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ABSTRACT

This article discusses the use of texture analysis methods to obtain informative features that describe the texture of liver
ultrasound images. In total, 317 liver ultrasound images were analyzed, which were provided by the Institute of Nuclear Medicine
and Radiation Diagnostics of NAMS of Ukraine. The images were taken by three different sensors (convex, linear, and linear sensor
in increased signal level mode). Both images of patients with a normal liver condition and patients with specific liver disease (there
were diseases such as: autoimmune hepatitis, Wilson's disease, hepatitis B and C, steatosis, and cirrhosis) were present in the
database. Texture analysis was used for “Feature Construction”, which resulted in more than a hundred different informative features
that made up a common stack. Among them, there are such features as: three authors’ patented features derived from the grey level
co-occurrence matrix; features, obtained with the help of spatial sweep method (working by the principle of group method of data
handling), which was applied to ultrasound images; statistical features, calculated on the images, brought to one scale with the help
of differential horizontal and vertical matrices, which are proposed by the authors; greyscale pairs ensembles (found using the genetic
algorithm), which identify liver pathology on images, transformed with the help of horizontal and vertical differentiations, in the best
possible way. The resulting trait stack was used to solve the problem of binary classification (“norma-pathology™) of ultrasound liver
images. A Machine Learning method, namely “Random Forest”, was used for this purpose. Before the classification, in order to
obtain objective results, the total samples were divided into training (70 %), testing (20 %), and examining (10 %). The result was the
best three Random Forest models separately for each sensor, which gave the following recognition rates: 93.4 % for the convex
sensor, 92.9 % for the linear sensor, and 92 % for the reinforced linear sensor.
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INTRODUCTION diagnosis approaches even more actual. The most
popular non-invasive method is ultrasound, which,
thanks to its speed and affordability, has recently
become fundament for information diagnosis
systems [3-4]. The only disadvantage of this
approach is satisfactory (far from perfect) quality of
disease diagnosis, which stabilizes or even worsens
with the patients’ quantity increase. Therefore, to
increase the accuracy of liver disease diagnosis, it is
necessary to use the full range of modern approaches
to medical image analysis. As a result, there is a
possibility to obtain a certain analytical tool (for
example the medical images classifier for
recognizing pathologies), which becomes a key
mechanism for the creation of a decision support
system, which provides additional services for
doctors while diagnosing a patient.

Medicine has always been considered as one of
the most important areas of human activity for
almost the entire human race. Thanks to information
and computer technologies, this area is rapidly
modernizing, as is the diagnostic process [1]. Timely
diagnosis of human disease is a very important
procedure since it helps to prevent the appearance of
serious consequences.

In the context of liver disease diagnosis, one of
the most accurate methods is biopsy [2], which is
one of the invasive diagnosis types. Nevertheless,
this method has many harmful drawbacks, among
them: a high percentage of complications (including
fatal outcomes), pronounced pain during the
procedure (20 % of those surveyed), and close to 9%
of those surveyed said they would never agree to a

biopsy again. All this makes the task of non-invasive CLINICAL DATA DESCRIPTION
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diagnostics for the Institute of Nuclear Medicine and
Radiation Diagnostics of NAMS of Ukraine. The
Institute provided 317 liver ultrasound images b-
mode (Fig. 1).

In total, there are ultrasound images of 46
patients with liver in normal condition and 48
patients with certain liver disease (autoimmune
hepatitis, Wilson disease, B and C type hepatitis,
steatosis, and cirrhosis among them).

The so-called “regions of interest”, or more
precisely, the regions of liver ultrasound, which
doctors consider to be the most characteristic for
identifying pathology, have been marked with red
rectangles (Fig. 1). It is these regions of interest
(ROI) that have been used in this study as separate
objects for analysis. A total of 582 ROls were
identified from each ultrasound’s sensor (312 ROI of
normal liver and 270 liver pathology ROI).

Another characteristic feature of the data used
in the study is that the ultrasound images were taken
from different sensors, namely convex, linear, and
linear in increased signal mode (marked as
“reinforced”). The distribution of norma and
pathology for each sensor is as follows: convex
sensor — 197 (norma):107 (pathology), linear sensor
— 80:74, reinforced sensor — 35:89.

ANALYSIS OF THE LATEST RESEARCH
AND PUBLICATIONS

The ultrasound only visualizes the surface of

the liver, and to represent this on a bitmap image, a

so-called “texture” is applied graphically to this

surface. This texture makes it possible to obtain
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valuable information from the images using “texture
analysis” methods [5]. Any image is an mxn (m —
number of rows; n — number of columns) pixel
matrix. The matrix shows the grayscale values of
grey (since the image is black and white), which
range from O (black color) to 255 (white color).
Using matrices of this type, we can obtain texture
features that essentially describe the properties of the
image. These features are calculated based on the
spatial gray-tone relations of the image. Texture
attributes are usually used as texture statistics of the
first and higher order [6]. First order statistical
features are calculated from the mxn matrix
(grayscale matrix). One of the first applications of
this kind of features was the classification of coal
worker pneumoconiosis [7]. These features are
standard in texture analysis and their use can be
found in many papers [8-11].

Statistical features of the second and higher
orders are obtained from different types of
relationship matrices of gray levels of images. An
example of such a matrix is the grey-level co-
occurrence  matrix (GLCM) [12-13]. The
effectiveness of the use of this matrix in the works
[14-18] led the authors [19-20] to a detailed study of
GLCM and its application to OI liver images.
Average GLCMs were constructed separately for
normal and pathological images, and the result was
obtained in the form of 3D histograms, which are
shown in Fig. 2 (x and y axes show grayscale and z
axes shows the average frequency of grayscale
combination).

