feasible) area. We assume that such
tasks, firstly, are quite rare, and secondly, they are
rarely demanding in terms of execution time. On the
other hand, solving problems that require frequent
launches of the algorithm naturally increases attention
to the duration of actual genetic search. The more
often search is needed, the less significant the cost of
the first stage becomes.

A particular difficulty is the determination of the
number of required features, i.e. the size of the central
layer of the autoencoder. It is obvious that the larger
the size of the feature vector, the larger the search
area will be. At the same time, by choosing a too
small feature vector we noticeably reduce the variety
of solutions available in such a search area, up to the
point when representation becomes less diverse than
the training sample. In such case training of the
autoencoder cannot be performed. We proceed from
the assumption that the variety of solutions in the
search area exceeds the variety of the training sample,
since otherwise the optimal solution would be
contained in the training sample, and it could be
found by a simple brute force.

Composition of optimal autoencoder architecture
could be a difficult task itself. The specific parameters
of this network should be determined by the nature of
the task. To configure the autoencoder, we should
seek general recommendations on the architecture and
training of neural network autoencoders in dimension
reduction and feature learning tasks [24; 26-27].

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science,
programming and data analysis

117

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

Encoder

Y

Y Y
Training Forming search | VP'o'pu'latlgn
area initialization
A
Y A 4

Projection to

r g Decoder |- <
phenotype space

Y

Fitness-
function

% No —»

Yes

solution

Selection [Crossover [Mutation

Fig. 5. Flowchart of a genetic algorithm using an autoencoder

Note that the proposed method does not conflict
with other methods of improving the performance of
genetic algorithms, such as the development of
genetic strategies, operators, and some heuristic
approaches, so they can be applied along with each
other.

EXPERIMENT

For the experiment, the task was set to draw
black and white images of handwritten decimal digits.
Such a task may be faced, for example, in the system
of automatic generation of captcha images. The
desired solution to the problem is a black and white
image of 28 x 28 pixels, which can be visually
recognized as the indicated digit.

With use of a fitness function that performs
visual recognition of a digit; such a problem can be
solved by means of a classical genetic algorithm.
Having generated random binary vectors with a
length of 784 bits (which can be transformed into 28
x 28 binary matrices), by selecting the most “similar"
to the desired digit ones, and subsequently
recombinating their content, it is possible to recreate
an image acceptable for recognition as such digit.
However, it's easy to assume that with such a trivial
solution coding, when the genetic representation is
just a complete set of pixel values, the number of all
possible combinations is extremely large. Search for
the feasible solution in such a search area can be long.

At the same time, such images can be easily
compressed, which leads us to the assumption that the
desired solutions can be encoded in a more efficient
way. The same genetic process performed on smaller
vectors and then converted to a full-size 28x28 pixel
image may be faster due to the fewer possible
combinations. If we get a representative sample of
feasible solutions, we can train the autoencoder and
learn a less redundant set of features that will form the
structure of our new, more efficient genetic
representation.

As a sample of feasible solutions the MNIST set
of handwritten numbers was used [32]. The images
were pre-binarized to meet the conditions of the
problem.

To conduct experiments, we will train several
autoencoders on a common architecture with different
size of the central layer: 128, 64 and 32 bits,
respectively. The autoencoder consists of 5 inner
layers. The input and output layers are composed of
784 neurons which correspond to 784 pixels of the
image. The size of the remaining layers, starting from
the central one, doubles, two times in each direction
(Fig. 6). To ensure compatibility with binary coding,
after learning the decoder, the center and output
layers use the sigmoidal function as the activation
function. Autoencoders have been trained over 50
epochs with 60,000 entries and a test sample of
10,000 entries.

118 Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

Encoder

784

Decoder

Fig. 6. Structure of an autoencoder with a central layer of size N

The fitness function is based on the fast
normalized cross-correlation method [33], which has
been successfully used to find patterns in images [34].
The fitness of an image ¢ is determined by the degree
of similarity to a given handwritten digit. To assess this
similarity, a set E of pattern images ¢ is selected from
the MNIST dataset, which depict this digit. The fitness
value of the image o is the arithmetic mean of the
values of the normalized cross-correlation coefficient
calculated between o and each pattern image ¢
belonging to the set E and is calculated by the formula
(1), where x and y are the coordinates of the image

2, (e y) =a)(s(x, y) - &)

f(o,E):ézg

The experiment was carried out in four
configurations.

