
Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

384 2663-0176 (Print)

ISSN 2663-7731 (Online)

DOI: https://doi.org/10.15276/hait.07.2024.27

UDC 004.94

Constructing a website graph using the crawling procedure

Ivan O. Dolotov1)
ORCID: https://orcid.org/0000-0002-4643-3464; dolotov_i@fpm.dnu.edu.ua

Natalia A. Guk1)
ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900

1) Oles Honchar Dnipro National University, 72, Science Ave. Dnipro, 49010, Ukraine

ABSTRACT

The paper presents an approach to analyzing website structures. The objective is to develop an automated data collection

procedure (crawling process) that systematically traverses a website and constructs a web graph represented as either lists of vertices

and edges or an adjacency matrix, enabling subsequent analysis of structural connections between its elements. An unclear website

structure can hinder user navigation and slow down the indexing process for search engines. Consequently, the development of

automatic structure analysis methods is a relevant task. Existing information collection procedures for websites are deficient in

providing comprehensive dataset and lack configuration options for setting data collection parameters. Considering that modern

websites often have dynamic structures, which leads to variations in URL composition, this work enhances the approach to

automating website structure data collection, accounting for dynamic pages and the specific features of their URL structure. The

research method involves analyzing both internal and external links on webpages to understand the interconnections between

different parts of a site. The quality of the structure is evaluated by calculating metric characteristics of the generated web graph,

including diameter, density, clustering coefficient, and others. In this work a crawling procedure and algorithm were developed based

on a breadth-first traversal of the graph. Software was developed to implement the crawling procedure and analyze the collected data,

utilizing Python libraries such as requests, BeautifulSoup4, and networkx. Web graphs of several websites of various types and topics

were constructed. The web graph representation allowed to explore the website's structural properties. Graphs were created to

demonstrate the dependence between the average density of web graphs and the number of vertices, the average graph formation time

and the number of vertices, and the average modularity coefficient relative to the average clustering coefficient. It was found that

websites with well-defined thematic structures exhibit higher modularity and clustering coefficients. The practical significance of this

work lies in its potential applications for optimizing website structures and developing new tools for data analysis.

Keywords: Graph; website; web graph; crawling; breadth-first search; clustering; modularity; transitivity; metric

For citation: Dolotov I. O., Guk N. A. “Constructing a website graph using the crawling procedure”. Herald of Advanced Information

Technology. 2024; Vol.7 No.4: 384–392. DOI: https://doi.org/10.15276/hait.07.2024.27

INTRODUTION

In the modern world, each second saved during

an internet search holds significant value. The vast

amount of data available online makes information

retrieval a challenging task for users, as it is

impossible to manually review every page related to

a specific topic. Consequently, search engine design

requires increasingly advanced algorithms to rank

results based on user relevance and present the most

pertinent information on the first page. The

exponential growth of online data necessitates

continuous advancements in search engines to

maintain the relevance of search results.

Not all available information is useful. Search

engine techniques can become ineffective or

produce low-quality results if the information they

retrieve is not engaging to users, especially when

malicious actors exploit popular keywords to

manipulate traffic to their websites.

© Dolotov I., Guk N., 2024

The challenges lie in ensuring the relevance,

resilience, and scalability of search engines, as well

as addressing the issue of retrieving web pages that

may not contain specific keywords but are highly

relevant to a given query.

The complex and constantly evolving nature of

the modern internet demands innovative approaches

to analysis. Modeling websites to represent their

structure and interconnections enables a more

detailed understanding of their underlying

architecture, which is crucial for designing effective

search algorithms. This approach remains an active

and critical area of research in order to enhance

search engine performance.

LITERATURE REVIEW

Modern websites are complex information

systems that require efficient means of data

representation and organization to ensure their

structure, accessibility, and interoperability with

other systems. One of the common methods of

representing websites is ontology [1]. It is a

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

Theoretical aspects of computer science,
programming and data analysis

https://doi.org/10.15276/hait.07.2024
https://orcid.org/0000-0002-3724-430
https://doi.org/

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

385

formalized structure that allows organizing website’s

datа using concepts and their connections, providing

understanding and reuse of knowledge about the

subject area. Ontological models transform websites

from regular page collections into structured,

interpretable resources accessible to both humans

and machines.

Paper [2] provides a detailed description of the

application of the OWL ontology language for the

formal representation of website semantics. OWL

enables websites to achieve a well-structured data

organization based on standardized ontologies. This

facilitates semantic compatibility across various

systems and resources. Such an approach is

especially relevant for large information portals,

such as scientific databases or media platforms,

where data accuracy and completeness are critical.