Fig. 1. Example of ultrasound image used in study
Source: Institute of Nuclear Medicine and Radiation Diagnostics of NAMS of Ukraine
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Fig. 2. Average GLCMs of:

a—norma; b — pathology
Source: compiled by the author

After comparing obtained histograms, the
authors [19-20] were able to get three next features,
which are protected by the patent of Ukraine
No0.139916 on utility model “Diffuse liver disease
diagnosis method in children”, issued on January 27,
2020:

e x: (Fig. 3) — frequency rate stability range in
the area of low-intensity grayscale combinations (the
multiplication of a grayscale pair, the combinations
of which are most commonly found on GLCM).

GLCM
. 0 ‘ 123 |4 |5
o2 5 1 7 1|4
i1 /5 0 4 2 2|2
2(1 4,03 3 1
K K
x1=i *j
13|17 2 3 2 3|5 2
4|1 2 3 3 1|6
5(4 2 1 5 6|0 /

Fig. 3. Definition of feature x;
Source: compiled by the author

o X, (Fig. 4) — frequency of the grayscale pair,
which best distinguishes between norm and
pathology in liver images.

e X3 (Fig. 5) — maximum greyscale value to the
level of significance (range of GLCM).

The use of these features enabled the correct
recognition of liver pathologies in 93 % of cases
[19]. However, at the time, the ROI sample included
just over 100 images, and after 500 ROl more were
obtained, the result deteriorated markedly. However,
the study in [19] found that these features were quite

informative, and their combination with other
features could provide the necessary analytical tool
to recognize liver pathologies with the utmost
precision.

GLCM
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0|2 5 1 7 1 4 —xy
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Fig. 4. Definition of feature x,
Source: compiled by the author

X3=imax*imax-imin*Jmin
» »

Fig. 5. Definition of feature xs
Source: compiled by the author

RESEARCH OBJECTIVE

The aim of this work is to use the authors
previous experience (in the form of patented
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textured features) and to obtain new informative
features to form a common “stack™ of features that
describes liver ultrasound images. This stack will be
used to improve the accuracy of the liver norma and
pathology recognition in ultrasound images by
obtaining optimum classification models using
Machine Learning methods. Classification models
will be obtained separately for convex, linear, and
reinforced ROI samples.

The following tasks have been set in accordance
with the objective.

1. To obtain new informative texture features.

2. Construction of classification models for
three sensors.

3. Analysis of the results obtained.

IDENTIFICATION OF NEW TEXTURE
FEATURES

The features proposed by the authors can be
divided into the following groups:

o features obtained with the help of linear
images sweep;

o features obtained with the help of image
differentiation matrices;

e optimal ensembles of grayscale pairs, which
best distinguish between norma and liver pathology
in the images.

Group 1

Fig. 6 shows examples of liver ROI in normal
and pathological conditions.

Comparing these two Figures, we can see that
the liver has a more even and grainy texture when it
is normal, as opposed to the texture of pathology.
This has given rise to the use of the group method of
data handling (GMDH) [21-23] to obtain new

features. The idea behind the mechanism used is that
by analyzing each image, the structure of regression
models of multiplicity objects is constructed and
observed sequentially over time.

The models take the form of a correlation with
the delayed functions in the form:

Y.p = F(ykl,ykz,...,ykm)=Zai¢i(Y), 1)

where: P — forecast interval; ki — delay index of
variable y; in which the variable has the greatest
correlation with the forecast value Y — vector

(Y Vi oo Vi, )

This made it possible for each type of sensor to
build structures that most accurately reflect the
classification objects — ROI, in the form of
parameter vector ai (i = 1, ..., m) of model ().

Thus, the classification of objects occurs in the
aj parameter space. The independent variable for the
forecast is a series of pixel numbers in a linear
image sweep, the dependent variables are grayscale.

Accordingly, as mentioned earlier, ROl are
analyzed in the delay space in linear image sweep
(by sweep we mean a sequence of rows in the image
matrix, and by delay space we mean m values of the
autocorrelation function maximums [24] of the
sweep).

Thanks to the resulting linear structures of
delayed sweeps for each sensor, it is possible to
reconstruct the ROI (Fig. 7).

This makes it possible to obtain new
informative features in the form of a vector of
parameters a;, which will be added to the common
“stack” of features to recognize liver pathology.

a b

Fig. 6. Example of ROI of:

a—liver’s norma; b —liver’s pathology
Source: compiled by the author

a b

Fig. 7. ROI:

a - original; b — reconstruction
Source: compiled by the author
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Group 2

It is worth mentioning that the liver ultrasound
images provided by doctors were taken with
different brightness and contrast values, which
doctors adjusted individually for each patient. Since
the authors' patented features xi, X and xs carry
valuable information about the spatial characteristics
of ultrasound images, and if standard contrast
leveling methods were used, they would be lost, it
was decided to develop a mechanism that would not
only bring all images into one universal scale but at
the same time not lose the spatial characteristics of
the images.

This condition made it possible to obtain the
following transformation matrices of the original
grayscale sensor.

1. Horizontal differentiation matrix (Fig. 8).

The following formula is used to obtain it:

hor orig orig

gi; =9 ;9 .= @
*hor hor hor
= gi,j = gi,j 10 min |1
where: g — greyscale value; i — row index; j —
column index;|g""" | — module from the minimum

horizontal differentiation matrix value.

Initial greyscale matrix

Matrix after differentiation

This transformation provides the image shown
in Fig. 9.

