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ABSTRACT

The paper presents an approach to analyzing website structures. The objective is to develop an automated data collection
procedure (crawling process) that systematically traverses a website and constructs a web graph represented as either lists of vertices
and edges or an adjacency matrix, enabling subsequent analysis of structural connections between its elements. An unclear website
structure can hinder user navigation and slow down the indexing process for search engines. Consequently, the development of
automatic structure analysis methods is a relevant task. Existing information collection procedures for websites are deficient in
providing comprehensive dataset and lack configuration options for setting data collection parameters. Considering that modern
websites often have dynamic structures, which leads to variations in URL composition, this work enhances the approach to
automating website structure data collection, accounting for dynamic pages and the specific features of their URL structure. The
research method involves analyzing both internal and external links on webpages to understand the interconnections between
different parts of a site. The quality of the structure is evaluated by calculating metric characteristics of the generated web graph,
including diameter, density, clustering coefficient, and others. In this work a crawling procedure and algorithm were developed based
on a breadth-first traversal of the graph. Software was developed to implement the crawling procedure and analyze the collected data,
utilizing Python libraries such as requests, BeautifulSoup4, and networkx. Weh graphs of several websites of various types and topics
were constructed. The web graph representation allowed to explore the website's structural properties. Graphs were created to
demonstrate the dependence between the average density of web graphs and the number of vertices, the average graph formation time
and the number of vertices, and the average modularity coefficient relative to the average clustering coefficient. It was found that
websites with well-defined thematic structures exhibit higher modularity and clustering coefficients. The practical significance of this
work lies in its potential applications for optimizing website structures and developing new tools for data analysis.
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INTRODUTION The challenges lie in ensuring the relevance,
resilience, and scalability of search engines, as well
as addressing the issue of retrieving web pages that
may not contain specific keywords but are highly
relevant to a given query.

The complex and constantly evolving nature of
the modern internet demands innovative approaches
to analysis. Modeling websites to represent their
structure and interconnections enables a more
detailed understanding of their underlying
architecture, which is crucial for designing effective
search algorithms. This approach remains an active
and critical area of research in order to enhance
search engine performance.

In the modern world, each second saved during
an internet search holds significant value. The vast
amount of data available online makes information
retrieval a challenging task for users, as it is
impossible to manually review every page related to
a specific topic. Consequently, search engine design
requires increasingly advanced algorithms to rank
results based on user relevance and present the most
pertinent information on the first page. The
exponential growth of online data necessitates
continuous advancements in search engines to
maintain the relevance of search results.

Not all available information is useful. Search
engine techniques can become ineffective or LITERATURE REVIEW
produce low-quality results if the information they
retrieve is not engaging to users, especially when
malicious actors exploit popular keywords to
manipulate traffic to their websites.

Modern websites are complex information
systems that require efficient means of data
representation and organization to ensure their
structure, accessibility, and interoperability with
other systems. One of the common methods of

© Dolotov I, Guk N., 2024 representing websites is ontology [1]. It is a
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formalized structure that allows organizing website’s
data using concepts and their connections, providing
understanding and reuse of knowledge about the
subject area. Ontological models transform websites
from regular page collections into structured,
interpretable resources accessible to both humans
and machines.

Paper [2] provides a detailed description of the
application of the OWL ontology language for the
formal representation of website semantics. OWL
enables websites to achieve a well-structured data
organization based on standardized ontologies. This
facilitates semantic compatibility across various
systems and resources. Such an approach is
especially relevant for large information portals,
such as scientific databases or media platforms,
where data accuracy and completeness are critical.

Another model for representing a website is as a
web graph [3]. In works [4, 5] the site's structure is
considered as a directed graph, where everything is
present in a hierarchy. By considering a website as a
directed graph, web pages can be viewed as vertices,
and hyperlinks as edges. This model provides tools
for analyzing complex interconnections within
websites and plays a significant role in many
processes, including search engine optimization.