Another model for representing a website is as a

web graph [3]. In works [4, 5] the site's structure is

considered as a directed graph, where everything is

present in a hierarchy. By considering a website as a

directed graph, web pages can be viewed as vertices,

and hyperlinks as edges. This model provides tools

for analyzing complex interconnections within

websites and plays a significant role in many

processes, including search engine optimization.

Both ontologies and web graphs have

significant advantages for representing and

analyzing websites. They allow transitioning from a

static representation of information to a dynamic and

semantically rich environment where data can be

viewed and used for automated processing.

By providing a rich and structured

representation of knowledge, ontologies contribute

significantly to semantic information processing.

This enhances both machine understanding and the

ability to bridge the gap with human cognition. Web

graphs, on the other hand, provide a global overview

of the website's structure, allowing for efficient

analysis of links between pages and making

decisions based on this data. Ontological models are

more detailed, but as a result, they are much more

complex and time-consuming to analyze than graph

models. Therefore, web graphs are often preferred

for operational analysis of the site's structure and

interconnections.

In order for a website to be effective, it is

necessary to constantly collect and analyze data

about its visitors. This information allows

understanding how users interact with the site,

which pages are the most popular, and which ones

need improvement. Through analysis, it is possible

to optimize the site's structure, increase its loading

speed, make it more user-friendly, find and fix

security issues. To represent the website's structure

and analyze the cnnections between pages, a graph

model will be used in this work [6, 18].

Works [7, 8], [9, 10], [11] use web crawling as

a method of collecting data from a website, which

involves automatically traversing web pages and

saving the necessary information in the form of a

web graph. This is a tool for search engines and

websites to collect data, analyze relationships, and

keep websites up-to-date.

There are two main approaches to

implementing a crawler: global and local [12]. The

global approach involves scanning a large network

of sites, which requires significant computational

resources and is primarily used by search engines.

The local approach, on the other hand, focuses on a

limited part of the web space, such as a specific site

or group of sites. The choice between the global and

local approach depends on the scale of the task,

available resources, and specific goals of the

developer.

The following types of crawlers are

distinguished, depending on the strategies embedded

in them: general purpose, adaptive, breadth-first

crawler, hidden, parallel and distributed [13]. The

type of crawler implementation depends on the type

of task to be solved.

An adaptive crawler [14] can analyze the

structure of websites using machine learning,

highlighting the most important information and

optimizing the data collection process, but its

training takes a long time. A parallel crawler [14,

15] uses multiple processes simultaneously to collect

and process information, making it effective for

analyzing large sites or group of sites, but it requires

a lot of resources. A breadth-first crawler [16] is

simple to implement, does not require powerful

machines for processing, but is effective only for

analyzing small websites. The search operation of

the crawler in [4] is described as a traversal of a

directed graph. The crawler starts from primal page

and follows the hyperlinks found on it, moving from

one page to another. It analyzes each visited page,

looking for new links, updates the current web

graph, and continues its path.

Creating custom data collection tools allows

you to adapt the research process to specific tasks

and requirements, ensuring more accurate and

relevant results. Custom crawler development

provides more opportunities for customization and

optimization of the data collection process for

specific tasks, which is important for ensuring high-

quality research results.

Theoretical aspects of computer science,
programming and data analysis

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

386 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

OBJECTIVE AND RESEARCH TASKS

The objective of this research is to develop an

automated procedure for collecting data of the

structure of a website (a crawling procedure). This

procedure will enable site traversal and facilitate the

construction of a web graph, represented as vertex

and edge lists or an adjacency matrix, for subsequent

structural analysis.

To achieve this objective, the following

research tasks were identified:

1. Analyze existing mathematical models for

representing websites and select a model that

provides a suitable basis for structural analysis of the

website.

2. Develop a procedure and algorithm for

collecting information on external and internal links

on web pages. This is necessary to construct a web

graph and to understand the connections between

different parts of the site and its overall structure.

3. Investigate the structural characteristics of

modern websites to incorporate these features into

the design of the website crawling algorithm.

4. Develop software that implements the

proposed approach to web graph construction.

5. Identify the appropriate metric

characteristics for analyzing website structure

quality.

6. Apply the developed approach to analyze

existing websites.

PROBLEM STATEMENT

The task is to develop a procedure and

algorithm for automatically traversing HTML

documents on a website to identify internal

connections between its pages and to construct a

web graph based on the collected data. When

constructing the graph, шt is crucial to consider the

dynamic structure of websites and to develop

methods for processing the collected data, including

URL normalization, duplicate detection, and

filtering of irrelevant information.