2. Vertical differentiation matrix (Fig. 10).

In turn, the following formula is used to obtain it:

vert orig orig

9i; =9 9 ija= @)
*vert vert vert
= gi,j = gi,j 10 min |
where: g — greyscale value; i — row index; j —
column index; (g™ — module from the minimum

vertical differentiation matrix value.

This transformation provides the image shown
in Fig. 11.

Looking more attentively at obtained
differentiation results (Fig. 9; Fig.11), it is possible
to see that the texture forms remain in the same
condition during transformation. This makes it
possible to use them for obtaining new texture
features without valuable information loss and
bringing all images to one universal scale. First of
all, X1, X2, X3 patent features can be calculated for
them.

It was suggested to add first-order texture
features to the common stack, which were the
following statistical characteristics [25] (calculated
on differentiation matrices):

Difference matrix
without negative values

65
58
54
54
58
67
74
75
73
74

53 55 56 61|67 67 2[ 1
52 52 52 57 62 62
60 60 59 60 61 58
66 70 70 69 66 60
68 74 74 72 66 61
68 72 72 69 67 67
68 68 68 68 70 75
67 68 68 69 71 74
65 68 71 73 73 73

66 72 76 76|74 73

o
Lo

A W= o O b~ O
A WO O OO O

5 6|0 -2 87 11 12 6 |4
5 5 0 -4 6 6 11 11 6 2
11 -3 -4 6 5 7 7 32
-1 -3/-6 -6 1006 5 3 00
2 6 -5 -3 126 4 0 13
3 20 0 106 3 4 66
0 25 -1 6 6 6 8 115
123 1 7 6 7 8 97
2 0/ 0 0 9 9 8 6 66
0 -2-1 1 1210 6 4 57

Fig. 8. Horizontal differentiation
Source: compiled by the author

Fig. 9. Result of horizontal differentiation
Source: compiled by the author
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Initial greyscale matrix

53 55|56 61 67 67 65
52 52|52 57 62 62 58 -1 -3 -4
60 60 59 60 61 58 54 8 8 7
66 70 70 69 66 60 54 6 10 11
68 74 74 72 66 61 58 2 4 4
68 72 72 69 67 67 67 0 -2 -2
68 68 68 68 70 75 74 0 -4 -4
67 68 68 69 71 74 75 ‘10 0
65 68 71 73 73 73 73 20 3
66 72|76 76 74 73 74 1 4 5

Matrix after differentiation

-4

-5 -5 -7 64 3 3 2 2 0
1 -4 -4 /1515 14/10 6 3 3
5 2 0 113117 18 16 12 9

01 4 911 11/10 7 8 11
169 |75 8 13 16
38 7 73 10 15 14
1 -11 6|7 8 68
2 -1 -2 57 1011 9 6

10 1 8111210 8 7 8

Difference matrix
without negative values

Fig. 10. Vertical differentiation

Source: compiled by the author

Fig. 11. Result of vertical differentiation
Source: compiled by the author

mean greyscale value;

standard deviation;

skewness;

kurtosis;

range;

median;

first quartile;

third quartile;

interquartile range (the difference between
third and first quartile).

Apart from GLCM, so called grey level run
length matrix (GLRLM) was studied [26]. The
statistical features, mentioned above, were also
calculated for this matrix separately for lengths 1, 2,
and 3. In addition, the following feature was
suggested:

Group 3

The latest innovation of the authors was the
features, which are shown as greyscale pair
frequencies in GLCM. In order to understand, which
greyscale pairs are the most informative for
identification of liver pathology, it was necessary to
look over 2562 different features (since there are 256
grey gradations and, consecutively, there are
256*256 gradation pair combinations). On this basis,
for initial non-informative feature exclusion for each
ultrasound sensor, differential (between liver norm
and pathology) GLCMs were calculated on different
differentiation matrices. Differential GLCM is the
difference between an average norm GLCM and
average pathology GLCM. By creating these
differential GLCMs, greyscale pairs were excluded
by the following principle:

diff, =| AMo, — AMo; |, (4)
where: diff; — mode amplitude difference AMo; of (4,7), if dij < 0.3dpin
GLRLM normalized frequencies at length i; i, j = 1, (2,7) = < (4,7), if dij > 0.3d00 ©)
2, 3. a, otherwise
Feature examples, obtained via formula (4), are
shown in Fig. 12 (diffi; marked with red arrows).
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101

Frequency

Length
—1

0 10 20

30 40

Greyscale

Fig. 12. Visual representation of features diff;
Source: compiled by the author

Nevertheless, there were still a lot of greyscale
pairs and therefore the following criterion S [27] was
suggested for obtaining an optimal greyscale pair
ensemble acting as features:

[ |
S = max = |

| Jkrkk-r,
where: r, — the average value of correlation

modules of all grayscale pairs with a dependent
variable (liver class — norma or pathology); rs —

(6)

the average value of correlation modules of all
grayscale pairs among themselves; k — number of
grayscale pairs in the ensemble.

Since the greyscale pairs (the features) contain
the quantitative characteristic of frequency, the
Spearman’s correlation was used [28]. With the help

of genetic algorithm [29] the reviewing of different
ensembles with given k from 2 to 50 was performed.
As a result, the optimal greyscale ensembles were
obtained according to the criterion (6), which are
shown in Table 1.

The values for the last column were obtained as
follows: for each grayscale pair, thresholds were
found in the ensemble, which are best divided into
norma and pathology, and then the recognition
accuracy was calculated.