In the first configuration, a trivial genetic
representation that encodes an image with a vector of
784 values was used. It is structured as follows. By
the condition of the problem, the image o is
represented by a binary matrix consisting of 28 rows
and 28 columns, each element of which represents the
brightness value of one pixel of the image, where 0
represents a black point and 1 represents a white
point. The genetic representation of the matrix o will
be a vector s, each element of which is s (1) = o(1 © 28,
1©28), where @ is an integer division operation and

© is a modulo division operation.

2 en-a7Y, coy-a) D)

learning by the autoencoder. These representations
are vectors of 128, 64, and 32 bit lengths respectively.

At the beginning of the genetic process, the
population of random individuals of the given genetic
representation is formed. These representations are
determined by the configuration.

To bring these genetic representations to a form
that is appropriate for calculating the fitness function,
ie. to a phenotypic representation, additional
transformations are required. This decoding is carried
out for the each generation of the population (Fig. 7).

In a configuration with a trivial genetic
representation, for decoding, it is enough to map a
vector of 784 bit length to a 28x28 matrix by
sequential extraction of its rows. That is, for the
vector s, construct a matrix o, in which each of its
elements o(x, y) = s (28 - (x — 1) +y). Further, each
element equal to O is considered a black point, and
each element equal to 1 is considered a white point.

In the case of -configurations with
representations based on sets of learned features,
phenotype decoding firstly requires restoring of the
representation dimensionality.

To do this, each individual represented by a
vector of 128, 64 or 32 bit length (the length depends
on the chosen configuration) is fed to the input layer
of the corresponding decoder, on the output layer of
which a full-size vector of 784 bit length is formed,
corresponding to a trivial genetic representation. This
vector is further reduced to a two-dimensional 28x28

The other three configurations were carried out matn)((j according to the previously indicated
using genetic representations obtained via feature procedure.
ISSN 2663-0176 (Print) Theoretical aspects of computer science, 119

ISSN 2663-7731 (Online)

programming and data analysis

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

g1

g2

g3

EN

Dimensionality recovery
(only for representations of lesser than 784 size)

i
Genetic .
representation

51 g7,1101,2 01,28
52 02,1 | 02,2 02,28
53

54 028,1 |028,2 028,28

5784

Mapping to phenotype matrix

Fig. 7. Genotype representation decoding

Figure 8 shows the graphs of the ftiness growth
of the generated images depending on the number of
iterations performed. The genetic process on
chromosomes with a learned feature set tends to high
fitness values much faster. Note also that convergence
increases with decreasing representation
dimensionality.

Figure 9 shows the successive steps of
generating an image of the digit 3.

As you can see, genetic method with a trivial
representation requires at least 20-30 iterations,
before a visually distinguishable image is achieved.
At the same time, a sufficiently large number of
noises are retained in the image. It will take at least 20
more iterations of algorithm to get rid of it.

At the same time, an algorithm with genetic
representations based on a learned feature set
generates images close to a distinguishable image of
a digit from the very first iterations. Through the
course of iterations only the correct shape of the
pattern is selected, and the images are free of noise.

0,8

0,7

CONCLUSIONS

A new genetic method for solving
optimization problems on a reduced search area
was proposed. The reducing of the search area is
achieved by constructing a feasible genotype
representation by learning the features of feasible
solutions using a neural network autoencoder. It is
shown that due to the generation of a less
redundant presentation, it is possible to achieve a
reduction in the number of algorithm iterations
required to find a solution of the desired fitness.

The use of feature learning methods is possible
due to the development of a new set of
requirements for genotype representations.
Replacing the strict requirement of legal
completeness with a weaker requirement of feasible
completeness allows to reduce the set of possible
candidates and focus primarily on the most
promising solutions.