Both ontologies and web graphs have
significant advantages for representing and
analyzing websites. They allow transitioning from a
static representation of information to a dynamic and
semantically rich environment where data can be
viewed and used for automated processing.

By providing a rich and structured
representation of knowledge, ontologies contribute
significantly to semantic information processing.
This enhances both machine understanding and the
ability to bridge the gap with human cognition. Web
graphs, on the other hand, provide a global overview
of the website's structure, allowing for efficient
analysis of links between pages and making
decisions based on this data. Ontological models are
more detailed, but as a result, they are much more
complex and time-consuming to analyze than graph
models. Therefore, web graphs are often preferred
for operational analysis of the site's structure and
interconnections.

In order for a website to be effective, it is
necessary to constantly collect and analyze data
about its wvisitors. This information allows
understanding how users interact with the site,
which pages are the most popular, and which ones
need improvement. Through analysis, it is possible
to optimize the site's structure, increase its loading
speed, make it more user-friendly, find and fix

security issues. To represent the website's structure
and analyze the cnnections between pages, a graph
model will be used in this work [6, 18].

Works [7, 8], [9, 10], [11] use web crawling as
a method of collecting data from a website, which
involves automatically traversing web pages and
saving the necessary information in the form of a
web graph. This is a tool for search engines and
websites to collect data, analyze relationships, and
keep websites up-to-date.

There are two main approaches to
implementing a crawler: global and local [12]. The
global approach involves scanning a large network
of sites, which requires significant computational
resources and is primarily used by search engines.
The local approach, on the other hand, focuses on a
limited part of the web space, such as a specific site
or group of sites. The choice between the global and
local approach depends on the scale of the task,
available resources, and specific goals of the
developer.

The following types of crawlers are
distinguished, depending on the strategies embedded
in them: general purpose, adaptive, breadth-first
crawler, hidden, parallel and distributed [13]. The
type of crawler implementation depends on the type
of task to be solved.

An adaptive crawler [14] can analyze the
structure of websites using machine learning,
highlighting the most important information and
optimizing the data collection process, but its
training takes a long time. A parallel crawler [14,
15] uses multiple processes simultaneously to collect
and process information, making it effective for
analyzing large sites or group of sites, but it requires
a lot of resources. A breadth-first crawler [16] is
simple to implement, does not require powerful
machines for processing, but is effective only for
analyzing small websites. The search operation of
the crawler in [4] is described as a traversal of a
directed graph. The crawler starts from primal page
and follows the hyperlinks found on it, moving from
one page to another. It analyzes each visited page,
looking for new links, updates the current web
graph, and continues its path.

Creating custom data collection tools allows
you to adapt the research process to specific tasks
and requirements, ensuring more accurate and
relevant results. Custom crawler development
provides more opportunities for customization and
optimization of the data collection process for
specific tasks, which is important for ensuring high-
quality research results.
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OBJECTIVE AND RESEARCH TASKS

The objective of this research is to develop an
automated procedure for collecting data of the
structure of a website (a crawling procedure). This
procedure will enable site traversal and facilitate the
construction of a web graph, represented as vertex
and edge lists or an adjacency matrix, for subsequent
structural analysis.

To achieve this objective,
research tasks were identified:

1. Analyze existing mathematical models for
representing websites and select a model that
provides a suitable basis for structural analysis of the
website.

2. Develop a procedure and algorithm for
collecting information on external and internal links
on web pages. This is necessary to construct a web
graph and to understand the connections between
different parts of the site and its overall structure.

3. Investigate the structural characteristics of
modern websites to incorporate these features into
the design of the website crawling algorithm.

4. Develop software that implements the
proposed approach to web graph construction.

5. ldentify the appropriate metric
characteristics for analyzing website structure
quality.

6. Apply the developed approach to analyze
existing websites.

PROBLEM STATEMENT

The task is to develop a procedure and
algorithm for automatically traversing HTML
documents on a website to identify internal
connections between its pages and to construct a
web graph based on the collected data. When
constructing the graph, mt is crucial to consider the
dynamic structure of websites and to develop
methods for processing the collected data, including
URL normalization, duplicate detection, and
filtering of irrelevant information.