Thus, the features were obtained, which
characterize the rate of greyscale pair occurrence on
images, which distinguish norma and pathology
best. These features were included in the common
stack. It is worth admitting, that the optimum pair
ensembles may change with the appearance of new
images.

Table 1. Optimal ensembles of greyscale pairs

. . Average
Differentiation . S
Sensor . Ensemble of greyscale pairs recognition
matrix
accuracy
[(14, 14); (19, 19); (20, 13); (22, 15); (30, 24);
Horizontal (31, 29); (32, 21); (33, 33); (34, 29); (37, 34); (38, 63.2 %
Convex 34)]
Vertical [(40, 38); (62, 55); (69, 69)] 67.8 %
. [(21, 17); (21, 18); (26, 15); (27, 15); (27, 19); 0
Lo Horizontal (31, 19); (34, 24); (35, 26)] 71.4 %
(66, 64)]
. Horizontal [(19, 17); (27, 27); (28, 28)] 60.5 %
Reinforced Vertical [(25, 24); (46, 41)] 52.4%
Source: compiled by the author
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In this way, features have been obtained which
characterize the frequency with which grayscale
pairs appear in the image which best distinguishes
between norma and pathology. These features have
been added to the common stack. It is worth noting
that with the advent of new images, the optimal
ensembles of pairs may change.

CLASSIFICATION TASK USING THE
OBTAINED FEATURES

All of the proposed features, together with the
patented features, made up a common stack (127
features for the convex sensor, 125 features for the
linear sensor, and 113 features for the reinforced
sensor), which was used to solve the problem of
classification, namely, to determine the liver class
according to ROI (1 — norma, 2 - pathology). One of
the most popular Machine Learning methods, the
Random Forest [30], has been taken as the
classification algorithm, which has recently been
considered the best way to solve such problems.
Before building the Random Forest, the general
samples were broken down into training (70 %),
testing (20 %), and examining (10 %) samples. Each
model was assessed for its accuracy of prediction,
positive (proportion of correctly predicted first class
objects) and negative (proportion of correctly
predicted second class objects) predictive values.
The results are presented in Table 2.

If using obtained random forests on general
samples (100 %), the following was obtained: 92.8
% correct forecasts for convex sensor, 92.9% for
linear one, and 92 % for reinforced one.

There was also an attempt to create random
forests for separate feature groups, namely:

o only patent features Xi, Xz, Xs;

o only features, calculated on horizontal
differentiation matrices;

e only features,
differentiation matrices;

e only model dimension features of spatial
sweep;

o only greyscale pair ensembles.

The results of all obtained models are shown in
Table 3.

The feature group results were marked in green,
where the random forests for sensors show the

calculated on vertical

maximum forecast accuracy on the general sample.
As a result, the features, calculated on horizontal
differentiation matrices, have 93.4 % correct
forecasts of convex sensor ROI (which is even
better, than taking all feature stack), while patent
features have 92.2 % correct forecasts of linear
sensor ROI and 91.9 % — of reinforced sensor ROI.

CONCLUSIONS AND FURTHER
RESEARCH PERSPECTIVE

As a result of the work performed, the tasks set
were completed:

o New groups of features have been identified,
which seemed to be the most informative in
recognizing liver pathologies in ultrasound images.
The textures of liver ultrasound images were
analyzed to obtain them. The trick of these feature
groups is their almost complete difference in
methodology, thus, forming a common feature stack
for classification, it is possible to obtain complete
texture information.

e Using a classification algorithm called
Random Forest, models were built to predict the
liver class for each of the three sensor samples,
namely a convex sensor (197 normal objects and
107 pathological objects), a linear sensor (80 normal
objects and 74 pathological objects) and a reinforced
sensor (35 normal objects and 89 pathological
objects). The common stack of features produced the
following results: for the convex sensor 92.8 %
correct predictions (97 % correct predictions of
normal objects and 85 % correct predictions of
pathological objects), for the linear sensor 92.8 %
correct predictions (99 % correct predictions of
normal objects and 86 % correct predictions of
pathological objects), for the reinforced sensor 92 %
correct predictions (74% correct predictions of
normal objects and 99 % correct predictions of
pathological objects) The features were also divided
into groups, and Random Forest was built separately
for each group, resulting in one of the groups giving
even better results on the convex sensor than the
common stack (features calculated on horizontal
differentiation matrices were able to correctlyredict
93.4 % of objects, of which 98 % were correctly
predicted normal objects and 85 % were correctly
predicted pathological objects).

Table 2. Evaluation of resulted Random Forests

Sensor Training sample (70 %) | Testing sample (20 %) | Examining sample (10 %)

Accuracy | PPV | NPV | Accuracy | PPV | NPV | Accuracy | PPV | NPV

Convex 100 % 1 1 73.8 % 09 0429 | 80.6% 0.9 | 0.636

Linear 99.1 % 1 0.98 | 80.6% 1 0.6 75 % 0.875 | 0.625
Reinforced | 100 % 1 1 76 % 0.286 | 0.944 | 69.2% 0 1

Source: compiled by the author
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Table 3. Evaluation of resulted Random Forests