1 3 5 7 9 11

AE 128
— = = AE 64

AE 32
— == T 784

13 15 17 19 21 23 25 27 29

Fig. 8. Fitness growth of the best individuals of the population during the first 30 iterations of
performing a search by the genetic method with learned (AE) and trivial (T)
genetic representations

120 Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

1 2 3 4 5 6 7 8 9 10

15 20

BEEEE

25 30 35 40 45

Fig. 9. Stages of generating an image of the digit 3 using learned representations (AE) for 10 iterations
(top), and trivial representation (T) for 50 iterations (bottom)

The disadvantage of the proposed method is
the necessity of a preparatory stage for feature
learning, as well as the necessity of a representative
sample of feasible solutions. These disadvantages
limit the field of application of the method.
However, technologies and systems that use genetic
search for a solution actively and regularly were

The first direction of research should be the
application of other feature learning methods. In
this sense, the use of generative models is of
particular interest.

The second direction of research is the
development of modifications of the method that
ensure fulfilment of the feasible completeness

chosen as the target ones. With a large number of
launches of the genetic method, the duration of a
single preparatory stage becomes insignificant.

The positive result of the proposed method
opens up an opportunity for further research.

requirement. The method presented in this article
can still exclude some feasible solutions, including
the global optimum, even if its neighbourhood is
kept within the search area.

REFERENCES

1. Gen, M. & Cheng, R. “Genetic algorithms and engineering optimization”. New York. Wiley-
Interscience. 2008. 512 p. DOI: 10.1002/ 9780470172261.

2. Baraka, H. A., Eid, S., Kamal, H. & Abdel Wahab, A. H. “Unified chromosome representation for
large scale problems”. In Multiple Approaches to Intelligent Systems, Berlin, Heidelberg: Springer Berlin
Heidelberg. 1999. p. 753-760. DOI: 10.1007/978-3-540-48765-4_80.

3. Jacob, B. L. “Composing with Genetic Algorithms”. Proceedings of the International Computer
Music Conference. Banff, Canada: 1995. p. 452-455.

4. Bellgard, M. I. & Tsang, C. P. “Harmonizing music the Boltzmann way”. Connection Science. 1994;
6(2-3): 281-297. DOI: 10.1080/09540099408915727.

5. Komarov. O., Galchonkov. O., Nevrev. A. & Babilunga, O. “Consonant chord model of musical
compositions for harmonizing melodies by a genetic algorithm”. Odes’kyi Politechnichnyi Universytet
Pratsi. 2018; 3(56): 63-79. DOI: 10.15276/0pu.3.56.2018.07.

6. Ebrahimi Moghaddam, M. & Bonyadi, M. R. “An immune-based genetic algorithm with reduced
search space coding for multiprocessor task scheduling problem”. International Journal of Parallel
Programming. 2012; 40(2): 225-257. DOI: 10.1007/s10766-011-0179-0.

7. Srinivas, M. & Patnaik, L. M. “Learning neural network weights using genetic algorithms-improving
performance by search-space reduction”. Proceedings of 1991 IEEE International Joint Conference on
Neural Networks. 1991. p. 2331-2336. DOI: 10.1109/IJCNN.1991.170736.

8. Chen, S. & Smith, S. “Improving Genetic Algorithms by Search Space Reduction (with Applications
to Flow Shop Scheduling)”. In GECCO-99: Proceedings of the Genetic and Evolutionary Computation
Conference. San Francisco, United States: Morgan Kaufmann. 1999. p. 13-17.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science, 121
programming and data analysis

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

9. Freitas, A. R. R. & Guimaraes, F. G. “Melody harmonization in evolutionary music using
multiobjective genetic algorithms”. Proceedings of the 8th Sound and Music Computing Conference. Sound
and Music Computing network. 2011. p. 346-353. Available from:
http://www.alandefreitas.com/en/papers/melody-harmonization-in-evolutionary-music-using-multiobjective-
genetic-algorithms-2011-padua. [Accessed 17th September 2020].

10. Gen, M. & Cheng R. “A survey of penalty techniques in genetic algorithms”. In Proceedings of
IEEE International Conference on Evolutionary Computation. Nagoya, Japan: 1996. p. 804-8009.

11. Yeniay, O. “Penalty function methods for constrained optimization with genetic algorithms”.
Mathematical & Computational Applications. 2005. 10(1): 45-56.

