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ABSTRACT

Many applied tasks are simulated by difference equations that describe the vector of system states evolution in time. However
it is required to take into account the spatial structure of simulated processes or systems in some tasks. In paper the possibility of a
spatio-temporal processes simulation by cellular automata is considered. The brief review of two-dimensional cellular automata
properties is provided. The principle of the most famous two-dimensional cellular automata “Game of Life” is described. Also the
general way to set these automata in an analytical form by Reaction-Diffusion equation is considered. Concrete forms of the Reaction
equation and Diffusion equation are constructed and invariant sets for this system are defined. The generalization of analytical
cellular automata representation in total is provided. As an example, the model of population development is considered. It utilizes
the classic Ferhulst equation, in which the spatial structure is taken into account having form of the cumulative neighbors’ impact on
population changes rate. As per using of analytical form of cellular automata, different schemas of system spatio-temporal
characteristics control are suggested. These schemas are based on feedback: delayed feedback (that is one that uses previous system
states) and predictive feedback (that is one that uses predicted system states). As a result there is managed to synchronize spatial
configuration of cellular automata and it can be interpreted as stable population development. Particularly, cellular automata could
work in cycle with cycle length set earlier. For cellular automata evolution visualization the algorithms and their computer
implementation are developed. Discrepancy function is suggested, due to which it is possible to evaluate the synchronization

accuracy. Research results and examples of received configurations are presented.
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INTRODUCTION

Many tasks are simulated due to discrete
dynamical systems in Physics, Biological Science,
Chemistry, Economics, Social Science, etc. [1]. In
such systems the state is described by a vector that
evolves in time and is considered as discrete one.
Vector evolution in phase space does not depend on
others vectors evolution, but just on itself vector
state in previous time moments. However the spatial
structure of system model is necessary to be taken
into account in many cases. To resolve this issue
cellular automata (CA) are often been utilized as
model.

Cellular automata are a specific case of discrete
dynamical system. Cellular automata are widely
used for processes and systems simulation. Thus in
[2-4] due to CA traffic flows are simulated, in [5-10]
epidemic spreading, CA are used for GIS system
simulation in [11-14] etc. Traditionally, cells’ state
value is restricted by finite set of states, and cells’
transition rules for changing from one’s state one to
another one by logical functions. However, the
description and building of complicated enough
systems are difficult. Also such CA setting does not
allow build control systems. To eliminate pointed
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problems CA are set in analytical form.

Nonlinear discrete dynamical systems, even
those one that are not taken into account with a
spatial structure, often have a complex behavior.
Such systems can have chaotic attractors that contain
countable number of non-stable cycles. One of the
ways of these attractors investigation is their
skeletons’ constructing through periodic orbits with
long enough periods.

In [15-17] search of periodic orbits methods are
developed with a set period. They are based on
feedback principle, due to which unknown periodic
orbits with set period length are stabilized. The
delayed feedback and predictive one are applied. In
the delayed feedback information of vector state in
current time moment and previous ones is used. In
predictive control information of vector current state
and predicted one is used. Predicted state of a vector
is a dynamical system vector state that will be
received in some future time moments without
control.

To set CA in analytical form, let’s choose
vectors that are an aggregate of states’ vectors of
each CA cell as a state space (phase space). And
let’s represent the operator for transforming the
phase space into itself in form of a superposition of
linear mapping (Diffusion equation) and nonlinear
one (Reaction equation). It is possible to apply all
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control schemas of discrete systems developed
earlier to the received system. If the goal of control
is a stabilization of periodic orbits with the set
period, then the each CA cell state will be a periodic
vector function or function that is close to periodic
one. It means that CA spatial structure becomes
synchronized, or CA behaves in a way as a
connected system. However, visually (visualization
is a graphical mapping of a dynamic of
corresponding vector components’ of the each cell
state) if vector function period is big enough, it will
be difficult to define spatial synchronization
existence. In other words, the impression is made
CA works chaotically.

THE PURPOSE OF THE PAPER

The development and application CA spatial
synchronization methods are a purpose. For this goal
CA is set in an analytical form of discrete dynamical
system representation with further building of
control systems, which are in form of a feedback,
delayed or predictive ones.