Sensor Training sample (70 %) | Testing sample (20 %) | Examining sample (10 %)
Accuracy | PPV | NPV | Accuracy | PPV | NPV | Accuracy | PPV | NPV
Patented features (X1, X2, X3)
Convex 100 % 1 1 72.1% 0.85 | 0.476 | 80.6 % 0.9 | 0.636
Linear 97.2% |0.982]0.961| 87.1% |0.875|0.867| 68.8% 0.75 | 0.625
Reinforced | 100 % 1 1 76 % 0.429 1 0.889 | 69.2% 0.25 | 0.889
Features of horizontally differentiated images
Convex 100 % 1 1 738% | 0.95 | 0.333 | 87.1% 0.9 | 0.818
Linear 96.3% |0.964 0961 | 742% | 0.75 | 0.73 68.8 % 0.75 | 0.625
Reinforced | 98.8% | 0.958 1 84 % 0571|0944 | 46.2% 0.25 | 0.556
Features of vertically differentiated images
Convex 100 % 1 1 68.9% | 0.85 | 0.381 | 74.2% 0.8 | 0.636
Linear 100 % 1 1 742% |0.938| 0533 | 68.8% 0.75 | 0.625
Reinforced | 96.5% | 0.958 | 0.968 76 % 0.429 | 0.889 | 61.5% 0.25 | 0.778
Spatial sweep features
Convex 100 % 1 1 70.5% 09 |0333] 67.7% 0.85 | 0.364
Linear 100 % 1 1 58.1% |0.688|0.467 | 438% | 0.625 | 0.25
Reinforced | 100 % 1 1 76 % 0.571 ] 0.833| 61.5% 0 0.889
Ensembles of greyscale pairs

Convex 100 % 1 1 72.1% 0.85 | 0476 | 61.3% 0.75 | 0.364
Linear 100 % 1 1 67.7% |0.813|0.533| 625% | 0.625 | 0.625

Reinforced | 95.3% | 0.917 | 0.968 60 % 0.143 | 0.778 | 84.6 % 0.5 1

Source: compiled by the author

Based on the results obtained from Random she is healthy. For a reinforced sensor, this

Forest, the problem of unbalanced classification is
visible, i.e. when there are considerably more
objects in one class than objects in the second. This
has an impact on the perception of the results, in the
sense that although the percentage of correct
prediction of objects in the overall sample is quite
good, there is a high probability of making a first
class error because of the small number of objects in
one class, i.e. when a sick person is told that he or

probability is much lower because there are more
objects of pathology than normal, but for convex and
linear sensors, this problem exists.

Future studies should therefore focus primarily
on eliminating the problem of unbalanced
classification in order to best achieve the main goal
of building a convenient and multifunctional liver
diagnostic decision support system that doctors can
use in their work without any difficulty.

REFERENCES

1. Croft, P., Altman, D. G., Deeks, J. J., Dunn, K. M., Hay, A. D., Hemingway, H., et al. “The science
of clinical practice: Disease diagnosis or patient prognosis? Evidence about “what is likely to happen” should
shape clinical practice”. BMC Med. 2015; 13(1): 8 p. DOI: 10.1186/s12916-014-0265-4.

2. Boyd, A., Cain, O., Chauhan, A. & Webb, G. J. “Medical liver biopsy: indications, procedure and
histopathology”. Frontline Gastroenterol. 2020; 11(1): 40-47. DOI: 10.1136/flgastro-2018-101139.

3. Dumont, L., Larochelle-Brunet, F., Théoret, H

., Riedl, R., Sénécal, S. & Léger, P. M. “Non-invasive

brain stimulation in information systems research: A proof-of-concept study”. PLoS One. 2018; 13(7): 16 p.

DOI: 10.1371/journal.pone.0201128.

4, Mohammed, M. A., Al-Khateeb, B., Rashid, A. N., Ibrahim, D. A., Abd Ghani, M. K. & Mostafa, S.
A. “Neural network and multi-fractal dimension features for breast cancer classification from ultrasound
images”. Comput Electr Eng. 2018; 70 p. DOI: 10.1016/j.compeleceng.2018.01.033.

5. Mitrea, D., Nedevschi, S., Cenan, C., Lupsor, M. & Badea, R. “Exploring texture-based parameters,
noninvasive characterization and modeling of diffuse liver diseases and liver cancer from ultrasound

images”. WSEAS Trans Comput. 2007; 6(2): 283-290.

6. Gao, S., Peng, Y., Guo, H., Liu, W., Gao, T., Xu, Y., et al. “Texture analysis and classification of

ultrasound liver images”. In:
10.3233/BME-130922.

Bio-Medical Materials and Engineering. 2014. p.1209-1216. DOI:

248 Theoretical aspects of computer science,
programming and data analysis

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)



Herald of Advanced Information Technology 2020; Vol.3 No.4: 240-251

7. Ledley, R. S., Huang, H. K. & Rotolo, L. S. “A texture analysis method in classification of coal
workers’ pneumoconiosis”. Comput Biol Med. 1975; 5(1): 53-67. DOI: 10.1016/0010-4825(75)90018-9.

8. Thomas, R., Qin, L., Alessandrino, F., Sahu, S. P., Guerra, P. J., Krajewski, K. M., et al. “A review of
the principles of texture analysis and its role in imaging of genitourinary neoplasms”. Abdominal Radiology.
2019; Vol.44: 2501-2510. DOI: 10.1007/s00261-018-1832-5.

9. Lubner, M. G., Smith, A. D., Sandrasegaran, K., Sahani, D. V. & Pickhardt, P. J. “CT texture
analysis: Definitions, applications, biologic correlates, and challenges”. Radiographics. 2017; VVol.37: 1483—
1503. DOI: 10.1148/rg.2017170056.

10. Lubner, M. G., Stabo, N., Abel, E. J., Munoz Del Rio, A. & Pickhardt, P. J. “CT textural analysis of
large primary renal cell carcinomas: Pretreatment tumor heterogeneity correlates with histologic findings and
clinical outcomes”. Am J Roentgenol. 2016; 207(1): 96-105. DOI: 10.2214/AJR.15.15451.