12. de Melo, V. V., Delbem, A. C. B., Pinto, D. L. & Junior Federson F. M. “Improving global
numerical optimization using a search-space reduction algorithm”. Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation — GECCO ’07. Publ. ACM Press. New York, USA:
2007. p. 77-82.

13. Chen, C.-F., Wu, M.-C,, Li, Y.-H., Tai, P.-H. & Chiou C.-W. “A comparison of two chromosome
representation schemes used in solving a family-based scheduling problem”. Robotics and Computer-
Integrated Manufacturing. 2013; 29(3): 21-30. DOI: 10.1016/j.rcim.2012.04.009.

14. Holland, J. H. “Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence”. Cambridge, USA: Bradford Books. 1992. 228 p.

15. Janikow, C. Z. “A knowledge-intensive genetic algorithm for supervised learning”. Machine
Learning, 1993; No.13: 189-228. DOI: 10.1007/BF00993043.

16. Togelius, J., Yannakakis, G. N., Stanley, K. O. & Browne C. “Search-based procedural content
generation: A taxonomy and survey”. IEEE Transactions on Computational Intelligence and Al in Games.
2011; 3(3): 172-186. DOI: 10.1109/TCIAIG.2011.2148116.

17. Korkmaz, E. E., Du, J., Alhajj, R. & Barker K. “Combining advantages of new chromosome
representation scheme and multi-objective genetic algorithms for better clustering”. Intelligent Data
Analysis. 2006; 10(2): 163-182. DOI: 10.3233/IDA-2006-10205.

18. Mesquita, A., Salaza, F. A. & Canazio P. P. “Chromosome representation through adjacency matrix
in evolutionary circuits synthesis”. Proceedings 2002 NASA/DoD Conference on Evolvable Hardware. IEEE
Comput. Soc., Alexandria. VA, USA: 2003. p. 102-109. DOI: 10.1109/EH.2002.1029872.

19. Yusof, U. K., Budiarto, R. & Deris S. “Constraint-chromosome genetic algorithm for flexible
manufacturing system machine-loading problem”. International Journal of Innovative Computing,
Information and Control. 2012; Vol. 8 No. 3A: 1591-1609.

20. Tai, K. & Wang, N. “An enhanced chromosome encoding and morphological representation of
geometry for structural topology optimization using GA”. 2007 IEEE Congress on Evolutionary
Computation. Singapore. 2007. p. 4178-4185. DOI: 10.1109/CEC.2007.4425016.

21. Linden, D. S. “Using a real chromosome in a genetic algorithm for wire antenna optimization”.
IEEE Antennas and Propagation Society International Symposium 1997. Digest. IEEE. 2002. p. 1704-1707.
DOI: 10.1109/APS.1997.631505.

22. Lee, J.-Y., Seok, J.-H. & Lee, J.-J. “A chromosome representation encoding intersection points for
evolutionary design of fuzzy classifiers”. Intelligent Automation & Soft Computing. 2012; 18(3): 237-246.
DOI: 10.1080/10798587.2008.10643240.

23. Koziel, S. & Michalewicz, Z. “Evolutionary algorithms, homomorphous mappings, and constrained
parameter optimization”. Evolutionary Computation. 1999; 7(1): 19-44. DOI: 10.1162/evc0.1999.7.1.19.

24. Goodfellow, 1., Bengio, Y. & Courville, A. “Deep Learning”. Mass. MIT Press. Cambridge, USA:
2016. 800 p.

25. Buduma, N. & Locascio, N. “Fundamentals of deep learning”. CA: O’Reilly Media. Sebastopol,
California, USA: 2017. 298 p.

26. Bengio, Y. “Learning Deep Architectures for Al”. Foundations and Trends in Machine Learning.
Hanover, MD, Berkeley, USA: 2009; Vol. 2 No. 1: 1-127. DOI: 10.1561/2200000006.

27. Bengio, Y. “Deep Learning of Representations for Unsupervised and Transfer Learning”.
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, in PMLR (27). 2012. p. 17-36.
JMLR Workshop and Conference Proceedings.

28. Bengio, Y., Courville, A.C. & Vincent, P. “Representation Learning: A Review and New
Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence. New York, USA: 2013;
Vol.35 No.8: 1798-1828.