FORMULATION OF THE PROBLEM

Cellular automata are a discrete dynamical
system that is represented as an aggregate of similar
cells that are connected with each other in the
similar way. Cells constitute the CA lattice. Each
cell is a finite automaton, state of which is defined
by cell neighbors’ state and itself state. To
implement CA the arrays for CA states’ storage are
provided for current, previous and predictive states.
The lattice cells’ transition function is defined. Then
transition function of states of cells’ in time is
defined.

The task is to represent CA in form:

Xn+1 = F(Xn)' (1)

(xl(n)w
X,=| i | is a vector that set a cells’

\xK:(n) )

state and has size K ;
K —is a general number of CA cells.
Elements x;(n) can be as numbers as vectors.

In [20] to build system (1) the superposition of
linear and nonlinear transformation known in
literature as Reaction-Diffusion equation (R-D
equation) was used [21-23].

In this case system (1) can be presented in
form:

where

Xn+1 = (D(DXn) ' (2)
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D is a matrix of weight coefficients:
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For edge cells usually the neighbors account is
carried out by one of three ways: the periodical
continuation, the mirror mapping and the setting of
edge conditions. In this paper first way of neighbors’
account is used. For central cells an account of
neighbors® impact is made by Moore or von
Neumann rules [1; 4; 18-19].

Diffusion equation has a form:

in = z SSXi+S (n)

| i—ik

: 3)

where r=9 is a number of cells are taken into
account (current cell and its neighbors) or:

Y, = DX, (@)

r has not necessary to be equal 9, and it could be a
lot of rules of neighbors account.

Reaction equation

—

i n+1

Diffusion equation

X, =

Fig. 1. The schema of R-D egation

Source: compiled by the author
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and X, =| : |, thenequations (2-3) will take a
kXK (n)

form
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The second part of problem is to synchronize

CA cells’ states using analytical form of CA setting
(1) or (5). For example, in such way so the each cell
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evolution would be periodic evolution or close to
periodic one.
Wherein the control system is set in form:

Xn+1:F(Xn)+Un’ (6)

where control U
Xn’Xn—l""'Xn—N

depends on previous states

or on predicted ones that are
calculated without control X .., X, ,,, -, X .y -

Control properties will be described below.

The third part of problem is a visualization of CA
behavior that simulates concrete processes in real
time schedule as without a control as with a control.

ANALYTICAL REPRESENTATION
OF TWO-DIMENSIONAL CELLULAR
AUTOMATA “GAME OF LIFE” AND

GENERALIZATION

“Game of Life” is the most popular CA among
two-dimensional CA [18-19]. The principle of his
work lies in each cell of CA takes two states: (one) 1
and (zero) 0. Graphically cells that have state 1 are
denoted as black, 0 — as white (Fig. 2).

n

1 O G

Fig. 2. Two-dimensional CA presented in

digital form and graphical one
Source: compiled by the author

Rules of a transition cell from one state to
another one.

1. Life “arise” in empty cell if it has three
“alive” neighbors in existing eight ones: x,=0—>1
(Fig. 3).

2. The cell continues to “live” if it has exactly
two or three “alive” neighbors: x, =1 — 1.

3. The cell “dies” if it has less than two
neighbors (loneliness) or more than three ones
(overpopulation) x, =1— 0.

The utilization of logical rules provided above
makes CA investigation difficult because of a lot of
branches and restricts possibilities of automata
control. Besides if a set of possible cell values
consists of more than two elements than logical rules
become boundless. In other cases of more
complicated sets of possible states the situation
becomes even more difficult. That’s why the
problem of CA representation in analytical form is

important. It becomes possible to study CA, which
cells take different state number, up to infinite one.

x| x| X
g | X | Xy
X Xg | X

Fig.3. Cells’ location:
red — current cell;
blue — neighbors, cells’ numeration is

going through green arrow
Source: compiled by the author

Let’s represent “Game of Life” CA in analytical
form.