11. Haider, M. A., Vosough, A., Khalvati, F., Kiss, A., Ganeshan, B. & Bjarnason, G. A. “CT texture
analysis: A potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated
with sunitinib”. Cancer Imaging. 2017; 17(1): 9 p. DOI: 10.1186/s40644-017-0106-8

12. Sawyer, T. W., Chandra, S., Rice, P. F. S., Koevary, J. W. & Barton, J. K. “Three-dimensional
texture analysis of optical coherence tomography images of ovarian tissue”. Phys Med Biol. 2018; 63(23):
29 p. DOI: 10.1088/1361-6560/aaefd2.

13. Nastenko, le. & Yankovyi, 1. “Klasifikator stanu pechinki u ditey z patologiyeyu gepatobiliarnoyi
sistemi za teksturnimi statistikami ultrazvukovogo doslidjennia”. Biomedichna injeneriya i technologiya.
2019; 2: 15-23 (in Ukrainian).

14. Alazawi, S. A., Shati, N. M. & Abbas, A. H. “Texture features extraction based on GLCM for face
retrieval system”. Period Eng Nat Sci. 2019; 7(3): 1459-1467. DOI: 10.21533/pen.v7i3.787.

15. Sharma, E. K., Priyanka, E., Kalsh, E. A. & Saini, E. K. “GLCM and its Features”. Int J Adv Res
Electron Commun Eng. 2015; 4(8): 2180-2182.

16. Xu, S. S. D,, Chang, C. C., Su, C. T. & Phu, P. Q. “Classification of liver diseases based on
ultrasound image texture features”. Appl Sci. 2019; 9(2): 25 p. DOI: 10.3390/app9020342.

17. Raghesh Krishnan, K. & Radhakrishnan, S. “Focal and diffused liver disease classification from
ultrasound images based on isocontour segmentation”. IET Image Process. 2015; 9(4): 261-270. DOI:
10.1049/iet-ipr.2014.0202.

18. Yameng, C., Gengxin, S., Yiming, L. & Jinpeng, Z. “An effective method for cirrhosis recognition
based on multi-feature fusion”. 2018. 227 p. DOI: 10.1117/12.2304733.

19. Kruglyi, V. & Nastenko, le. “Formirovanie informativnih priznakov dlia zadachi klassifikaciyi
patologiya/norma po izobrajeniyu UZI pecheni pacienta”. Scientific Discussion. 2019;1(31):57-59 (in
Russian).

20. Nastenko, le., Dykan, I., Tarasiuk, B., Pavlov, V., Nosovets, O., Babenko, V., Kruglyi, V., Dyba, M.
& Soloduschenko, V. “Klassifikaciya staniv pechinki pri difuznih zahvoruvanniah na osnovi statistichnih
pokaznikiv teksturi ultrazvukovih zobrazhen” ta MGUA”. Induktivne modelliuvannia skladnih sistem. 2019;
11: 54-66 (in Ukrainian).

21. Teng, G., Xiao, J., He, Y., Zheng, T. & He, C. “Use of group method of data handling for transport
energy demand modeling”. Energy Sci Eng. 2017; 5(5): 302-317. DOI: 10.1002/ese3.176.

22. Nastenko, le., Konoval, O., Nosovets, O. & Pavlov, V. “Set Classification”. In: Techno-Social
Systems for Modern Economical and Governmental Infrastructures. 2018. p.44-83. DOI: 10.4018/978-1-
5225-5586-5.ch003.

23. Hrishko, D., Trofimenko, O. & Pavlov, V. “Strukturniy sintez za kriteriyem tochnosti v zadachi
klasifikaciyi obyektiv mnojin”. Scientific Discussion. 2019; 1(31): 50-52 (in Ukrainian).

24. Nystrup, P., Lindstrém, E., Pinson, P. & Madsen, H. “Temporal hierarchies with autocorrelation for
load forecasting”. Eur J Oper Res. 2020; 280(3): 876-88. DOI: 10.1016/j.ejor.2019.07.061.

25. Scalco, E. & Rizzo, G. “Texture analysis of medical images for radiotherapy applications”. British
Journal of Radiology. 2017; Vol. 90: 15p. DOI: 10.1259/bjr.20160642.

26. HimaBindu, G., Anuradha, C. & Chandra Murty, P. S. R. “Assessment of combined shape, color
and textural features for video duplication”. Trait du Signal. 2019; 36(2): 193-199. DOI:
10.18280/ts.360210.

27. Hall, M. A. “Correlation-Based Feature Selection for Machine Learning”. 1999. 109 p.

28. Astivia, O. L. O. & Zumbo, B. D. “Population models and simulation methods: The case of the
Spearman rank correlation”. Br J Math Stat Psychol. 2017; 70(3): 347-367. DOI: 10.1111/bmsp.12085.

29. Ghaheri, A., Shoar, S., Naderan, M. & Hoseini, S. S. “The Applications of Genetic Algorithms in
Medicine”. Oman medical journal. 2015; Vol.30 No 6: 406-416. DOI: 10.5001/om;j.2015.82.

ISSN 2663-0176 (Print) Theoretical aspects of computer science, 249
ISSN 2663-7731 (Online) programming and data analysis



Herald of Advanced Information Technology 2020; Vol.3 No.4: 240-251

30. Belgiu, M. & Dragut, L. “Random forest in remote sensing: A review of applications and future
directions”, ISPRS Journal of Photogrammetry and Remote Sensing. 2016; Vol.114: 24-31. DOI:
10.1016/j.isprsjprs.2016.01.011.