The work involves developing a software tool,

using the chosen programming language and

relevant libraries, to implement the crawling

algorithm and analyze the collected information. The

web graphs will be represented as lists of vertices

and edges for further analysis. For the constructed

web graphs, metric characteristics will be calculated

to enable structural analysis. Finally, the developed

tool will be applied to analyze the structure of

existing websites of varying themes and sizes.

MATERIALS AND METHODS OF

RESEARCH

1. Mathematical model of the website

A website is a collection of web pages that are

interconnected and unified under a single domain

name. These pages displayed as individual

documents and may include text documents, images,

videos, interactive elements, and more, comprising

the main content that users see when they visit the

site. Each page has a unique URL and contains

hyperlinks to certain other pages within the website,

establishing connections that facilitate user

navigation.

We define a hypertext model of a website H as

a set consisting of two sets: H = {P, L} where

},...,{
n21

pp,pP  is the set of website pages;

)}p,l(pp,p|{1L
2121

 is the set of hyperlinks

between pages.

The structure of the hypertext model of a

website corresponds to a mathematical model in the

form of a directed unweighted graph G = (V, E),

where V = P, E = L. In the constructed graph V is

the set of vertices, the elements of which correspond

to pages of the site, E is the set of weighted edges of

the graph, the elements of which correspond to

hyperlinks between pages.

By constructing a web graph, we can analyze

the structural connections between pages and

evaluate the user experience in terms of navigation

clarity.

2. Procedure and algorithm for constructing a

web graph

To construct a web graph, a crawling procedure

based on a breadth-first traversal of the hypertext

structure is developed [5]. This approach ensures

that all vertices are visited if the graph is finite and

connected. Visiting all pages is essential when

comprehensive information about the site is

required. The algorithm systematically explores all

adjacent vertices at the current depth level before

moving to the next, enabling efficient discovery of

new branches in the graph and finding all accessible

vertices. The breadth-first traversal uses a "queue"

data structure to store visited vertices, which makes

the algorithm simple to implement in modern

programming languages and efficient in memory

usage.

The search for links located on web pages

involves a systematic scan of the HTML code of

each page to identify all hyperlinks leading to other

web pages [17]. These links may lead to pages

Theoretical aspects of computer science,
programming and data analysis

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

387

within the same site (internal links) or to pages on

other sites (external links). The parser iterates

through the text strings of the page’s markup,

searching for <a> tags containing the href attribute.

The value of the href attribute holds the URL of the

linked page. For website structure analysis, only

internal links are relevant. Therefore, the procedure

is designed to compare the domains of the found

pages with the domain of the initial page to ensure

they match.

The web graph construction process is cyclical,

as the algorithm may revisit a previously accessed

page or encounter one already queued for

processing. Pages undergo a duplicate check, and

termination conditions are verified to avoid infinite

loops. Several termination conditions exist: time

limits, page count limits, queue depletion, reaching a

specific depth, cycle detection, or encountering a

special tag. The choice of termination conditions

depends on the specific task and the resources

allocated for web graph construction.

The web graph construction process, as

described in [9], comprises three main stages: data

acquisition, data extraction, and data transformation.

During the data acquisition stage of the crawling

procedure, data on the website is obtained through

HTTP requests sent to the server. The HTML code

of the page is received in response to the request. In

the data extraction stage, programming language

built-in tools and libraries are applied to parse the

HTML code of the received page and search for <a>

tags containing the href attribute. External links are

ignored in this process.

Information regarding pages and their

interlinkages must be converted into a structured

format suitable for storing and representing the web

graph. During the data transformation stage, the

software generates a file to store the constructed web

graph, for example, in the .graphml format.

The proposed approach to constructing the

crawling procedure has been implemented in the

following algorithm:

Algorithm

Initialization Step: Identify the page P1,

designated as the homepage. Initialize data

structures for information storage: queue Q for

unprocessed pages Pi and label array m[Pi] to mark

visited pages.

1. Insert P1 into the queue Q, and set m[P1]=1.

2. Read the HTML code of the first page Pi in

the queue Q. Search for all links from page Pi .

Convert links to absolute URLs, normalize them,

check for duplicates, and record unique links in the

hyperlink set L. Add all pages Pj linked with Pi to Q

if m[Pj] = 0. Assign a label m[Pj] = 1 upon adding

them to the queue. Once all pages linked with Pi are

added to Q, add Pi to the set of pages P and remove

it from Q. Return to the beginning of this step.