To make this let’s consider the cell and its
neighbors not in form of a lattice but in strip form,
where x,(n) is a cell state in time momentn,

x;(n), j =18 is and its neighbors state (Fig. 4).

x1(1) | x5 ()| x5 (1) | x4 (1) | 25(10) | X5 (7D) | %7 (1) | g (12) | X (72)

Fig.4. The cell and its neighbors presented in

form of a strip
Source: compiled by the author

Theorem 1. For “Game of Life” CA weight
coefficients of Diffusion equation (3) can be chosen
in next way

g-j222222221] o
17 '17 '17 '17 '17 17 '17 '17 '17 )’

and a function in Reaction equation (2):
P =P = =0 =0,
4 5

17y -4, —<y<—

y 17 y 17

5 7
1, —<y<—
17 17 . (8)

7 8
—-17y +8,—<y<—
y 17 y 17

0, elsewise
Proof. Let’s note that y, can take values from
set{#, [ :0,1,...,17}. If the current cell value

equals a one (1) then it will stay a one when and only
2 2 1 5 2 2 2 1 7
when y,=—+—+—=—, y=—+—+—+—=—.
17 17 17 17 v 17 17 17 17
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If the cell value equals zero (0) then in the next step

it will become a one (1) when and only when
2 2 2 6 .

=—+—+—=—"_ With all of others values of
17 17 17 17

y; the cell value becomes zero.

Therefore it is necessary to choose the Reaction
function ¢(y) from conditions:

( 5 6 7
[N FET Y
0,ygi——,—
{ 171717
Function (8) satisfies these conditions. The theorem
is proved.

Let’s note that coefficients (7) and functions (8)
can be chosen not in the only one way, for example,

4 4 4 4 4 4 4 4 1
d = - 1 - ) - ) - ’ - 1 - 1 - 1 - 1 - ) and
33 33 33 33 33 33 33 33 33

Yi

( { 9 10 13}
11 y € YTy
o(y) = J 33 33 33
9 10 13
0,yes———
{ {33 33 33}
Let’s choose Reaction function in form of (8) as

more simple continuous piecewise linear function
that satisfies conditions (9).

Besides function (8) along with sets A={0,1},
A=[0,1], leaves next set as invariant

Theorem 2. The set (10) is invariant for R-D
system with Diffusion equation parameters (7) and
Reaction equation functions (8).

(10)

Proof. Obviously that y, :%,Where p, isa
n
positive integer from interval [0,17n].
Then oy )=1,if Poc| 2 ] o(y)=0,
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The Theorem is proved.

Thus if the Reaction function is chosen in form
of (8) then the arbitrary number of intermediate
cells’ states in “Game of Life” CA can be taken into
account.

GENERAL CASE OF CASETTING WITH
THE SCALAR CELL STATE

Consider the cell state is described by one
parameter. Let’s denote x;(n) as cell state where
i, j are cell coordinates on CA and n is a discrete
time moment.

Let’s consider the system that describes
transition of the cell from one state to another one:
Xij (N +1) = f(x;(n), y;;(n)) » (11)
1 .
y;(n) = > l"‘f(llj)xi+k,j+l (n), (12)
k,l=—1
where: x;(n) is a cell state; y;(n) is a weighted

neighbors’ impact; i n =1; pP =0.
k,I=—1
is supposed to equal 0. If
plo=pl,=pl, =pl =0 then to take into
account neighbors von Neumann rules are used. But
if pl ,=p’,=n) =u) 20 then to take into
account neighbors Moore rules are used.
Note that for each cell it can be set its own set

of weight coefficients that depend on current cell
location on space of (i, j). In “Game of Life” CA a
neighbors’ cells’ impact is on an even footing. It
means it does not depend on current cell coordinates.

It is clear that system (12) contains (3) as
particular case.

THE POPULATION DEVELOPMENT
MODEL

Let’s consider the known model of population
development by Ferhulst:

f(x)=4x(1-x) .

Usually, ng,

(13)

Using (11) it is possible to construct model (13)
with space structure account:

Xpy = 41—y, )X, 1-x,) , (14)

where: o e[0,1] is a coefficient of the neighbors
influence intensity; y, is a function that is defined by

formula (11) and means aggregate impact of neighbors
on population development rate of the current cell.

The function (12) can be nonlinear and is chosen
in dependence on a concrete formulation of the
problem.
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In such model each cell has quasi-stochastic
behavior that is similar to one, which is described by
logistic equation [1].

Such way of system representation lets apply
methods of discrete dynamical systems control.

Let’s construct system (14) supposing that
o =0.05 and visualize results.