The work involves developing a software tool,
using the chosen programming language and
relevant libraries, to implement the crawling
algorithm and analyze the collected information. The
web graphs will be represented as lists of vertices
and edges for further analysis. For the constructed
web graphs, metric characteristics will be calculated
to enable structural analysis. Finally, the developed
tool will be applied to analyze the structure of
existing websites of varying themes and sizes.

the following

MATERIALS AND METHODS OF
RESEARCH

1. Mathematical model of the website

A website is a collection of web pages that are
interconnected and unified under a single domain
name. These pages displayed as individual
documents and may include text documents, images,
videos, interactive elements, and more, comprising
the main content that users see when they visit the
site. Each page has a unique URL and contains
hyperlinks to certain other pages within the website,
establishing  connections that facilitate  user
navigation.

We define a hypertext model of a website H as
a set consisting of two sets: H = {P, L} where

P:{pl,pz,..., pn} is the set of website pages;
L={1] le, P, € I(pl, P, )} is the set of hyperlinks

between pages.

The structure of the hypertext model of a
website corresponds to a mathematical model in the
form of a directed unweighted graph G = (V, E),
where V = P, E = L. In the constructed graph V is
the set of vertices, the elements of which correspond
to pages of the site, E is the set of weighted edges of
the graph, the elements of which correspond to
hyperlinks between pages.

By constructing a web graph, we can analyze
the structural connections between pages and
evaluate the user experience in terms of navigation
clarity.

2. Procedure and algorithm for constructing a
web graph

To construct a web graph, a crawling procedure
based on a breadth-first traversal of the hypertext
structure is developed [5]. This approach ensures
that all vertices are visited if the graph is finite and
connected. Visiting all pages is essential when
comprehensive information about the site is
required. The algorithm systematically explores all
adjacent vertices at the current depth level before
moving to the next, enabling efficient discovery of
new branches in the graph and finding all accessible
vertices. The breadth-first traversal uses a "queue"
data structure to store visited vertices, which makes
the algorithm simple to implement in modern
programming languages and efficient in memory
usage.

The search for links located on web pages
involves a systematic scan of the HTML code of
each page to identify all hyperlinks leading to other
web pages [17]. These links may lead to pages
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within the same site (internal links) or to pages on
other sites (external links). The parser iterates
through the text strings of the page’s markup,
searching for <a> tags containing the href attribute.
The value of the href attribute holds the URL of the
linked page. For website structure analysis, only
internal links are relevant. Therefore, the procedure
is designed to compare the domains of the found
pages with the domain of the initial page to ensure
they match.

The web graph construction process is cyclical,
as the algorithm may revisit a previously accessed
page or encounter one already queued for
processing. Pages undergo a duplicate check, and
termination conditions are verified to avoid infinite
loops. Several termination conditions exist: time
limits, page count limits, queue depletion, reaching a
specific depth, cycle detection, or encountering a
special tag. The choice of termination conditions
depends on the specific task and the resources
allocated for web graph construction.

The web graph construction process, as
described in [9], comprises three main stages: data
acquisition, data extraction, and data transformation.
During the data acquisition stage of the crawling
procedure, data on the website is obtained through
HTTP requests sent to the server. The HTML code
of the page is received in response to the request. In
the data extraction stage, programming language
built-in tools and libraries are applied to parse the
HTML code of the received page and search for <a>
tags containing the href attribute. External links are
ignored in this process.

Information  regarding pages and their
interlinkages must be converted into a structured
format suitable for storing and representing the web
graph. During the data transformation stage, the
software generates a file to store the constructed web
graph, for example, in the .graphml format.

The proposed approach to constructing the
crawling procedure has been implemented in the
following algorithm:

Algorithm

Initialization Step: Identify the page P,
designated as the homepage. Initialize data
structures for information storage: queue Q for
unprocessed pages Pi and label array m[Pi] to mark
visited pages.