If no new pages or links are found, the

algorithm terminates.

Data Transformation Stage: Export the resulting

sets P and L in .graphml format and as text files:

“pages.txt” with a numbered list of vertices and

“edges.txt” with a list of edges.

EXPERIMENT SETUP

1. Features of the software implementation of

building a crawler

Since modern websites contain both static and

dynamic pages, there is a distinction between base

and relative URLs. For further processing, as

outlined in [17], it is necessary to convert hyperlinks

into absolute URLs. This conversion involves

combining the relative URL with the base URL,

removing extraneous characters (such as double

slashes and spaces), and verifying the syntactic

correctness of the resulting absolute URL.

The URL conversion process can be

represented by the function:

F(URL_relative,URL_base)=URL_absolute.

In the Python programming implementation,

the urljoin function from the urllib.parse library is

used to combine relative and base URLs into an

absolute URL format.

During the URL normalization stage, it is

essential to convert different representations of the

same address into a canonical form. This process

involves removing unnecessary parameters,

fragments, and other URL variations that do not

affect the content. Normalizing URLs in this way

helps eliminate data duplication, enhances the

efficiency of information retrieval, and facilitates the

subsequent processing of collected data.

The crawler’s software implementation is built

as a console application in Python, utilizing various

libraries for working with URLs and graphs,

including:

 requests: for sending HTTP requests;

 BeautifulSoup4: for HTML parsing;

 networkx: for graph processing;

 urllib: for URL normalization;

 matplotlib: for visualizing the resulting

graph.

The website scan involved utilizing the requests

library to retrieve HTML content from each page.

Subsequently, the BeautifulSoup4 library was

employed to extract hyperlinks from the retrieved

Theoretical aspects of computer science,
programming and data analysis

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

388 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

HTML. This iterative process continued until the

entire website was traversed, resulting in the

generation of a comprehensive web graph. Data

storage was managed using the networkx library,

which enables saving the graph as a .graphml file for

further analysis with other software. The data of the

web graph was saved in two files: “pages.txt”,

containing a numbered list of vertices (website

pages), and “edges.txt”, containing a list of graph

edges (hyperlinks). From the edge and vertex list

representation of the graph, an additional

representation was constructed as an adjacency

matrix Aij.

To calculate the metric characteristics of the

web graphs, such as the average vertex degree,

number of strongly connected components, and

others, tools from the networkx library were used.

Since most online stores have dynamically

generated pages, URL addresses can vary depending

on selected product parameters. To simplify

processing, only the primary part of the URL,

without dynamic variations, was added to the graph.

For example, the "Насіння країни" website

(https://semena-dnepr.org.ua/) has 12,634 pages, but

after normalization and conversion URLs to absolute

form, the web graph contains only 2,449 pages.

2. Analysis of the obtained results

The proposed website representation model, the

crawler construction procedure, and the developed

software were applied to construct and analyze web

graphs of existing websites available on the Internet.

These included the official website of DNU

(http://dnu.dp.ua/), the Faculty of Applied

Mathematics website (http://fpm.dnu.dp.ua/), the

Faculty of Psychology website (http://fpso.dp.ua/),

and the "Насіння країни" online store

(http://semena-dnepr.org.ua/).

Table provides a comprehensive overview of

the metric characteristics of the analyzed websites.

To evaluate the structure and properties of these

graphs, the following metrics were used: average

vertex degree, number of strongly connected

components, graph density, modularity coefficient,

clustering coefficient, and transitivity coefficient.

The average vertex degree indicates the average

number of links leading from one page to others,

which provides insight into how well the pages on a

website are interconnected. The number of strongly

connected components defines the number of groups

of pages where any page can be reached from any

other by following hyperlinks. Graph density reflects

how densely all pages on the site are connected

relative to the maximum possible number of links. A

higher density indicates a greater number of

interconnections between pages.

The modularity coefficient characterizes the

presence of distinct clusters within the graph. A high

modularity coefficient indicates that the graph

comprises several groups of vertiсes that are

strongly connected internally but weakly connected

to other groups.

The calculation of the modularity coefficient is

calculated as follows:

,,)()
||

(
||

1
ji

ij

in

j

out

i

ij vv
E

ee
A

E
Q  

where Aij is an element of the adjacency matrix of

the web graph, |E|is the number of edges in graph G,
in

j

out

i ee , represent the number of outgoing edges

from vertex vi and incoming edges to vertex vj. By

utilizing the concept of modularity, it is possible to

identify thematic groups of pages that belong to a

similar topic.