Conflicts of Interest: the authors declare no conflict of interest

Received 30.09.2020
Received after revision  05.11.2020
Accepted 18.11. 2020

DOI: 10.15276/hait.04.2020.3
UDC 004.9 + 616-079.4

@DopMyBaHHS CTeKy TEKCTYPHHX 03HAK VIS KiIacu@ikamii yJbTpa3ByKOBUX
300paxkeHb NeYiHKH

€sren Apnoiabaosud Hacrenko?

ORCID: https://orcid.org/0000-0002-1076-9337, nastenko.e@gmail.com

Bosioaumup Anaroaiiiosuy Iasaos?

ORCID: https://orcid.org/0000-0002-3293-5308, pavlov.vladimir264@gmail.com

Makcum Ousexcanaposuy onuapyxk?

ORCID: https://orcid.org/0000-0003-1537-4198, maksymhoncharuk42@gmail.com

Jmutpo IOpiiiosuu I'pimko?

ORCID: https://orcid.org/0000-0003-0731-0098, dimagrshk@gmail.com

) HauionansHblil TexHiunmii yHiBepcuTeT YKpainu «KuiBchkuil monmiTexHivnuii incTuTyT iMeni Irops Cikopcbkoroy, Byn. Muxaiina
bpaitueBcbkoro 5a, Kuis, Ykpaina

AHOTALIS

B namiit crarTi po3MISTHYTO BHKOPHCTAHHS METOIIB TEKCTYpHOIO aHaJi3y Il OTPUMaHHS iHGOPMAaTUBHUX O3HAK, SKi
OMHCYIOTh TEKCTYpPY YIBTPA3BYKOBHX 300pakeHb MediHKH. Bceporo mns nocmimkenHs Oyno npoanamizoBaHo 317 3HIMKIB
YIBTPa3ByKOBOTO AOCII/KCHHS MEYiHKH, sIKi Oynau HamaHi [HCTUTYTOM saepHOT MEOWLIMHM Ta MpOMeHeBoi aiarHoctukn HAMH
Vxpainu. 3HIMKH OyiM B3STi TPhOMA Pi3HUMH JaTYMKaMH (KOHBEKCHUM, JIHIHHUM, 1 JIHIHHAM DaTYUKOM B PEKHMI IiJABUIIECHOTO
piBHA curHaiy). Y 0a3i MpHUCYTHI SK 3HIMKM MAIli€HTIB 3 MEYiHKOI B HOPMAIBHOMY CTaHi, Tak i MAIi€HTIB 3 MEBHOI XBOPOOOIO
nedinky (OynM B HAsBHOCTI Taki XBOpOOW, SIK: ayTOIMyHHHI remaTut, xBopoba Bimscona, rematutr B i C, crearo3 i mupo3). 3a
JIOTIOMOTOK) TEKCTYPHOTO aHamizy OyJio 3po0JCHO «KOHCTPYIOBAaHHS O3HAaK», MO0 B MiJACYMKY Jajo OuIbllie CTa Pi3HUX
iHpopMaTHBHUX O3HAK, SIKi CKJIAJIM 3arajdbHUi cTek. Cepes HUX Pi3HATHCS TakKi O3HAKH, SIK: TPU 3aIlaTEHTOBAaHHMX aBTOPAaMH O3HAaKH,
OTPUMAaHHX 3 MAaTPHL CYMIKHOCTI BiITIHKIB CipOT0; O3HAKH, OTPHMAaHI 32 JOMIOMOTOI0 METOY IMTPOCTOPOBOT PO3TOPTKH (IO MPAIIOE
3a TPUHLIUIIOM METOJy TpPYHNOBOTO YpaxyBaHHS apryMeHTIB), SKHH OyB 3acTOCOBaHMiI Ha YIBTPa3BYKOBHX 300paKCHHSX;
CTaTHCTHYHI O3HAaKH, IOpaxOBaHi Ha 300pa)KEHHSX, NPHBEACHHUX O €IMHOI IIKAIH 32 JONOMOIOI0 3alpOIIOHOBAHUX AaBTOPAMH
MaTpHIlb TOPU30HTAIIBLHOT 1 BEpTHKAIBHOT qudepeHIiianiii; 3HaleHi 3a TOMOMOTO TeHETHYHOTO aITOPUTMY aHCaMOJIi Tap rpajamiit
ciporo, sKki HaWKpallMM YHHOM pO3PI3HSIOTH IIATOJNOTII0 TEYiHKH Ha 300paKeHHSIX, TPaHC(POPMOBAHUX 32 JIOTIOMOTOIO
TOPU30HTANBHOT 1 BepTHKaNbHOI nudepenuianiii. OTpuMaHuil cTek o3HaK OyB BHKOPHCTAHMH AJIsI BUPILIGHHS 3aBAaHHS OiHapHOT
knacudikarii («HOpMa-MaToNoTisA») YIbTPA3BYKOBUX 300pakeHb Me4iHKU. J[7si 1boro OyB BHKOPUCTAHMU METOA MAIIMHHOTO
HaBUaHHA, a CaMe — «BHINAAKOBHUil micy». Ilepen BUKOHaHHSAM KiacHdikamii, A7 OTpUMaHHS OO'€KTHBHHX pE3yJbTaTiB 3araybHi
BuOipku Oynmu mopineni Ha: HaBuanbHy (70 %), tectoBy (20 %) i exzamenamiitny (10 %). B pesynmerari Oynu oTpumaHi Tpu
HaWKpaIux MOJeNi BHIAJKOBOTO JIICY OKPEMO MiJ KOXKEeH JAT4MK, SIKi JajdM Taki MOKa3sHWKH PO3Mi3HABAaHHS: Ha KOHBEKCHOMY
JIaTYMKy TOYHICTH pO3Mi3HaBaHHs JopiBHIOBana 93.4 %, Ha niHiiHOMY natunky — 92.9 %, Ha JNiHIHOMY JaTYMKy B MOCHJICHOMY
pexumi — 92 %.
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AHHOTAIIUA