122 Theoretical aspects of computer science, ISSN 2663-0176 (Print)
programming and data analysis ISSN 2663-7731 (Online)

http://www.alandefreitas.com/en/papers/melody-harmonization-in-evolutionary-music-using-multiobjective-genetic-algorithms-2011-padua
http://www.alandefreitas.com/en/papers/melody-harmonization-in-evolutionary-music-using-multiobjective-genetic-algorithms-2011-padua

Herald of Advanced Information Technology 2020; Vol.3 No.3: 113-124

29. Hinton, G. E. & Salakhutdinov, R. R. “Reducing the dimensionality of data with neural networks”.
Science. New York, N.Y.: 2006; 313(5786): 504-507. DOI: 10.1126/science.1127647.

30. Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., & Ng, A. “Building
High-Level Features Using Large Scale Unsupervised Learning”. Proceedings of the 29th International
Coference on International Conference on Machine Learning. Publ. Omnipress. Madison, USA: 2012.
p. 507-514.

31. Salakhutdinov, R. & Hinton, G. “Semantic hashing. International”. Journal of Approximate
Reasoning: Official Publication of the North American Fuzzy Information Processing Society. 2009; 50(7):
969-978. DOI: 10.1016/j.ijar.2008.11.006.

32.“The MNIST Database of handwritten digits”. Available from: http://yann.lecun.com/exdb/mnist/. —
[Accessed 17th September 2020].

33. Lewis, J. P. “Fast Template Matching”, Vision Interface 95, Canadian Image Processingand Pattern
Recognition Society. Quebec City, Canada: 1995. p. 120-123.

34. Sridevi, M., Sankaranarayanan, N., Jyothish, A., Vats, A. & Lalwani, M. “Automatic traffic sign
recognition system using fast normalized cross correlation and parallel processing”. In 2017 International
Conference on Intelligent Communication and Computational Techniques (ICCT). 2017. p. 200-204. DOI:
10.1109/INTELCCT.2017.8324045.

DOI: 10.15276/hait 01.2020.1
VK 004.021

3MeHIIEeHHs 00J1aCTi MOIYKY FeHeTUYHOI0 AJITOPUTMY 3 BUKOPUCTAHHAM
HelipoMepe:KeBOro aBTOKOAYBAJIbHUKA

Ounexcanap B. Komapos
OpechKuii HaiOHANBHUI MOMITEXHIYHUH yHiIBepcuTeT, Oneca, Ykpaina
ORCID: https://orcid.org/0000-0001-7651-6300