To assess the strength of connectivity between

vertiсes, the clustering coefficient is used.

This coefficient is calculated as follows:





i

in

j

out

i

in

j

out

i

tv

eeee

N

V
С i

)1)(max(*)max(

2

||

1

,,
,

where |V| represents the number of vertiсes in graph

G, and
itvN is the number of triangles containing

vertex vi This coefficient can be applied to identify

thematic clusters and evaluate the extent of

connectivity between pages within a single topic.

The transitivity coefficient indicates the

probability that two vertices connected to the same

vertex will also share a connection with each other.

Transitivity is calculated as follows:

triad

t

N

N
T

3
 ,

where Nt represents the number of triangles, and

Ntriad is the number of triads. The transitivity

measure helps reveal strong interconnections

between pages and assess the overall density of the

website.

An analysis of these metric values can provide

insights into the website’s structure, the organization

of information, and the ease of user navigation

between different pages. This analysis can indicate

the level of connectivity across different thematic

sections of the site, detect duplicated content, and

facilitate comparisons between various websites.

Theoretical aspects of computer science,
programming and data analysis

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

389

Table. Metric characteristics of the generated web graphs

Metric
characteristics

Websites
dnu.dp.ua fpm.dnu.dp.ua fpso.dp.ua semena-

dnepr.org.ua
Number of vertices 10854 725 91 2449
Number of edges 1285779 23768 2135 319841

Average vertex
degree

108.21 42.99 20.31 46.07

Number of strongly
connected

components

106 19 3 8

Graph density 0.006 0.0889 0.2232 0.059
Modularity
coefficient

0.168 0.189 0.194 0.219

Clustering
coefficient

0.64 0.77 0.796 0.833

Transitivity
coefficient

0.823 0.802 0.838 0.922

Sourse: compilated by authors

The analysis of the obtained data indicates that
the "Насіння країни" website has the highest values
of modularity, clustering coefficient, and transitivity:
Q ≈ 0.219, C ≈ 0.822, T ≈ 0.922. This indicates the
presence of thematic clusters within the site's
structure. Online stores are typically designed with a
clear thematic separation of content, which generally
leads to higher metrics values for this type of
website. In contrast, the informational sites
dnu.dp.ua, fpm.dnu.dp.ua, and fpso.dp.ua have
lower values for these metrics, with a tendency for
these values to decrease as the site size increases.

The Faculty of Psychology website has the
smallest number of strongly connected components
(3) and the highest density (0.2232). This is
primarily due to the smaller size of the site, which
makes it more user-friendly in terms of navigation.
However, despite the large number of pages and
links, the "Насіння країни" site has only eight
strongly connected components, indicating a limited
number of subgraphs from which it is impossible to
return to the homepage.

The DNU website is the largest among all the
analyzed sites. An analysis of its metric
characteristics shows that website size significantly
impacts its structural quality. Due to the high
number of links, the boundaries of clusters become
less defined, and the large number of pages
considerably reduces density. An increase in the
number of links leads to a higher vertex degree,
resulting in cluster overlap and making it more
challenging to clearly assign vertices to specific

clusters. Nevertheless, considering the extensive
structure of the DNU website, its metrics exceed the
average values for sites of similar size. For example,
Q ≈ 0.168, while the average modularity for sites
with an equivalent clustering coefficient is
Q ≈ 0.165.

The analysis and optimization of such large
websites without clearly defined clusters is a
complex task. However, the evaluated metric
characteristics provide useful recommendations for
interlinking pages and for the overall re-engineering
of the site.

To evaluate the structure of the selected
websites in comparison with others, graphs were
constructed showing the dependence between the
average density of web graphs and the number of
vertices (Fig. 1), the average time taken to form a
graph and the number of vertices (Fig. 2), the
average modularity coefficient and the clustering
coefficient (Fig. 3).

An analysis of these dependencies shows that as
the number of pages increases, density decreases,
while the time required constructing the web graph
increases. The average modularity coefficient rises
with an increase of the clustering coefficient. The
construction time for the "Насіння країни" web
graph was significantly longer than for other sites
with a similar number of vertices, indicating a higher
number of links. However, its density and
modularity coefficient are higher than average,

indicating a stronger potential for precise clustering
within the site.