CELLULAR AUTOMATA CONTROL.
DELAYED FEEDBACK CONTROL

Different systems of the discrete dynamical
systems control are considered in works [15-17]. In
this paper we apply control methods to CA systems.

Let’s consider the nonlinear control that is set
by delayed feedback principle, using the information
of a CA state in previous steps:

Xij(n +1) = f(ZN: 8kXij(n -(k-1)T),
k=1 , (15)

D eY(n=(k=1)T))
k=1

where: N is a prehistory length; ¢, are control

N
coefficients; e, €[01]; > &, =1; T isaperiod.
k=0
Semi-linear control has a form:

X;(n+1) = a-nfQ g X;(n—(k-1)T),

k=1

Zskyij(n_(k_l)-r))+ ’(16)
k=1

N
+yD g X;(n—kT +1)

k=1

y e[0,1) is a control parameter.

As an example, let’s build the semi-linear
control with delayed feedback to stabilize cycle of
the 8 length. Optimal coefficients ¢, are calculated

by known algorithms given in [13]. For
visualization, constructing and processing of
configurations’ data Visual Studio Professional 2019
development environment was used, the application
was developed by the object oriented programming
language C#.

Initial configuration is chosen in random way.
Illustrations, which are presented in Fig. 5, show the
CA state in each cycle moment on a corresponding
iteration that is pointed under a corresponding
picture.

Each cell state is described by value from
interval [0, 1]. A grey color shade corresponds to
this value, moreover white color corresponds to zero
and black color corresponds to one.

Obviously that configuration on iteration 1664
is repeated after 8 steps and the discrepancy function

tends to zero a4, =5x10° (Fig. 6).

T

1664 1666

1665

1667 A 1668 1669
Et!:liiiill!ii!ii!igli
1670 1671 1672

Fig.5. Cellular automata control by nonlinear

control, 8-cycle construction
Source: compiled by the author

04
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02

0.1

Tcycle coincides

0.0

100 200 300 400 500 600

Tteration

Fig. 6. Discrepancy function for constructed

cellular automata (8-cycle)
Source: compiled by the author

Visually CA looks like if system behaves
chaotically. That’s why the values’ discrepancy on
each step n was provided to show that applied
control methods work correctly'

a, ZZ|XU (n- T)|

i=1 j=1

(17)

where: M x N is a size of CA; n is an iteration
number; T isacycle; n>T.

This discrepancy should tend to zero.
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PREDICTIVE CONTROL

In predictive control the predictive cells’ values
are used while CA works without a control.

In the simplest case such control system has a
form:

_ 0 oo
xij(n+1)_f[l+exij(n)+l+ef (x”(n))], (18)

where: 6 is chosen by schema represented in [2]; T
is acycle.

Let’s construct the system with the applying of
predictive control. The CA size is 10x10,

0=4.2x10".

The result of the synchronization of a spatial
CA configuration, which cells have a cyclical
behavior with period 30, can be evaluated by

discrepancy function o, =1x10 ?* (Fig. 7).

CONCLUSIONS

On the example of the well-known CA “Game
of Life” it is shown that CA constructed by logical
rules can be represented in analytical form. It
allowed each cell of CA take any value from set
interval and not only from discrete set {0,1} as in
classic case. Besides the possibility of the developed
schemas of discrete dynamical systems control
applying is appeared.

0.4

03

0,2

0.1

Tcycle coincides

0,0

500 1000 1500 2000 2500

Tteration

Fig. 7. Discrepancy function for constructed

cellular automata (30-cycle)
Source: compiled by the author

The population development model was
considered in  conditions of intraspecific
competition, i.e. with spatial structure account.
Delayed control and predictive one were applied to
constructed system. It led to spatial CA
synchronization that can be interpreted as stable
population development.

In this work was not considered examples with
vector value of cell state. Typical representative of
such CA are spatio-temporal models of epidemic
spreading dynamics.