AHOTANTIA

Y crarti po3rnsmaethcs mpobiieMa (OpPMYBaHHS TCHETHYHOTO MPEIACTABJICHHS I BUPINICHHS ONTHUMI3aIliMHUX 3amad 3a
JTOTIOMOTOF0 TCHETUYHUX alrOpUTMiB. TpaauiliiHO TeHEeTUYHE MPECTABICHHS sBJIsi€ co00r0 Halip 3 N 03HaK, 10 33/1a10Th N-MipHUi
MPOCTip TEMOTIMOB, B SKOMY BHKOHYETHCSA MOIIYK pillleHHS. BHACTiIOK HEONTHMMAIBLHOTO BHOOPY HabOpy O3HAK TCHOTHUITHUMN
MPOCTIp CTa€ HAAMIPHUM, 00JaCTh TOIIYKY PIilIeHHS 301MBIIYETHCA, a II€ B CBOIO YEPTry CHOBLIBHIOE IOIIYK ONTHUMYMY, a TaKOX
MPU3BOAUTH JI0 TEHEPYBAHHS KaHAWAATIB, HE TPUIATHAX 0 BUMOT 3aaadi. [[pHYHHOIO [BOTO € Oa)KaHHS OXOMUTH O0OJIACTIO MOIIYKY
BCi JIOMyCTHMI KaHAWAATH B pillleHHS 3afadi. B onTuMizaniifHuX 3amadax 3 0OMEXEHHSMH IS MTOITYKY ONTUMYMY JOCUTH Oyio O
OXOIIUTH TiJIbKH 00JIaCTh MPUAATHUX KaHIUIATIB, SKi MOTPAIUISIOTh B 331aHi 3agadero oOMexxeHHs. OCKITbKI MHOKHHA TIPHIATHUX
KaHIUATIB MA€ MEHIIIY TOTYKHICTh, Hi’)K MHOKHHA BCIiX JOMYCTHMHUX KaHIAHMIATIB, 00IACTh MOIIYKY PIllIeHHS MOXe OYTH BY)KYOIO.
3MEHIIUTH 00JaCTh TMOIIYKY MOKHA MOOYIOBOIO OiNbIII BUTIAHOTO HA0OPY O3HAK, PEHPE3CHTATHBHOTO JUIS MHOXHHHU MPUAATHUX
piteHb. AJie B pasi MaJioi KiJIbKOCTi 3HaHb PO MPEAMETHY 001aCTh KOHCTPYIOBAHHS ONTHMAIBHOTO HA0OPY O3HAK MOXE BUSBHTHUCS
HETPUBIaJbHUM 3aBJaHHAM. Y JgaHii poOOTi NPOIOHYETHCS BUKOPUCTAHHS METOJIB HAaBYAHHS O3HAKaM Ha OCHOBI BHOIpKH
MPUIATHUX 32 YMOBaMH OOMEKEHb ONTUMI3AIiiHOT 3a7a4i pilieHb. B SKOCTI TaKOro METOJy BUKOPUCTOBYETHCS HEHPOMEPEKEBUM
aBTOKOAYBalnbHUK. [I0Ka3aHO, 110 3aCTOCYBAHHSI I rOTOBYOTO €TAMy KOHCTPYIOBAaHHS HAOOPY O3HAK AJIs MOOYA0BU ONTHMAIBLHOTO
TeHETHYHOTO TPEACTABICHHS [03BOJSE 3HAYHO TMPHUCKOPUTH 30LKHICTH TEHETHMYHOTO MPOIECYy OO0 ONTHMYMY, JJO03BOJISTIOUH
3HAXOJUTH KaHIUIATiB BUCOKOT MPHCTOCOBAHOCTI 38 MEHITY KUTBKICTb iTepamiii anropuTMy.

KiouoBi cjoBa: reHeTHUHHI alropUTM; KOHCTPYIOBAHHS O3HAaK; HEHpPOMEpPEKEBHI aBTOKOIYBAILHHK, OOJIACTH IOIIYKY;
onTUMi3aliiiHa 3a1a4ya

DOI: 10.15276/hait 01.2020.1
VK 004.021

Cyme}me 00J1aCTH MMOMCKA FeHETHYECKOr0 aJIropuTrMa ¢ uCnoJib30BaHuemM
HelpoceTeBOro aBTOKOAUPOBIIHMKA

Auekcanap B. Komapos
Opecckuii HAMOHAITBHEII MOMMTEXHIYECKHI YyHUBepcuTeT, Onecca, YKpanHa
ORCID: https://orcid.org/0000-0001-7651-6300

ISSN 2663-0176 (Print) Theoretical aspects of computer science, 123
ISSN 2663-7731 (Online) programming and data analysis