1. Insert P1into the queue Q, and set m[P1]=1.

2. Read the HTML code of the first page Pi in
the queue Q. Search for all links from page Pi .
Convert links to absolute URLS, normalize them,
check for duplicates, and record unique links in the
hyperlink set L. Add all pages P; linked with Pi to Q

if m[Pj] = 0. Assign a label m[Pj] = 1 upon adding
them to the queue. Once all pages linked with Pi are
added to Q, add Pi to the set of pages P and remove
it from Q. Return to the beginning of this step.

If no new pages or links are found, the
algorithm terminates.

Data Transformation Stage: Export the resulting
sets P and L in .graphml format and as text files:
“pages.txt” with a numbered list of vertices and
“edges.txt” with a list of edges.

EXPERIMENT SETUP

1. Features of the software implementation of
building a crawler

Since modern websites contain both static and
dynamic pages, there is a distinction between base
and relative URLs. For further processing, as
outlined in [17], it is necessary to convert hyperlinks
into absolute URLs. This conversion involves
combining the relative URL with the base URL,
removing extraneous characters (such as double
slashes and spaces), and verifying the syntactic
correctness of the resulting absolute URL.

The URL conversion process can be
represented by the function:

F(URL_relative,URL_base)=URL_absolute.

In the Python programming implementation,
the urljoin function from the urllib.parse library is
used to combine relative and base URLs into an
absolute URL format.

During the URL normalization stage, it is
essential to convert different representations of the
same address into a canonical form. This process
involves  removing  unnecessary  parameters,
fragments, and other URL variations that do not
affect the content. Normalizing URLs in this way
helps eliminate data duplication, enhances the
efficiency of information retrieval, and facilitates the
subsequent processing of collected data.

The crawler’s software implementation is built
as a console application in Python, utilizing various
libraries for working with URLs and graphs,
including:

e requests: for sending HTTP requests;

o BeautifulSoup4: for HTML parsing;

e networkx: for graph processing;

o urllib: for URL normalization;

o matplotlib: for visualizing the resulting
graph.

The website scan involved utilizing the requests
library to retrieve HTML content from each page.
Subsequently, the BeautifulSoup4 library was
employed to extract hyperlinks from the retrieved

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Theoretical aspects of computer science, 387
programming and data analysis



Dolotov I. O., Guk N. A /

Herald of Advanced Information Technology

2024; Vol.7 No.4: 384-392

HTML. This iterative process continued until the
entire website was traversed, resulting in the
generation of a comprehensive web graph. Data
storage was managed using the networkx library,
which enables saving the graph as a .graphml file for
further analysis with other software. The data of the
web graph was saved in two files: “pages.txt”,
containing a numbered list of vertices (website
pages), and “edges.txt”, containing a list of graph
edges (hyperlinks). From the edge and vertex list
representation of the graph, an additional
representation was constructed as an adjacency
matrix Aij.

To calculate the metric characteristics of the
web graphs, such as the average vertex degree,
number of strongly connected components, and
others, tools from the networkx library were used.

Since most online stores have dynamically
generated pages, URL addresses can vary depending
on selected product parameters. To simplify
processing, only the primary part of the URL,
without dynamic variations, was added to the graph.
For example, the "Hacimus kpainu" website
(https://semena-dnepr.org.ua/) has 12,634 pages, but
after normalization and conversion URLS to absolute
form, the web graph contains only 2,449 pages.

2. Analysis of the obtained results

The proposed website representation model, the
crawler construction procedure, and the developed
software were applied to construct and analyze web
graphs of existing websites available on the Internet.
These included the official website of DNU
(http://dnu.dp.ua/), the Faculty of Applied
Mathematics website (http://fom.dnu.dp.ua/), the
Faculty of Psychology website (http://fpso.dp.ua/),
and the "Hacimms xpaiau™ online  store
(http://semena-dnepr.org.ua/).

Table provides a comprehensive overview of
the metric characteristics of the analyzed websites.
To evaluate the structure and properties of these
graphs, the following metrics were used: average
vertex degree, number of strongly connected
components, graph density, modularity coefficient,
clustering coefficient, and transitivity coefficient.