The system construction in CA form, which
allows control epidemics, is a further research
direction.
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AHOTANTIA

BinpuricTe NpuKIagHUX 337a4 MOJAENIOIOTHCS 33 JOMOMOTOIO PI3HHUIIEBUX PIBHSAHB, IO OMHCYIOTH €BOJIOLIIO0 BEKTOPY CTaHIB
CHCTeM 13 IIMHOM 4acy. IIpoTe B qeskux 3agadax HEOOXiIHO TaKOX BPaxOBYBATH MPOCTOPOBY CTPYKTYPY MPOIIECIB Ta CHCTEM, SKi
MOJICTIOIOTECA. Y CTaTTi PO3IIIANAETHCS MOXIIMBICTD MOJICIIOBAHHS IIPOCTOPOBO-YACOBHMX IPOLECIB 3a JIOMOMOTOK KIITHHHHUX
aBTOMaTiB. HaBeleHO KOpPOTKMH OIJII BIACTHBOCTEH JBOBHUMIPHMX KJIITHHHAX aBToMariB. OIMcaHo NpHHOMI poOoTH
HaWBIIOMIIIOr0 JABOBHMIPHOTO KIITHHHOTO aBTOMaTy «I'pa JKUTTsA», a TaKOX PO3IITHYTO y3arajlbHEHWH CHOCiO MOOYZOBH IIbOTO
aBTOMAaTy B aHAIITH4YHIA Qopmi 3a momomororo piBHsHHs Peaxuii-/Iudysii. [ToGynoBani koHKpeTHI ¢opmu piBHsSHHS Peakuii ta
piBasiHHs [{ndysii, Ta BU3Ha4YeHI iHBapiaHTHI MHOXKHHU JUTA 1€l cucTeMu. HaBeneHo y3arajabHEHHs aHAJTiTHYHOTO BUY KIITHHHOTO
aBTOMary B LUIOMY. B sikocTi mpuknany Oyiia po3risHyTa MOJENb PO3BUTKY HMOMYJIALIi, 10 BUKOPHCTOBYE KIACHYHE PIBHSIHHS
®DepxroibceTa, B AKIH MPOCTOPOBA CTPYKTypa BPaxOBYETHCS Y BHIVIAAL CyKYIMHOTO BIUIMBY CYCiIiB Ha IIBHAKICTH 3MIiHH IOIYJIALIL.
BukopucroBytoun aHamitTH4Hy HOpMy KIITHHHOTO aBTOMATy, Oyid 3alpOIIOHOBAHI Pi3HI CXEMH KOHTPOIIO MPOCTOPOBO-YACOBUMHU
XapakTepucTukaMu cucteMu. Lli cxemu 0a3yroThCs Ha MPUHLUII 3BOPOTHOTO 3B’A3KY: 3 3aMi3HEHHSAM (TOOTO, IO BHKOPUCTOBYE
MONIepeIHI CTAaHW CHUCTEMH) Ta 3 HPOrHO30M (W0 BHKOPHCTOBYE NepenbadeHHI CTaHW cHCTeMH). B pesynbrati BraBaioch
CHHXPOHI3YBaTU MPOCTOPOBY KOH(DIrypaIliro KIITHHHOTO aBTOMATY, III0 MOYKHA IHTEPIPETUPYBATH K CTIHKHIA PO3BUTOK MOMYJIAIIL.
30KkpeMa, KIIITHHHUIA aBTOMAT MIr (YHKIIIOHYBATH ITUKJIIYHO 13 3a31aJIETi b 38JAHHOO JOBXUHOK IUKITY. J{71s Bisyaui3ariii eBoroIIii
aBTOMATIB OynIM po3poOIIeHi AITOPUTMH Ta iX KOMII'IOTepHa peaiisauis. Byma 3anpornoHoBana QyHKIlsST HEB’sI3KH, N0 SKiH MOXHa
OIIHIOBAaTH TOYHICTh CHHXPOHI3aIi1. B pe3ynpTati mociikeHHs MOOYA0BaHO MPHUKIAIN OTPUMAHUX KOHQITyparii.