Theoretical aspects of computer science,
programming and data analysis

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

390 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

fpso.dp.ua

fpm.dnu.dp.u

a semena-

dnepr.org.ua

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 500 1000 1500 2000 2500 3000

Number of vertices

G
ra

p
h

 d
e

n
s

it
y

Fig. 1. Dependence of graph density on
 number of vertices

 Sourse: compilated by authors

fpso.dp.ua

fpm.dnu.dp.u

a

semena-

dnepr.org.ua

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

Number of vertices

a
v

e
ra

g
e

 g
ra

p
h

 f
o

rm
a

ti
o

n
 t

im
e

(m
in

)

Fig. 2. Dependence of the average time taken

to form a graph on the number of vertices

Sourse: compilated by authors

fpso.dp.ua

fpm.dnu.dp.u

a

semena-

dnepr.org.ua

dnu.dp.ua

0,1

0,12

0,14

0,16

0,18

0,2

0,22

0,24

0,45 0,55 0,65 0,75 0,85 0,95

Average clustering coefficient

A
v

e
ra

g
e

 m
o

d
u

la
ri

ty
 c

o
e

ff
ic

ie
n

t

Fig. 3. Dependence of the average
modularity coefficient and the clustering

coefficient

Sourse: compilated by authors

The research was conducted across different
types of websites. Online stores, such as the
"Насіння країни" site, generally exhibit higher
metrics than informational sites, so dividing
websites into separate categories would provide
more precise analysis.

The results obtained provide a foundation for
further research on website structures. Future studies
could examine the connections within subgraphs in
more detail, analyze specific pages for the presence
of meaningful hyperlinks or associations with
clusters distinct from the primary theme, and
investigate the presence of cycles within the graph
structure.

CONCLUSIONS

This work presents an approach for gathering
information about website structure. A model
representing the website as an unweighted directed
graph was used. A procedure for constructing a web
graph was developed, utilizing the breadth-first
search algorithm. A URL normalization procedure
was implemented. The software was designed to
accommodate the dynamic page construction of
modern websites and was developed using Python,
with specialized libraries for graphs and web data.
The proposed approach was applied to construct web
graphs for existing sites, which were saved in text
files as a list of vertices, a list of edges, and in
.graphml format for further processing. The selected
sites were analyzed using various metric
characteristics, including the average degree of
vertices, the number of strongly connected
components, graph density, modularity coefficient,
clustering coefficient, and transitivity coefficient.
The study indicated that modularity and clustering
coefficients can be used as quantitative indicators of
website structure. It was found that websites with a
well-defined thematic structure tend to have higher
values for these characteristics. Graphs were created
showing the dependence between the average
density of web graphs and the number of vertices,
the average time to form a graph and the number of
vertices, and the average modularity coefficient
relative to the clustering coefficient. This data
enabled a comparative analysis of website structure
quality and average quality metrics for similar sites.
The results demonstrate that representing a website
as a graph is an effective tool for examining website
structure and investigating its unique features. This
research represents an important step toward the
development of tools for automated analysis and
optimization of large websites.

Theoretical aspects of computer science,
programming and data analysis

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

391

REFERENCES

1. Oluchukwu, U. E., Sylvanus, O. A., Ifeoma, M. A. O. & Chukwuemeka, M. O. “Semantic web

ontology technology and Its Impact on E-Learning”. American Journal of Embedded Systems and

Applications, 2021; 8 (2): 9–11. DOI: https://doi.org/10.11648/j.ajesa.20210802.11.

2. Kaung, M. H. “Web ontology language analysis (owl) and semantic web technology”. Auditorium.

2017; 4 (16).

3. Liakos, P., Papakonstantinopoulou, K., Ntoulas, A. & Delis, A. “Rapid detection of local

communities in graph streams”. IEEE Transactions on Knowledge and Data Engineering. 2022; 34 (5):
2376–2377, https://www.scopus.com/inward/record.url?eid=2-s2.0-0035048198&partnerID=40&md5=

b7684a6f28ac21a3e17929d3073a7878. DOI: https://doi.org/10.1109/TKDE.2020.3012608.

4. Casas, P., Wassermann, S., Wehner, N., Seufert, M. & Hossfeld, T. “Not all web pages are born the same

content tailored learning for web QoE Inference”. IEEE International Symposium on Measurements & Networking

(M&N). 2022, https://www.scopus.com/inward/record.url?eid=2-s2.0-85140925138&partnerID=40&

md5=fdc27389c27f7f74e62789dd5b5404a2. DOI: https://doi.org/10.1109/mn55117.2022.9887781.