The average vertex degree indicates the average
number of links leading from one page to others,
which provides insight into how well the pages on a
website are interconnected. The number of strongly
connected components defines the number of groups
of pages where any page can be reached from any
other by following hyperlinks. Graph density reflects
how densely all pages on the site are connected
relative to the maximum possible number of links. A

higher density indicates a greater number of
interconnections between pages.

The modularity coefficient characterizes the
presence of distinct clusters within the graph. A high
modularity coefficient indicates that the graph
comprises several groups of vertices that are
strongly connected internally but weakly connected
to other groups.

The calculation of the modularity coefficient is
calculated as follows:

1 eiouteijn
Q==X (A~
EIF " IE]

)5(Viivj )l

where Ajj is an element of the adjacency matrix of
the web graph, |E|is the number of edges in graph G,

e;’“‘,e}” represent the number of outgoing edges

from vertex vi and incoming edges to vertex vj. By
utilizing the concept of modularity, it is possible to
identify thematic groups of pages that belong to a
similar topic.

To assess the strength of connectivity between
vertices, the clustering coefficient is used.

This coefficient is calculated as follows:

1 2N

out
i

ty;

in out _in !
1ej )*(max(e 1ej )_1)

V|4 max(e

where |V| represents the number of vertices in graph
G, and N, is the number of triangles containing

vertex vi This coefficient can be applied to identify
thematic clusters and evaluate the extent of
connectivity between pages within a single topic.
The transitivity coefficient indicates the
probability that two vertices connected to the same
vertex will also share a connection with each other.
Transitivity is calculated as follows:
— 3Nt

T L
N

triad

where Nt represents the number of triangles, and
Niiad is the number of triads. The transitivity
measure helps reveal strong interconnections
between pages and assess the overall density of the
website.

An analysis of these metric values can provide
insights into the website’s structure, the organization
of information, and the ease of user navigation
between different pages. This analysis can indicate
the level of connectivity across different thematic
sections of the site, detect duplicated content, and
facilitate comparisons between various websites.
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Table. Metric characteristics of the generated web graphs

Metric Websites
characteristics dnu.dp.ua fpm.dnu.dp.ua fpso.dp.ua semena-
dnepr.org.ua
Number of vertices 10854 725 91 2449
Number of edges 1285779 23768 2135 319841
Average vertex 108.21 42.99 20.31 46.07
degree
Number of strongly 106 19 3 8
connected
components
Graph density 0.006 0.0889 0.2232 0.059
Modularity 0.168 0.189 0.194 0.219
coefficient
Clustering 0.64 0.77 0.796 0.833
coefficient
Transitivity 0.823 0.802 0.838 0.922
coefficient

Sourse: compilated by authors

The analysis of the obtained data indicates that
the "Hacinnst kpaiau" website has the highest values
of modularity, clustering coefficient, and transitivity:
Q~=0.219 C= 04822, T~=0.922. This indicates the
presence of thematic clusters within the site's
structure. Online stores are typically designed with a
clear thematic separation of content, which generally
leads to higher metrics values for this type of
website. In contrast, the informational sites
dnu.dp.ua, fpm.dnu.dp.ua, and fpso.dp.ua have
lower values for these metrics, with a tendency for
these values to decrease as the site size increases.

The Faculty of Psychology website has the
smallest number of strongly connected components
(3) and the highest density (0.2232). This is
primarily due to the smaller size of the site, which
makes it more user-friendly in terms of navigation.
However, despite the large number of pages and
links, the "Hacimus xpainu" site has only eight
strongly connected components, indicating a limited
number of subgraphs from which it is impossible to
return to the homepage.