http://yann.lecun.com/exdb/mnist/
https://orcid.org/0000-0001-7651-6300

Herald of Advanced Information Technology 2020; VVol.3 No.3: 113-124

AHHOTADIMA

B cratee paccmarpuBaercst mpoGiiemMa (GOpMHPOBaHMS T'€HETHUSCKOTO INPEACTABICHMS UL PEIICHUS ONTHMH3AIMOHHBIX 3amad
MOCPEICTBOM T'EHETUYECKHX alrOpUTMOB. TpagMIIMOHHO TI'eHETHYecKoe IpeJCTaBleHHE MpeacTaBisier coboit Habop u3 N
MPU3HAKOB, KOTOpBIA 3a7a€T N-MEpHOE INPOCTPAHCTBO TENOTUIIOB, B KOTOPOM IPOM3BOAMTCS MOUCK peweHus. Bcenenctsue
HEONTHMAIILHOTO BbIOOpa Habopa MPH3HAKOB, TEHOTUITHOE MPOCTPAHCTBO CTAHOBHUTCS H30BITOUHBIM, OOJACTh MOWCKA PEHICHMS
YBEIMYHUBAETCA, YTO B CBOIO OuYepelb 3aMeUIieT TOHMCK ONTUMYyMa, a TakkKe CIHOCOOCTBYeT TeHEPHPOBAHUIO KaHIUJIATOB, HE
MIPUTOHBIX K TPeOOBAaHMAM 3a1a4ud. [IpHYHUHOM 3TOTO SBISETCS KENAHNEe OXBATHThH 00JIACTBIO TOMCKA BCE JIOMYCTUMbIE KaHANAATEHI B
penreHus 3agayd. B oNTHMM3anMOHHEIX 33/1a4aX ¢ OTPAaHWYEHMSIMH JUIS ITOUCKA ONTHMYyMa JOCTaTOYHO OBLIO OBI OXBaTUTH TOJIBKO
o0J1acTh TPHUTOAHBIX KAaHIWIATOB, KOTOPHIE NOMANAIOT B 3aJaHHBIe 3amadeil orpaHudeHus. [10CKOIBKY MHOMKECTBO HPHUTOIHBIX
KaHIUIaToB o0JiaaeT MEHbIIeH MOIIHOCTHIO, Y€M MHOXECTBO BCEX JOIYCTHMBIX KaHAWAATOB, 00JIACTh ITOMCKA PEUICHHS MOXKET
OBITH OOsiee y3KOi. YMEHBIIUTh 00MacTh MOUCKA MOKHO HOCTpOeHHeM 0ojiee BBIMOAHOTO Habopa MPHU3HAKOB, MPEACTABUTEILHOTO
JUIA MHOXECTBAa NPUIOAHBIX pemeHuid. Ho B ciydae Majoro KojauyecTBa 3HAHMM O TIPEIMETHOH 00JAacTH KOHCTPYHPOBAaHHUE
ONTUMAJIBHOrO Habopa MPU3HAKOB MOXKET OKa3aThCi HETPHBHANBHOW 3amadeid. B maHHO# pabore mpeniaraercs HCHONb30BaHUE
METOJI0B 00y4YeHHs MPU3HAKaM Ha OCHOBE BHIOOPKHU MPHUIOAHBIX 110 YCIOBHUSAM OTpaHWYEHHU ONTUMU3AIMOHHON 3a/1auu peuieHuil. B
Ka4decTBE TAKOI'0 METO0Jla UCIOJb3yeTcs HelpoceTeBoil aBTokoaupoBHIMK. [loka3aHO, YTO MpUMEHEHHE MOATOTOBUTENIBLHOIO dTama
KOHCTPYHpPOBaHUsS Habopa NPH3HAKOB IS IOCTPOCHUS ONTHUMAIBHOTO T'€HETHYECKOTO IIOCTPOSHMS II03BOJISICT 3HAYUTEIIHHO
YCKOPHUTH CXOANMOCTh T€HETHYECKOTO IIpoIecca K ONTHMYMY, ITO3BOJISIS HAXOMUTh KaHIWAATOB BBICOKOH NPHCIIOCOOJICHHOCTH 32
MEHbIIee KOJIMYECTBO UTEPALIUI alropUTMa.

KnrodeBble c10Ba: TeHETHYECKHH alropUTM; KOHCTPYHPOBAHHE INPH3HAKOB, HEWPOCETeBOH aBTOKOIMPOBILIMK; 00IacTh
MOUCKa; ONTUMU3ALHOHHAs 3a1a4a

ABOUT THE AUTHOR

Oleksandr V. Komarov — PhD Student of Information Systems Department, Odessa
National Polytechnic University, Odessa, Ukraine
o0.w.komarow@gmail.com

Ounexcanap B. KomapoB — acmipanr kad. ingopmaniiinux cucrem, Onecbkuii
HalliOHAIBHUI IO TeXHIYHMI yHiBepcuTeT, Oneca, Ykpaina

Aunexcanap B. KomapoB — acniupant kad. nuadopmarmonnsix cucreM, Onecckuit
HAIMOHANIbHBIH MONMTEXHUYECKHH yHIBepeuTeT, Onecca, Ykpanna

Received 21.08.2020
Received after revision 18.09.2020
Accepted 22.09.2020
124 Theoretical aspects of computer science, ISSN 2663-0176 (Print)

programming and data analysis ISSN 2663-7731 (Online)