KiouoBi cjioBa: KITHHHI aBTOMATH; AWHAMIYHI CHCTEMH, Xaoc; cTalOimi3amis LUKITIB; NPEIUKATHBHUA KOHTPOJIb;
CHHXPOHI3ALIS
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HpOCTpaHCTBeHHaﬂ CHHXPOHHU3AIMA KJIE€TOYHLIX aBTOMATOB B 3a/la4ax
MOJ€/TUPOBAHUSA IBOJIOIHOHHBIX MPOUECCOB U YIIPABJICHUA UMHU

AHHOTALIMA

MHorue npuKIafHble 331a4d MOJCIUPYIOTCS C IOMOIIBI0 PA3HOCTHBIX YPaBHEHUH, KOTOpBIE OMHUCHIBAIOT 3BOJIFOLMIO BEKTOpA
COCTOSIHUM cHUCTeMBl C TeueHHeM BpeMeHHM. OIHAKo B HEKOTOPBIX 3afadax TpeOyeTcs TakkKe YYUTHIBaTh IPOCTPAHCTBEHHYIO
CTPYKTYpPY MOJEIHPYEMBbIX MPOIECCOB MIM CUCTeM. B crathe paccMaTpuBaeTcsi BO3MOXKHOCTh MOJEIMPOBAHHS MIPOCTPAHCTBEHHO-
BPEMEHHBIX IIPOIIECCOB C MOMOIIBIO KJIETOYHBIX aBTOMATOB. [IpuBesieH KpaTkuii 0030p CBOMCTB ABYMEPHBIX KIETOYHBIX aBTOMAaTOB.
Omnncan mpuHOUI pabOTH M3BECTHEHINETO IBYMEPHOTO KieToqHOro aBToMaTa «Mrpa XKusHb», a Tarxke paccMOTpeH 0000IIEeHHBII
croco0 3aJaHust HTOTO aBTOMAara B aHAIUTHYECKOH (hopMe ¢ moMombio ypaBHeHHs! Peakunu-Anddysun. [locTpoeHb KOHKpETHBIE
¢dopmsl ypaBHeHUs Peakiim u ypaBHeHns dnddys3un, 1 onpeneeHsl HHBapHAHTHBIE MHOXECTBA JUIS 3TOH cucteMsl. [IpuBoanTcs
000011IeHIE aHATMTUYECKOTO TPEACTABICHHS KICTOYHOrO aBTOMara B 11eJIOM. B kauecTBe mpuMepa pacCMOTPEHa MOJIENb Pa3BUTHUS
HOMYJISILNY, UCIIONB3YIOIAs Knaccudeckoe ypaBHeHne depxroyibeTa, B KOTOPOH IPOCTPAHCTBEHHAS CTPYKTYpa YUUTHIBAETCS B BUIE
COBOKYITHOTO BIIMSIHUSI COCE/Iei Ha CKOPOCTh M3MEHEHHs MOmyisiiuu. Mcnone3ys aHanuTH4ecKylo (GopMy KIETOYHOTO aBTOMATa,
ObUTH TPE/UIOKEHBI Pa3IMYHBIE CXEMBI YIPABICHUS MPOCTPAHCTBEHHO-BPEMEHHBIMH XapaKTEPHCTHKAMHU CHUCTEMBL. DTH CXEMBI
OCHOBaHBI Ha TIPHHIOHWIE OOPaTHOW CBS3M: 3ala3bIBAIOIIEH (TO €CTh, HCIOJB3YIOUIEH NpEebIAYIIAE COCTOSHHS CHCTEMBI) H
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MIPOTHO3HOH  (MCIOB3YIOMIEH

npeICKa3aHHbIC COCTOSTHHUA CI/ICTGMLI). B pe3yiabTare

CHUHXPOHU3UPOBATH

IIPOCTPAHCTBEHHYIO KOH(UTYPAIHIO KJICTOYHOTO aBTOMATa, YTO MOKHO MHTEPIIPETHPOBATh KaK yCTOHUMBOE pa3BUTHE MOMYIISIHUN.
B uactHOCTH, KJIETOYHBII aBTOMAT MOT (DYHKI[HOHUPOBATh LIMKINYECKH C 3apaHee 3aJaHHOW IIMHOW 1ukia. [ Bu3yanu3auuu
9BOJIOLIMM aBTOMATOB ObUIM Pa3pabOTaHbl ANTOPUTMBI M UX KOMIIBIOTEpHAsS peanusarus. beula npeanoxkeHa GyHKIHA HEBA3KH, 110
KOTOpOIl MOJKHO OIEHUBATh TOYHOCTh CHHXpOHHU3auuM. IIperncraBieHbl pe3ynbTaThl MCCIEJOBAHUS M IPHMEPHI MOIYYEHHBIX

KOH(UTYpaIHH.
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