The DNU website is the largest among all the
analyzed sites. An analysis of its metric
characteristics shows that website size significantly
impacts its structural quality. Due to the high
number of links, the boundaries of clusters become
less defined, and the large number of pages
considerably reduces density. An increase in the
number of links leads to a higher vertex degree,
resulting in cluster overlap and making it more
challenging to clearly assign vertices to specific

clusters. Nevertheless, considering the extensive
structure of the DNU website, its metrics exceed the
average values for sites of similar size. For example,
Q = 0.168, while the average modularity for sites
with an equivalent clustering coefficient is
Q=0.165.

The analysis and optimization of such large
websites without clearly defined clusters is a
complex task. However, the evaluated metric
characteristics provide useful recommendations for
interlinking pages and for the overall re-engineering
of the site.

To evaluate the structure of the selected
websites in comparison with others, graphs were
constructed showing the dependence between the
average density of web graphs and the number of
vertices (Fig. 1), the average time taken to form a
graph and the number of vertices (Fig. 2), the
average modularity coefficient and the clustering
coefficient (Fig. 3).

An analysis of these dependencies shows that as
the number of pages increases, density decreases,
while the time required constructing the web graph
increases. The average modularity coefficient rises
with an increase of the clustering coefficient. The
construction time for the "Hacinus kpainu" web
graph was significantly longer than for other sites
with a similar number of vertices, indicating a higher
number of links. However, its density and
modularity coefficient are higher than average,
indicating a stronger potential for precise clustering
within the site.
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The research was conducted across different
types of websites. Online stores, such as the
"Haciuns xpainu” site, generally exhibit higher
metrics than informational sites, so dividing
websites into separate categories would provide
more precise analysis.

The results obtained provide a foundation for
further research on website structures. Future studies
could examine the connections within subgraphs in
more detail, analyze specific pages for the presence
of meaningful hyperlinks or associations with
clusters distinct from the primary theme, and
investigate the presence of cycles within the graph
structure.

CONCLUSIONS

This work presents an approach for gathering
information about website structure. A model
representing the website as an unweighted directed
graph was used. A procedure for constructing a web
graph was developed, utilizing the breadth-first
search algorithm. A URL normalization procedure
was implemented. The software was designed to
accommodate the dynamic page construction of
modern websites and was developed using Python,
with specialized libraries for graphs and web data.
The proposed approach was applied to construct web
graphs for existing sites, which were saved in text
files as a list of vertices, a list of edges, and in
.graphml format for further processing. The selected

sites were analyzed using various metric
characteristics, including the average degree of
vertices, the number of strongly connected

components, graph density, modularity coefficient,
clustering coefficient, and transitivity coefficient.
The study indicated that modularity and clustering
coefficients can be used as quantitative indicators of
website structure. It was found that websites with a
well-defined thematic structure tend to have higher
values for these characteristics. Graphs were created
showing the dependence between the average
density of web graphs and the number of vertices,
the average time to form a graph and the number of
vertices, and the average modularity coefficient
relative to the clustering coefficient. This data
enabled a comparative analysis of website structure
quality and average quality metrics for similar sites.
The results demonstrate that representing a website
as a graph is an effective tool for examining website
structure and investigating its unique features. This
research represents an important step toward the
development of tools for automated analysis and
optimization of large websites.
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AHOTALIA