B naHHOH cTaThe pPacCMOTPEHO HCIONB30BaHUE METOJOB TEKCTYPHOIO aHAM3a UL MOJNYYeHUs MH(OPMATHBHBIX IPU3HAKOB,
KOTOpBIE OMHUCHIBAIOT TEKCTYPY YJIBTPa3BYKOBBIX H300paxkeHHil medeHH. Bcero s mcchnemoBaHusi ObUIO MpoaHATM3UpoBaHO 317
CHUMKOB YIIBTPa3ByKOBOTO HCCIIEJIOBAaHMS INEYCHH, KOTOpble OBLIM IpPEeNOCTaBIeHBl MHCTHTYTOM SIepHOH MEIWIMHBI U JTydeBOi
muarHocTikdh HAMH VYkpawsael. CHUMKA ObUIM B3SITBI TPEMsl Pa3IMIHBIMU JAaTYUKAMHU (KOHBEKCHBIM, JIMHCHHBIM, W JIHHCHHBIM
JIATYNKOM B PEKHME ITOBBIIICHHOTO YpOBHS CHUTHana). B 0a3e mpHCYTCTBOBAIM KaK CHUMKHU IAIMEHTOB C NEYEHBIO B HOPMAaIbHOM
COCTOSTHUM, TaK W IAIEHTOB C OIPE/eNIeHHON OO0Ne3HBI0 IedeHH (ObUIM B HAIMYHMYM Takue OONE3HH, KakK: ayTOMMMYHHBIH T'eIaTuT,
Oone3sHp Bunbcona, rematut B u C, ctearo3 u muppo3). C MOMOIIBIO TEKCTYPHOTO aHain3a ObUIO MPOU3BEICHO «KOHCTPYHUPOBAaHKE
MPH3HAKOBY», YTO B UTOTE JaNio OOJbILIE CTa Pa3IMYHBIX MH(OOPMATHBHBIX NMPU3HAKOB, KOTOPBIE COCTABMIM oOmMil cTek. Cpean HUX
pasHsTCA Takhe MPU3HAKH, KaK: TPH 3allaTeHTOBAHHBIX aBTOPAMH INPU3HAKA, MOTYyYEHHBIX C MATPUIIBI CMEXHOCTU OTTEHKOB CEPOTO;
MIPU3HAKY, MOJTYYEHHBIE C IOMOIIBI0 METOAA IPOCTPAHCTBEHHON pa3BEPTKU (PabOTAIOIIMHA MO MPUHLMITY METOAA IPYIIOBOTO yuéra
apryMEHTOB), KOTOPBHI OBUI NpPHMEHEH Ha YIBTPa3BYKOBBIX M300PKCHUAX; CTaTHCTUYECKHE IIPU3HAKH, IIOCUMTAHHBIE Ha
N300paKeHMSIX, PUBEICHHBIX K €IWHON IIKale ¢ MOMOIIBIO NMPEUIOKEHHBIX aBTOPaMH MaTPUIl TOPU3OHTAIGHOH M BEPTHKAIBHOM
muddepeHpanyii; HaiiJeHHble ¢ MOMOIIBIO T'€HETHYECKOro alrOpuTMa aHCcaMOiM Tap Tpajamiil ceporo, KOTOPhIE HAWITYYIINUM
00pa3oM pa3NMYaroT IATOJOTHIO NeYeHH Ha M300paKeHHsX, TPAHC(HOPMHUPOBAHHBIX C IOMOIIBIO TOPH3OHTAIFHOH M BEPTHKAIBHOI
nmudepenipanuii. [TomydeHHbIH CTeK MPU3HAKOB ObUT MCIIONB30BAaH Ui PELICHHs 3ajaud OWHApHOW Kiaccudukaimu («HOpMa-
MATOJIOTUSI») YIBTPa3BYKOBBIX M300paskeHHi medeHH. [l 3Toro ObUT HCMOJB30BaH METOJ MAIIMHHOTO OOy4YEHHsS, a MMEHHO —
«Cimy4aiiHbIi Jecy. [lepen mpowsBeneHHEM KIAaCCU(PUKAIWH, A MOTYYeHUS OOBEKTHBHBIX PE3yJAbTaTOB OOIINE BBIOOPKH OBLIH
noJenieHsl Ha: oOy4varouryio (70 %), rectoByro (20 %) u sk3ameHarmonnyto (10 %). B pesynbrate GbUIM MOMYyYEHBI TPH HAMITYYIIHX
MOJICNIH CITy4aifHOTO Jieca OTAENBHO MOJ KaXKABI JaT4MK, KOTOpPBIE Jajdd CICYIOIINE MOKa3aTely PAcIo3HaBaHMSA: HA KOHBEKCHOM
JIaTYMKe TOYHOCTH pacrio3HaBanus paBHsuiack 93.4 %, Ha nmuHelHOM natuanke — 92.9 %, Ha JIMHEHHOM JIaTYMKe B YCUIICHHOM PEXHAME —
92 %.
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