5. Zheng, S., Dmitriev, P. & Giles, C. L. “Graph-based seed selection for webscale crawlers”,

Proceedings of the 18th Conference on Information and Knowledge Management. 2009,

https://www.scopus.com/inward/record.url?eid=2-s2.0-

74249122055&partnerID=40&md5=724a911529b69d88ce1bb5e5c83bbbef.

DOI: https://doi.org/10.1145/1645953.1646277.

6. Claude, F. & Navarro, G. “A fast and compact web graph representation”. International Symposium on String

Processing and Information Retrieval. 2007. p. 122–126. DOI: https://doi.org/10.1007/978-3-540-75530-2_11.

7. Chatterjee, S. & Nath, A. “Auto-Explore the Web – Web Crawler”. Article in International Journal

of Innovative Research in Computer and Communication Engineering. 2017.

DOI: https://doi.org/10.15680/IJIRCCE.2017. 0504006.

8. Amudha, S. “Web crawler for mining web data”. International Research Journal of Engineering and

Technology. 2017; 4 (2): 131–134. ISSN: 2395-0072.

9. Sahu, M. B. & Bharne, S. “A survey on various kinds of web crawlers and intelligent crawler”,

International Journal of Scientific Engineering and Applied Science. 2016; 2 (3).

10. Shkapenyuk, V. & Suel, T. “Design and implementation of a high-performance distributed web

crawler”. In Proceedings of the 18th International Conference on Data Engineering. 2002. p. 357–368.

DOI: https://doi.org/10.1109/ICDE.2002.994750.

11. Shrivastava, V. “A methodical study of web crawler”. Journal of Engineering Research and

Application. 2018; 8 (11): 1–5. DOI: https://doi.org/10.9790/9622-0811010108.

12. Aiello, W., Chung, F. & Lu, L. “A random graph model for massive graphs”. The 32nd Annual

ACM Symposium on Theory of Computing. 2000. p. 171–180, https://www.scopus.com/inward/

record.url?eid=2-s2.0-0033633051&partnerID=40&md5=901263fc0e1ad9cb51e7ac451fc1eede.

DOI: https://doi.org/10.1145/335305.335326.

13. Zhao, L., Yin, Z., Yu, K., Tang, X., Xu, L., Guo, Z. & Nehra, P. “A fuzzy logic based solution for

network traffic problems in migrating parallel crawlers”. International Journal of Advanced Computer

Science and Applications. 2023; 14 (2). DOI: https://doi.org/10.14569/IJACSA.2023.0140252.

14. Mehyadin, A. E., Abdulrahman, L. M., Ahmed, S. H. & Qashi, R. “Distributed fundamentals based

conducting the web crawling approaches and types (focused, incremental, distributed, parallel, hidden web,

form focused and breadth first) crawlers”. Journal of Smart Internet of Things. 2023; 2023 (2): 10–32.

DOI: https://doi.org/10.2478/jsiot-2022-0002.

15. Cheok, S. M., Hoi, L. M., Tang, S. K. & Tse, R. “Crawling parallel data for bilingual corpus using

hybrid crawling architecture”. Procedia Computer Science. 2022, https://www.scopus.com/inward/

record.url?eid=2-s2.0-84964022157&partnerID=40&md5=3562db1bbd4258fc7f1a258a73fd42db

DOI: https://doi.org/10.1016/j.procs.2021.12.218.

16. Sujaini, H., Perwitasari, A. & Januardi, T. “Sistem pembelajaran algoritma best first search, breadth

first search & depth first search”. Jurnal Teknik Indonesia. 2023; 2 (2).

DOI: https://doi.org/10.58860/jti.v2i2.15 (Online) https://jti.rivierapublishing.id/index.php/rp.

17. Guk, N. A., Dykhanov, S. & Matiushchenko, O. “Algorithm for building a website model”. Bulletin

of V. N. Karazin Kharkiv National University Series “Mathematical Modeling. Information Technology.

Automated Control Systems”. 2020; 47: 2–3. DOI: https://doi.org/10.26565/2304-6201-2020-47-03.

Theoretical aspects of computer science,
programming and data analysis

https://scholar.google.com/citations?user=QIlatFkAAAAJ&hl=uk&oi=sra
https://scholar.google.com/citations?user=Xs1Hit0AAAAJ&hl=uk&oi=sra

Dolotov I. O., Guk N. A / Herald of Advanced Information Technology

 2024; Vol.7 No.4: 384–392

392 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

18. Dolotov, I. & Guk, N. A. “Clustering of a weighted webgraph with the usage of modularity”.

Applied Mathematics and Mathematical Modeling Issues. 2023; 23: 25–32.