PosmisHyTO MigXix o aHamizy cTpyKTypHu BebOcaiity. Mera poOoTu moisArae y po3poOrii mpoleaypyd aBTOMAaTHYHOTO 300py
JTAHUX TIPO CTPYKTYpY BeOcaiiTy (IpolemypH KpaywiHTy), 3a JOIMOMOTOIO SIKOT 3HiHCHIOEThCS 00Xif caliTy Ta OyayeTbes BeOrpad y
BUIVISIIII CITMCKIB BEpIUHH Ta pebep abo MaTpuii CyMDKHOCTI, AJIs OAQJIBIIONO BUBYEHHS CTPYKTYPH Yepes aHajli3 3B’sI3KiB MiX HOTro
eneMeHTamu. Hesposymina cTpykTypa BeOCaiTy MPU3BOAUTH 70 MOTIPIICHHS HABITaIlil caiiToM Ui KOPUCTyBaya Ta yIMOBITFHEHHS
iHzleKcanii caliTy MOIIyKOBUMH MallMHAMH, TOMY PO3pOo0OKa Ipouexyp aBTOMaTUIHOIO aHAli3y CTPYKTYPH € aKTyaJIbHOKO 33/1adelo.
Binomi mpouenypu 36opy iHdopmanii mpo caiit He 3a0e3Meuy0Th MOXKIMBICTH OTPUMaHHS IIOBHOTO HA0Opy JaHMX Ta HE MaloTh
HAJAIITYBaHb Ul BU3HAYCHHS MapaMeTpiB 300py iHpopmarii. BpaxoByroun, mio cy4acHi BeOCalTH MalOTh JHHAMIUHY CTPYKTYpY,
sIKa TMIPU3BOOUTH 10 BiaMiHHOCTeH y 3amuci URL-anpec, y poOoTi BIOCKOHANIOETHCS MiAXiA O aBTOMaru3alii 30opy iHpopmarii mpo
CTPYKTYpYy CalTy 3 BpaxyBaHHSM HasBHOCTI AWHAMIYHHX CTOPIHOK Ta ocoOmmBoctedl moOymoBu ixnHix URL-ampec. Metomom
JIOCTIKEHHsI € BUBYCHHS 30BHIIIHIX Ta BHYTPIIIHIX MOCHJIaHb HA BEOCTOpiHKAaX JJIsl pO3YMiHHS 3B’ SI3KiB MK OKPEMHMH YaCTHHAMU
CaliTy, OLIHIOBAHHS SIKOCTI CTPYKTYpH 4epe3 BH3HAYEHHS METPUYHHX XapaKTepHCTHK MoOyrnoBaHOTro BeOrpada, 30kpema aiamMeTpy,
HITBHOCTI, KoedilieHTy kaactepusaliii Tomo. B po6oTi po3pobieHo mpoleaypy Ta alrOpuT™ KpaylliHTy, [0 CIIUPAIOThCS Ha METOJ
obxoxy rpada B mmpuHy. {1 peanizauii nporeaypy KpayJaiHry Ta aHajli3y OTPUMaHUX JaHUX PO3POOIEHO MporpamMHe 3a0e3neyeHHs
i3 BUKOpucTaHHsAM Oibmiotex Python (requests, BeautifulSoup4, networkx). IToOynoBano BeGrpadu Kimbkox BeOCAHTIB pi3HOTO
CIpsSIMYBaHHS Ta TeMaTHKH. 300pa)KeHHS CalTy y BHIVIAII BeOrpada J03BOJHMIO AOCHIAUTH HOTO CTPYKTYpy. [loOymoBaHo rpadikm
3aJIeKHOCTI CepenHbOl MIUTPHOCTI BeOTpadiB Bill KITBKOCTI BEPIINH, CEPEAHBOTO Yacy GpopMyBaHHA rpada BiJ KiTBKOCTI BEPIINH Ta
cepenHporo Koe(illieHTy MOIYNMSApHOCTI Bif KoedilieHTy kiacrepusamii. BcTaHoBneHo, mo BeOCAHTH 3 YITKO BHPAKEHOIO
TEMAaTHYHOIO CTPYKTYPOIO MAIOTh OLNBII BHCOKI 3Ha4eHHS KOe(iIieHTIB MOAYIAPHOCTI Ta Kiactepu3amii. [IpakTuuHa 3HAYyIIiCTH
po06OTH MoJIATaEe B TOMY, III0 OTPUMaHi pe3y/bTaTH MOXKYTh OyTH BUKOPUCTAHI JJIS ONTHUMI3aLil CTPYKTYpH CalTiB Ta pO3pOOKH HOBHX
IHCTPYMEHTIB ISl aHAI3y JaHHX.

KmrouoBi cioBa: rpad; BeOcaiiT; BeOrpad; kpaynmiHr; oOXif B IIMPHHY; KJacTepu3alis; MOAYJSPHICTb; TPAH3UTHBHICTE,
MeTpHKa
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