DOI: https://doi.org/10.15421/322305.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal, authorship or other,

which could influence the research and its results presented in this article

Received 12.09.2024

Received after revision 30.10.2024

Accepted 14.11.2024

DOI: https://doi.org/10.15276/hait.07.2024.27

УДК 004.94

Побудова графа вебсайту з використанням

процедури краулінгу

Долотов Іван Олександрович1)
ORCID: https://orcid.org/0000-0002-4643-3464; dolotov_i@fpm.dnu.edu.ua.

Гук Наталія Анатоліївна1)
ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900

1) Дніпровський національний університет ім. Олеся Гончара, проспект Науки, 72. Дніпро, Україна

АНОТАЦІЯ

Розглянуто підхід до аналізу структури вебсайту. Мета роботи полягає у розробці процедури автоматичного збору

даних про структуру вебсайту (процедури краулінгу), за допомогою якої здійснюється обхід сайту та будується вебграф у

вигляді списків вершин та ребер або матриці суміжності, для подальшого вивчення структури через аналіз зв’язків між його

елементами. Незрозуміла структура вебсайту призводить до погіршення навігації сайтом для користувача та уповільнення

індексації сайту пошуковими машинами, тому розробка процедур автоматичного аналізу структури є актуальною задачею.

Відомі процедури збору інформації про сайт не забезпечують можливість отримання повного набору даних та не мають

налаштувань для визначення параметрів збору інформації. Враховуючи, що сучасні вебсайти мають динамічну структуру,

яка призводить до відмінностей у записі URL-адрес, у роботі вдосконалюється підхід до автоматизації збору інформації про

структуру сайту з врахуванням наявності динамічних сторінок та особливостей побудови їхніх URL-адрес. Методом

дослідження є вивчення зовнішніх та внутрішніх посилань на вебсторінках для розуміння зв’язків між окремими частинами

сайту, оцінювання якості структури через визначення метричних характеристик побудованого вебграфа, зокрема діаметру,

щільності, коефіцієнту кластеризації тощо. В роботі розроблено процедуру та алгоритм краулінгу, що спираються на метод

обходу графа в ширину. Для реалізації процедури краулінгу та аналізу отриманих даних розроблено програмне забезпечення

із використанням бібліотек Python (requests, BeautifulSoup4, networkx). Побудовано вебграфи кількох вебсайтів різного

спрямування та тематики. Зображення сайту у вигляді вебграфа дозволило дослідити його структуру. Побудовано графіки

залежності середньої щільності вебграфів від кількості вершин, середнього часу формування графа від кількості вершин та

середнього коефіцієнту модулярності від коефіцієнту кластеризації. Встановлено, що вебсайти з чітко вираженою

тематичною структурою мають більш високі значення коефіцієнтів модулярності та кластеризації. Практична значущість

роботи полягає в тому, що отримані результати можуть бути використані для оптимізації структури сайтів та розробки нових

інструментів для аналізу даних.

Ключові слова: граф; вебсайт; вебграф; краулінг; обхід в ширину; кластеризація; модулярність; транзитивність;

метрика

ABOUT THE AUTHORS

Ivan O. Dolotov - Postgraduate student, Faculty of Applied Mathematics. Oles Honchar Dnipro National University,
72, Science Ave. Dnipro, 49010, Ukraine

ORCID: https://orcid.org/0000-0002-4643-3464; dolotov_i@fpm.dnu.edu.ua.

Research field: Webgraph modeling; clustering analysis

Долотов Іван Олександрович - аспірант, факультет Прикладної математики. Дніпровський національний

університет імені Олеся Гончара , пр. Науки, 72. Дніпро, 49010, Україна

Natalia A. Guk - Doctor of Physical and Mathematical Sciences, Professor, Faculty of Applied Mathematics. Oles

Honchar Dnipro National University, 72, Science Ave. Dnipro, 49010, Ukraine

ORCID: https://orcid.org/0000-0001-7937-1039; huk_n@fpm.dnu.edu.ua. Scopus Author ID: 54791066900
Research field: Machine Learning; intelligent information technologies; mechanics

Гук Наталія Анатоліївна - доктор фізико-математичних наук, професор, факультет Прикладної математики.

Дніпровський національний університет імені Олеся Гончара , пр. Науки, 72. Дніпро, 49010, Україна

Theoretical aspects of computer science,
programming and data analysis

https://doi.org/10.15276/hait.07.2024
https://orcid.org/0000-0002-3724-430

